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Introduction
Scalar field theories in curved spacetimes are on the basis of 

modern advances in cosmology and astrophysics,1–3 as they constitute 
important candidates to explain the behavior of dark-matter.4–7 Their 
relativistic dynamics is governed by the Klein-Gordon (KG) equation,8 
historically emerging as a first attempt to unify quantum mechanics 
with the special relativity theory, to obtain a unified theory to explain 
our universe. The Klein-Gordon-Einstein (KGE) equations, that 
involve a coupling between the KG equations and gravity, were first 
used to study boson stars.9 Although, the first models of these stars do 
not assumed that bosons could have a self-interaction potential, it was 
shown then that self-interaction can significantly change the physical 
dimensions of the boson stars and make them clearly more interesting 
as an astrophysical object.10 Furthermore, models of dark matter (DM) 
halos were proposed based on scalar fields that are described by KGE 
equations.6 These DM halos can be explained through Schrodinger-
Poisson (SP) equation or Gross-PitaevskiiPoisson (GPP) equations, 
since the Newtonian limit is valid at the galactic scale. In this sense, 
we can think about DM halos as gigantic quantum objects made of 
Bose-Einstein condensates (BECs). 

Furthermore, these models are a tentative of solving the problem 
of Cold Dark Matter (CDM), as the wave properties of bosons can 
stabilize the system against gravitational collapse. At the cosmological 
level it is quite important to study the implications of these scalar 
field models. It was shown by Matos et al.11 that when a spatially 
homogenous interacting real scalar field competes with baryonic 

matter, radiation and dark energy in terms of cosmological evolution, 
these real scalar fields can reproduce quite well the cosmological 
predictions of the Λ-CDM model. A perturbative analysis then showed 
the formation of structures corresponding to DM halos. Finally, 
Chavanis4 has considered the case of a complex self-interacting scalar 
field in the context of Newtonian cosmology and based on the GPP 
equations. The formation of structures has been recently studied 
through the Jeans instability of an homogeneous self-gravitating 
BEC in a static background.13 Basically, the so-called BECDM have 
shown that perturbations grow faster than in a Λ-CDM model. Some 
relativistic models have been then analyzed.4,14

In the last year, gravitational waves (i.e. fluctuations in the metric) 
generated by accelerated mass distributions, like massive black holes, 
were finally detected by the LIGO collaboration.15 The theory of 
general relativity predicts that the amplitude of these gravitational 
waves is extremely small, which harnessed their detection for a long 
time. Although gravitational waves produced by black hole collisions 
could be detected, finding experimental evidence of primordial 
gravitational waves remains elusive. Nevertheless, the advent of 
table-top, high-sensitivity devices based on quantum technologies 
revived their interest. Also, ESA is now developing the eLiSA, a 
space-based interferometer that will be used to detect gravitational 
waves in other range of frequencies, the low-frequency band.16 It is 
expected that it could detect waves coming from other sources rather 
than merging black holes. On the other hand, a lot of attention has 
been drawn to the study of space-time effects in quantum systems as, 
for instance, in phononic fields.17,18 It was shown in that gravitational 
waves can create phonons in a BEC,18 a features that is motivating a 
new generation of gravitational-wave detectors using matter waves, 
which may become a reality in a medium-term timescale.

In this work, we investigate the self-consistent dynamics of an 
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Abstract

We present the coupling between a gravitational wave in a Minkowski spacetime with 
dark matter modelled by a self-interacting complex scalar field. In flat spacetime, quantum 
fluctuations in dark matter, as described as a Bose-Einstein condensate (BEC), are stable 
and display a relativistic Bogoliubov dispersion relation. In the weak gravitational field 
limit, both relativistic and nonrelativistic models self-gravitating dark matter suggest the 
formation of structures as the result of a dynamical (Jeans) instability. In this work we 
show that in the presence of spontaneous symmetry breaking of the dark matter field, the 
gravitational wave is damped for wave-lengths larger than the Jeans length. Such energy 
is converted to the Bogoliubov modes of the BEC that in their turn become unstable and 
grow, leading to the formation of structures even in the absence of expansion. Remarkably, 
this compensated attenuation/amplification mechanism is the signature of a discrete PT 
symmetry-breaking of the system.
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interacting complex scalar field (BEC) - described by a nonlinear 
Klein-Gordon equation - evolving in a fluctuating space-time. In 
particular, we show that gravitational waves (obtained from Einstein’s 
equation in the weak field limit) can couple to scalar field fluctuations, 
leading the dynamics of the latter unstable. Remarkably, the present 
instability mechanism appears to be associated with the violation of 
the discrete parity-time (PT) symmetry. The latter, initially proposed 
as a concept in quantum mechanics,19 is now being extensively studied 
in optics20–22 and, more recently, in acoustics.23 In such systems, any 
spatial region with a loss is mirrored by a region of gain. Therefore, 
the processes of light (or sound) absorption and amplification can 
be compensated, and the frequencies of the eigen optical (acoustic) 
modes can be real. 

When PT-symmetry is broken, the eigenmodes appear in complex 
conjugate pairs. In our case, complex eigenmodes appear for hybrid 
modes made of the mixture between gravity and Bogoliubov (sound) 
BEC modes. This suggests that the formation of structures, as described 
by the Jeans self-gravitating instability, due to primordial gravitational 
waves is a consequence of the breaking of the U(1)×PT symmetry. 
Our findings show that the gravitational wave is damped for wave 
lengths larger than the Jeans length and the energy is converted to the 
Bogoliubov modes of the BEC, which grow in time. This will turn the 
system unstable, leading to the formation of primordial cosmological 
structures even in the absence of an expanding universe. Moreover, we 
argue that this particular form of the space-time−field interaction may 
be an important mechanism preventing the detection of primordial 
gravitational waves, as their energy is transferred to the matter field 
originating structures in the universe. Minimally coupled theory. The 
dynamics of a complex scalar field (SF) ϕ(xµ) in a curved spacetime 
of curvature R is governed by the following minimal-coupling action

            

4 4 ,
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ϕ
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is the coupling constant, as is the scattering 
length and m is the field mass. The minimization of Eq. (1) with respect 

to ϕ provides the EulerLagrange equation 
( )* *

0,
L Lϕ ϕ

µ
µ ϕϕ

 
∂ ∂ ∇ − = 

∂∂ ∂  
which in turn yields the following generalized KG equation
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made use of the parallel transport of the metric 0.g µν
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minimization procedure with respect to the metric g
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leads to the 
Einstein field equations
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Perturbative analysis

We now assume a perturbation around the Minkowski space time 

of the form g h
µν µν µν

η= +  where h
µν µν

η is the spacetime 

ripple and ( ), , , , .diag
µν

η = − + + +  To first order in h
µν

Eq. (4) reads
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last term in Eq. (7) vanishes and the KG equation explicitly reads
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where we made use of the property .h hµν
µν= Similarly, the 

weak-field limit of Eq. (5) describes spacetime radiation (gravitational 
waves) in the presence of matter 
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with ( ) 2 221/ .
t

c= − ∂ + ∇ In what follows, we introduce quantum 
fluctuations around the homogeneous scalar field (i.e. the vacuum 
expectation value 0nϕ = spontaneously breaking the continuous 
U(1) symmetry) in the form
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where µ  is the chemical potential of the condensate. By 
dividing the metric fluctuation into its time and space components, 

2
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0ff
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m kV n c=  is the square of the effective graviton 

mass. Assuming plane-wave solutions of the form ,
ij

ik xh ije
k

µ
µχ∑=

we obtain the dispersion relation 
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The latter is obtained by making use of the equation of state 
obtained at the zeroth order, which fixes the chemical potential of the 
BEC as
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where ( )0/
s

c m nλ=  is the BEC sound speed. The dispersion 

relation in Eq. (12) is analogous of that of an electromagnetic wave 
propagating in a charged medium characterized by a plasma frequency

,
p

ω where the photon also acquires an effective mass. Consequently, 
the KG equation decouples from Einstein’s equations and the 
Bogoliubov modes for the scalar field can be obtained from Eqs. 
(8) and (10). Their dispersion relation can be found from plugging 
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usual Bogoliubov dispersion in the non-relativistic limit 0.β → 25,26 
The gapped mode, corresponding to the massive Higgs mode of mass 
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+

+   Although 

with a different notation, the dispersion modes of Eq. (14) have first 
been discussed in Ref.27 

The situation changes if we consider perturbations in the time-
time components of Einstein’s equations (5), i.e., for gravitational 

waves of the form 2

00
2 / .h h c

µν
φ=  This amounts to generalize 

the usual self-gravitating problem, as described by the Klein-
GordonPoisson system,13 to the study of propagation of gravitational 

radiation in a symmetry-broken quantum vacuum. As we are about to 
see, the formation of structures emerges in this case as a consequence 
of the violation of the discrete Pτ − symmetry. Putting Eqs. (9) 
and (8) together, and keeping terms to the first order in the Fourier 

components of the vector ( ), , ,Vk uk k kυ φ= we obtain the eigenvalue 
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  and

 ( )2 2 2 2 2
0

.c kε ω= − Nontrivial solutions are obtained by solving 

the secular equation det ( ) 0Lk =  in respect to ω, for which we obtain 
six solutions (three for positive-energy and other three for negative-
energy excitations). For zero gravity-matter coupling (G = 0), the 
positive-energy modes are the BEC Goldstone Bogoliubov and the 
Higgs, as described in Eq. (14), and the gravity mode .ckω = In this 
situation, all modes are real and therefore dynamically stable (Figure 
1A). In the presence of gravity, however, the Bogoliubov and the 
gravity modes hybridize and collapse, exhibiting an imaginary part 
for k−modes below the Jeans wave vector kJ that satisfy the condition 
( ) 0,ωℑ = for which we obtain the equation.

    
( )4 4 2 2 2 2 4 2 22 2 0.sJ J s

k k m c km c c+ − + =

 

       
(16)

Remarkably, the imaginary part of the Bogoliubov and the gravity 
modes have opposite signs, suggesting that the formation of dark-
matter cosmological structures (triggered by the long-wavelength 
dynamical instability) is accompanied by the damping of space-time 
perturbations. In other words, the gravitational waves transfer their 
energy to the BEC modes so the latter can grow. Because ( ) 0,Re ω >  

a 
0

I -type of instability28 is responsible for the formation of large 
structures in flat spacetimes. Also, we observe that the positive and 
negative Bogoliubov modes are not symmetric, i.e. * ,ω ω− ≠ − −

indicating violation of the PT -symmetry. These features are depicted 

in Figure 1B).

In order to illustrate how the PT -symmetry breaking affects the 
formation of structures, we perform onedimensional simulations 
of Eqs. (8) and (9) for the early stages of the Jeans instability. 
As depicted in Figure 2, an initial linear superposition of plane 
gravitational and Bogoliubov waves (Figure 2A)) lead to the 
formation of 1d structures in the BEC sector. Short after the onset the 
instability, the long wavelength structures of the BEC start to grow, 
leading to the formation of structures of typical size 2 / .

J
kJλ π=  

Simultaneously, the gravitational modes in the same wavelength 
modes attenuate, eventually vanishing out for longer times. We notice 
that our calculations are valid near the onset of the instability only, i.e 

for 2/ ,t mc  for which a quasi-linear approximation of Eqs. (8) 
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and (9) is valid. A more accurate, quantitative discussion of our results 
would involve taking into account saturation effects. 

Figure 1 Dispersion relation of the various modes present in the dynamics. 
Top panel: mode dispersion in the absence of coupling ( )0 .G=  We observe 
that the Bogoliubov-Goldstone modes are PT -symmetric. Bottom panel: 
when the gravity is switched on, the Goldstone modes lose their symmetry. 
The gravity mode is damped to favour unstable (growing) modes in the BEC. 
The imaginary part of the frequencies goes to zero at the Jeans mode kJ, 
exhibiting the usual signature of PT- symmetry breaking. For illustration 

purposes, we use 
s

c c/ 3.=

Figure 2 One-dimensional illustration of the structure formation dynamics 
at early stages of the instability onset. Panel a) shows the initial ( )0t=  plane-

wave superposition solution for the gravitational wave ( )xφ  (black line) 

and the BEC ( )xϕ  (lighter line). Panels b), c) and d) depict their evolution 

at 
2 21.5 / , 4.5 /t mc t mc= =  and 

25.5 / ,t mc=  respectively. 

The shadowed region represent the Jeans length 2 / .
J

kJλ π=  We use 

/ 3.
s

c c=

Conclusion
In this work, we have studied the coupling between a gravitational 

wave in a Minkowski spacetime with dark matter modelled by a 
self-interacting complex scalar field (Bose-Einstein condensate). 
Considering perturbations in the spatial components of the metric only, 
the gravitational wave dispersion relation is analogous to that of an 
electromagnetic wave propagating in a charged medium characterized 
by a plasma frequency ωp, where the photon also acquires an 
effective mass. In this case, the two modes (the gravity mode and 
the Bogoliubov mode) are decoupled. However, when we consider 
perturbations in the temporal component of the metric, the gravity and 
the Bogoliubov modes hybridize and become dynamically unstable. 
Because of the local breaking of the Pτ - symmetry, the modes form 
conjugate pairs, in such a way that there is a transfer of energy from 
the gravitational wave (damping) to the BEC field (growth). In short, 
this means that the instability mechanism triggering the formation of 
large dark-matter structures is accompanied by the breaking of the 
( )1U PT× symmetry. Remarkably, our findings may also constitute 

an alternative explanation why primordial gravitational waves are 
quite hard to detect: they just vanish and give away their energy to the 
formation of large-scale structures. In a near future, our work could 
strongly benefit from numerical GR tools, both in weak and strong 
gravity scenarios, which could correctly describe the saturation at 
later stages due to the nonlinearity in the KleinGordon equation and, 
eventually, the effects of curvature due to the presence of massive 
objects.
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