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Abstract

The metabolic syndrome (MS) is a complex multi-factorial disease associated with obesity
(OB), type 1 diabetes mellitus (DM1), type 2 diabetes mellitus (DM2) and high blood
pressure (HBP). This study included 404 subjects selected at Giurgiu Country Hospital,
on the basis of clinical evaluation and of biochemical and hematological laboratory
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investigations, and the sequencing of 28 genes of interest: INS, IGF2, TGF-beta, HSPG

Bam HI1, ACE, UCP2, FABP2, PLIN1, PON1, FTO, ADRB3, BHMT2, MTHFR, IRSI,
TRPM6, MT1A, APOAS, PEMT, ABCB4, CHDH, FADS2, PCYT1A, PCYT1B, PNPLA3,
SCD, SCL44A1, STAT3 in identifying the high risk of developing metabolic syndrome.

The findings were statistically processed by the MDR and Jalview programs.
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Introduction

The metabolic syndrome (MS) is a complex multi-factorial disease
associated with obesity (OB), type 1 diabetes (DM1), type 2 diabetes
(DM2) and high blood pressure (HBP). The metabolic and nutritional
factors, complemented by the interactions between the genome and
the environmental conditions mediated by epigenetic mechanisms,
and play important role in the genesis of obesity, diabetes mellitus
and high blood pressure.! The purpose of study was to identify the
risk of developing MS in patients diagnosed with obesity (OB),
DM1, DM2 and high blood pressure (HBP) by using the MDR and
Jalview programs, on the basis of clinical, laboratory (biochemical,
hematological) and genetic data.

Experimental section

The 404 subjects, of whom 219 in patients with MS, OB, DM
2, DM 1, HBP and 185 clinically healthy subjects were enrolled
in the study on the basis of their clinical evaluation: age, sex,
height, weight, cardiac index, waist circumference, blood pressure,
alcoholism, smoking, stress, diet, family history; biochemical
laboratory investigations: glucose, triglycerides, HDL, cholesterol,
LDL, HbAlc, creatinine, uric acid, urea, TGO, TGP, magnesium,
calcium, folic acid, vitamin D, vitamin B12, homocysteine, vitamin
C, which were determined by spectrophotometry; and hematological
laboratory investigations: WBC, HGB, HCT, RBC. All the subjects
were selected at Giurgiu County Emergency Hospital. An informed
consent was obtained from all subjects before the commencement of
the study. In isolating DNA from blood the DNeasy Blood and Tissue
Kit from Qiagen was used;’ the spectrophotometric determination
of the isolated genomic DNA purity and concentration® and the
sequencing of the risk genes were performed by Advanced NGx
test. The statistical analysis was conducted through the following
applications: Jalview Software,” MDR Software.® This study was
conducted from 20.01.2014-19.01.2015 and 20.01.2015-19.01.2016
as part of a volunteer activity at Giurgiu County Emergency Hospital
(Volunteer Contract no 2/20.01.2014 and contract no 2/20.01.2015
subject to art. 13(5) of Law no 677/2001).

Results

The study included 404 subjects aged 21-92, of whom 219 inpatients
diagnosed with MS, OB, DM 1, DM 2, HBP and 185 clinically healthy
subjects from the hospital environment. It consisted in sequencing
the genes of interest: UCP2, UCP3, FABP2, PLIN1, PONI, FTO,
ADRB3, BHMT2, MTHFR, IRS1, TRPM6, MT1A, APOAS, PEMT,
ABCB4, CHDH, FADS2, PCYTIA, PCYTIB, PNPLA3, SCD,
SCL44A1, STAT3, INS, IGF2, ACE, TGF-beta, HSPG Bam H1 and
studying their association with metabolisms in MS. By using the
Advanced NGx test it was noted that the dominant homozygous and,
respectively the heterozygous form for the adult nutrition included
the markers of FADS2 gene associated with omega 6 and omega 3
unsaturated fatty acids (omega 6 and omega 3 are high concentrations
);vitamin B2, vitamin B12, betaine, choline, magnesium and folates
associated with the following genes: MTHFR, BHMT2, CHDH,
PEMT, SLC44A1, TRPM6 (with high concentrations of homocysteine
and low concentrations of folic acid, vitamin B12, magnesium,
calcium, choline, betaine); genes PEMT, ABCB4, CHDH, FADS2,
MTHFR, PCYTIA, PCYTIB, PNPLA3, SCD, SLC44A1, STAT3
are associated with non-alcoholic liver steatosis (with the occurrence
of steatosis in overweight or obese individuals); the following genes:
UCP2, UCP3, FABP2, PLINI were associated with obesity (the
occurrence of obesity); genes BHMT2, MTHFR were associated with
hyperhomocysteinemia (high concentrations of homocysteine and
low concentrations of folic acid, vitamin B12, magnesium, calcium,
choline, betaine, riboflavin (vitamin B2), curcumin, fish oil, vitamin
C, vitamin D and vitamin E); cholesterol was associated with the
following genes: UCP3, UCP2, PONI1 (high concentrations of
cholesterol, triglycerides, LDL-cholesterol and low concentrations of
HDL-cholesterol); the following genes were associated with insulin-
resistance: IRS1 and TRPM6 (high concentrations of glucose, HbAlc
and magnesium); cardiovascular diseases were associated with gene
MTI1A (high concentrations of glucose and HbAlc); postprandial
hyperlipemia was associated with gene APOAS (high concentrations
of cholesterol, triglycerides, LDL-cholesterol and low concentrations
of HDL-cholesterol); and other genes associated with physical
effort or performance, such as those for the cardiac and respiratory
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function, were associated with genes: SLC16A1, PPARA (high
concentrations of cholesterol, triglycerides, LDL-cholesterol and
low concentrations of HDL-cholesterol); the muscular function and
the body weight were associated with genes: CHDH, FTO, ADRB3,
ACE (deficiency of vitamin B12, folic acid, high concentrations of
cholesterol, triglycerides, LDL-cholesterol, BMI, height, weight,
glucose, HbAlc, systolic and diastolic blood pressure, and low
levels of HDL-cholesterol); metabolism was associated with genes:
UBE2E2, ADAMTS9-AS2, KLHDCS, IRS1, MEFV, MFE (high
concentrations of glucose, cholesterol, triglycerides, LDL-cholesterol
and low concentrations of HDL-cholesterol), which are associated
with cardiovascular diseases, diabetes, obesity, and can increase the
risk for metabolic syndrome.

It was noted that all these genes, with their genetic variations,
associated with nutrition in healthy adults, and with lipid, carbohydrate
and behavioral metabolism, were associated with a high risk of
developing metabolic syndrome (Figures 1-13). After analysis of the
secondary structure of the 28 genes of interest, it was noted that those
genes, through the sequence of nucleotides preserved in position 1,
were associated with the metabolic syndrome, by using Jalview 2.8
software.
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Figure 2 Markers associated with hyperhomocysteinemia.
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Figure 3 Markers associated with cholesterol.
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Figure 4 Markers associated with DM 2/ insulin-resistance.
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Figure 5 Markers associated with cardiovascular disease in the elderly.

Copyright:

©2020Alina 149

80

mTest

60 -

mAge

a0

it 1‘1 |

1357 911131517192123252729

®

%

WAPQASR3G52739

BAPOAS{RS 3135506}

Figure 6 Markers associated with postprandial hyperlipemia.
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Figure 7 Markers associated with the heart, vascular and respiratory
functions.
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Figure 8 Markers associated with the muscular function and body weight.
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Figure 9 Markers associated with metabolism.
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Figure 11 Markers and genes associated with omega 6 and
unsaturated fatty acids.
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Figure 12 Markers associated with the metabolism of vitamin B2, vitamin
B12, betaine, choline, magnesium and folates.
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Figure 13 Markers associated with non-alcoholic fatty liver.

The statistical analysis performed by applying the MDR software
version 3.0.2. revealed that, in the whole set of clinical data, laboratory
investigations and genes of interest investigated by Advanced NGx,
OR was the highest, OR = 104.7455, OR > 1, which results in a high
risk of developing metabolic syndrome (Figure 15). The Jalview 2.8
software was used to identify the secondary structure of genes UCP2,
UCP3, FABP2, PLIN1, PONI1, FTO, ADRB3, BHMT2, MTHFR,
IRS1, TRPM6, MTI1A, APOAS, PEMT, ABCB4, CHDH, FADS2,
PCYTIA, PCYTI1B, PNPLA3, SCD, SCL44A1, STAT3, INS, IGF2,
ACE, TGF-beta, HSPG Bam H1. It was noted that the amino acid
composition of the 28 genes was preserved and identical in position
1 of the nucleotide sequence. The phylogenetic tree was obtained by
the Neiber Joining method. It was noted that genes PNPLA3, UCP3,
HSPG, TRPM6 are phylogenetically related and they are composed
of more sequences of common amino acids. FADS2, PON1, PLINI,
PCYTI1A, PCYTI1B, IRS1 are phylogenetically related and they are
composed of fewer sequences of common amino acids. CHDH is
phylogenetically related, but the amino acid sequences are different.
APOAS, INS are phylogenetically close but the amino acid sequences
are identical. UCP3, MTHFR, STAT3, TRPM6 are phylogenetically
related, but they are different in sequences of common amino acids.
MTI1A, ADRB3, IRS1 are phylogenetically related and they are close
in the common amino acid sequences. IGF2, ADRB3, TGFB, SCD,
PNPLA3, FTO are phyolgenetically close and they are different in
the common sequences of amino acids. ACE, INS, PEMT, SLC44A1,
FABP2, UCP2, BHMT2 are phylogenetically related and they
are similar in sequences of common amino acids. The genes were
associated with the metabolic syndrome, obesity, diabetes mellitus
and high blood pressure (Figures 14, 16).

Figure 14 A) Fasta format; B) Secondary structure; C) Composition of
nucleic acids; D) Representation of the phylogenetic trees of genes UCP2,
UCP3, FABP2, PLINI, PONI, FTO, ADRB3, BHMT2, MTHFR, IRSI, TRPMS,
MTIA, APOAS, PEMT, ABCB4, CHDH, FADS2, PCYTIA, PCYTIB, PNPLA3,
SCD, SCL44A1, STAT3, INS, IGF2, HSPG, TGFb,ACE. PDB processed in Jalview
program.
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Figure 15 A) Graphic interaction model for MS, OB, DMI, DM2, HBP. B)
Cluster by dendogram generated by MDR .
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Figure 16 MDR data processing evaluated through (A) the dendogram
provided by MDR c, (B) Relief F, (C) Val P, (D) OR.

The 28 genes were associated with cardiovascular diseases,
diabetes, obesity, which generates a high risk of metabolic syndrome.
The Jalview 2.8 processing of the nucleotide sequences of the
examined set of genes allowed the identification of secondary structure
modifications in the corresponding proteins, which provides the
premises for their association with possible functional alterations.The
building of the phylogenetic tree by Jalview showed that the 28 genetic
markers were associated with an increased risk of MS. The graphical
model, the interaction map and the cluster obtained by applying
MDR confirm that the polymorphisms of the 28 genes present an
increased risk of MS. ReliefF=0,45, Value P=0,00001(p<0,0001), OR
=104.7455, OR > 1.

The application MDR was chosen to include all the investigated
data: clinical, laboratory and genetic data for the identification of
increased risk of MS.

a. This is the first study in Romania which correlated extremely
diverse (clinical, biochemical, hematological, genetic)
parameters by applying several techniques, including molecular
(NGS sequencing).

b. For maximum accuracy of the correlations between the
investigated data, complex sets of statistical and mathematical
modelling programs were used: Jalview, MDR.

c. With a view to the development of personalized medicine
programs, the information provided in this article is of major
importance in implementing complex methods of individual
assessment of the MS risk and of associated diseases nutritional
management.

Discussion

Information about the investigated genes can be found in the
published literature.

INS (insulin) gene. Cytogenetic location: 11p15.5.7 It plays an
important role in producing insuline, which is necessary for the
control of blood glucose.® The genetic variant of insulin gene (VNTR
and SNP) plays a role in the susceptibility to type 1 and type 2 diabetes
mellitus. INS gene is associated with the metabolic syndrome,’ type 2
dibetes mellitus, polycystic ovary syndrome and coronary diseases.'

IGF2 gene (insulin-like growth factor 2). In humans, IGF2 gene is
located on chromosome 11p15.5 in the region containing numerous
imprinted genes.!" IGF2 is a regulator of somatic growth, cell
proliferation and maternal imprinting (imprinting of the telomeric
domain of region 11pl5 containing silenced hypermetilated ASCL2,
H19 and IGF2 in Wilms tumors).”? It is involved in stem cell
differentiation.'* IGF2 influences placental lactation and can play arole
in fetal development.! The synthesis of several specific components
such as proteoglycans and other components of the connective matrix.
Using a feedback mechanism, it inhibits the release of the growth
hormone (while stimulting the release of somatostatin).” IGF2 acts
as a growth factor and predisposes to diabetes mellitus. IGF2 gene
is associated with obesity, type 2 diabetes mellitus'® and gestational
diabetes.'”
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TGF-beta (Transforming growth factor beta) gene. Cytogenetic
location : 19q13.1. TGF-beta fulfills important roles: it stimulates
tissue repair and fibrosis by regulating cell proliferation and apoptosis
and by synthetising components of the extracellular matrix; it
participates in regulating the function of the immune system; it
inhibits the functioning of T and B lymphocytes, the proliferation
of neurons, of endothelial and mesenchymal cells, the synthesis of
several cytokines;'® it plays a role in growth control, inflammation and
tumorigenesis.!” TGF-beta gene was associated with type 2 and type
1 diabetes mellitus,? obesity, diabetes mellitus, high blood pressure'’
and MS.”!

HSPG (Heparan sulfate proteoglycans) gene. Cytogenetic location
: 1p36.1-p34. It plays an important role in maintaining the glomerular
ultrafiltration barrier and in reducing density. It can contribute to the
initiation of albuminuria and to the alteration of the renal function in
patients suffering from type 1 diabetes mellitus. It has a role in the
endothelial dysfunction and in improving capillary permeability.'® In
vivo studies showed that HSPG has several cellular functions and is
essential in development, that is why it is involved in the regulation
of signalling pathways, transforming growth factor f and fibroblast
growth factor pathways.? It helps maintain vascular homeostasis and
can participate in the activation of FGF2, by stimulating endothelial
growth and regeneration;*® it also plays a role in lipoprotein
metabolism.** Polymorphism is associated with diabetes mellitus and
HSPG (Heparan sulfate proteoglycans).'®

ACE (Angiotensin-Converting Enzyme) gene. Cytogenetic location:
17q23.3. ACE plays an important role in regulating blood pressure,*
and in the conversion of (inactive) angiotensin I decapeptide to
(active) angiotensin II octapeptide.® A role in pulmonary infections
caused by coronaviruses is held by ACE ID polymorphism, which
is consedered to be involved in the spread of SARS-CoV-19 among
European populations.”” ACE ID polymorphism is associated with
cardiovascular diseases, diabetes mellitus, diabetic nephropathy,
aterosclerosis, heart diseases and stroke, high blood pressure, obesity,
Alzheimer disease, cancer and Parkinson disease (DD genotype),
while II genotype has also a strong effect in longevity.?® It was reported
that ACE2 deficiency in the mouse, which encodes an essential
regulating enzyme of the renin-angiotensin system (RAS) results in
a very high susceptibility in the epithelial lesion-induced intestinal
inflammation. RAS is involved in acute pulmonary insufficiency,
cardiovascular functions and SARS infections.?® ID polymorphism in
intron 16 of ACEL1 is associated with modifications of ACE circular
and tissue concentrations. SARS-CoV and SARS-CoV-2 can bind to
target cells via ACE2 whihg facilitates quick viral replication, while
in the lungs, the depletion of ACE2 from the cell membrane improves
the damaging effects of Ang I1.%

FTO (Fat mass and obesity-associated) gene. Cytogenetic location:
16q12,2. FTO gene plays a role in obesity; through the generation of
new fat cells or adipocytes, a process called adipogenesis, this gene
acts on the key processes occurring in the first stages of adipogenesis.*
It is also involved in nutrient detection and translation and growth
regulation.’® FTO is associated with type 2 diabetes mellitus and
cardiovascular disease,” obesity, cancer, hypertension, Alzheimer
disease and renal impairment® and with MS.3*

ADRB3 (Beta-Adrenergic Receptors 3) gene. Cytogenetic location:
8p11.23. ADRB3 gene has a role in lipid metabolism* and in the
regulation of the energy balance.® The polymorphism of gene
ADRB3, Trp64Arg, is associated with obesity, diabetes mellitus and
hypertension,’” metabolic obesity*® and MS.*
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UCP2 (uncoupling protein 2) gene. Cytogenetic location: 11q13.4.
UCP2 is involved in thermogenesis, obesity, diabetes mellitus and
atherosclerosis, as well as in the control of the reactive oxygen
species derived from mitochondria (Vidal-Puig et al., 1997). It also
plays a role in ageing, as a source of amino acid, as cellular response
to starvation, as cellular response to glucose stimulus, as cellular
response to insulin stimulus, in pregnancy, liver regeneration, negative
regulation of apoptosis, negative regulation of insulin secretion,* in
lipid metabolism (Pecqueur et al., 2009). UCP2 was associated with
obesity,*! type 2 diabetes mellitus.*? It plays a role in the metabolic
syndrome and in the development of type 2 diabetes mellitus.®

UCP3 (uncoupling protein 3) gene. Genomic location: 11q13.4.%
UCP3 can participate in the modulation of the respiratory control
of tissues,”’ in thermogenesis,* in the outward translocation of fatty
acids from the mitochondrial matrix.* UCP3 is associated with severe
obesity* and type 2 diabetes mellitus.*’

FABP2 (Fatty acid binding protein 2) gene. Genomic location:
4q28-q31. FABP2 is involved in the improvement of the intracellular
enzyme hypofunction caused by long-chain fatty acids. It acts as a
free radical scavenger or it removes peroxidized acids from cells.*®
FABP2 is probably involved in the lipoprotein and triglyceride
synthesis and can help maintain functional energy homeostasis as
a lipid sensor; it responsible for the modulation of cell growth and
proliferation.*” IFABP can be involved in the absorption of fatty acids
from the intestinal lumen and the transport of intestinal enterocytes to
organs,” in the intercellular absorption and transport of dietary long-
chain fatty acids.’' FABP2 gene is associated with MS,*> with type 2
diabetes mellitus® and high blood pressure.**

PLIN1 (Perilipin 1) gene. Cytogenetic location: 15q26.1. PLIN1
gene controls the storage and release of fats into adipocytes;> it acts as
a modulator of lipid metabolism in adipocytes.*® PLIN1 is associated
with insulin-dependent diabetes mellitus (IDDM3),%” with obesity,*®
cardiovascular disease®® and metabolic syndrome.®

PON1 (paraoxonase/arylesterase 1) gene. Cytogenetic location:
7q21.3. It is responsible for the hydrolysis of organophosphorus
pesticides and toxic fumes acting on the nervous system; it plays a role
in the innate immunity and healthy ageing. However, this mechanism
is yet unknown.®! It participates in lipid peroxidation, detoxification
of reactive molecules, modulation of endoplasmic reticulum stress
and regulation of cell proliferation/apoptosis.®> PONI1 gene is
associated with coronary diseases,® diabetes and amyotrophic lateral
sclerosis,” type 1 diabetes mellitus,* insulin resistance and metabolic
syndrome,® type 2 diabetes mellitus and its complications,® and high
blood pressure.”’

BHMT2 (Betaine homocysteine methyltransferase 2) gene.
Cytogenetic location: 5q14.1.% BHMT? is involved in the regulation
of homocysteine metabolism.*’ It is associated with cardiovascular
disease, osteoporosis, dementia and pregnancy complications,*
coronary artery disease, stroke and venous thrombosis.”

MTHFR (5,10-Methylenetetrahydrofolate reductatse) gene.
MTHEFR is located on chromosome 1p36.3.”" MTHFR enzyme
plays an important role in the processing of amino acids and blocks
of proteins.” The epigenetic functions of the methyl group are the
following: to protect DNA and RNA against the action of viruses,
bacteria, heavy metals, solvents and other toxins in the environment;
to lower histamin levels; to protect cell membranes.” It participates
in the formation and maturation of RBC (red blood cells), leucocytes
(white blood cells) and in the production of thrombocytes.”* MTHFR
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is associated with cardiovascular diseases,”” HBP and mental
retardation’ and MS.”” The American Diagnosis and Statistical Manual
of Mental Disorders (DSM-5) contains a number of criteria for the
classification of mental disorders: dementia (BHMT2 gene), mental
retardation (MTHFR gene), degenerative diseases: Alzheimer, which
is caused by genetic mutations in persons with a family history and
Parkinson (ACE gene).” It aimed to involve ACE/MTHFR genotypes
in a wider algorithm of genes which influence ~CVD/diabetes,
obesity, along with the gene which the literature considers as critical
in Alzheimer disease—ApoE. ApoE4 poses a high risk of developing
late-onset Alzheimer disease and cardiovascular diseases.”

IRS1 (insulin receptor substrate 1) gene. Cytogenetic location:
2q36.3. IRS1 is involved in insulin signaling, maintaining basic cell
functions, such as: growth, survival, metabolism.** IRS1 is associated
with IR syndrome, atherosclerotic cardiovascular diseases associated
with type 2 diabetes mellitus,®' HBP*? and MS.%

TRPM6 (Transient Receptor Potential Cation Channel Subfamily
M Member 6) gene. Cytogenetic location: 9921.13.% TRPM6 has an
important role in epithelial magnesium transport and the absorption
of active magnesium in the gut and kidneys.* TRPM6 is associated
with metabolic disorders and associated chronic diseases such as
oxidative stress, systemic inflammation, endothelial dysfunction,
insulin resistance, HBP, type 2 diabetes mellitus and coronary
disease,* diabetes mellitus,® gestational diabetes mellitus.®

MT1A (Metallothionein 1A) gene. Cytogenetic location: 16q13.
Metallothioneins participate in the zinc and copper metabolisms and
can be involved in neutralizing free radicals®’ and protecting against
reactive oxygen species.® MTIA is associated with type 2 diabetes
mellitus and CVD,¥ HBP, MS and obesity.”

APOAS (Apolipoprotein AS) gene. Cytogenetic location: 11q23.3.
APOAS participates in determining plasmatic levels of triglycerides
in an age-independent manner.”! It is associated with obesity and
metabolic syndrome,’”’ HBP®* and DM2.%

PEMT (Phosphatidylethanolamine N-Methyltransferase) gene.
Cytogenetic location: 17p11.2. The CDP-choline pathway participates
in obtaining choline from diet, through lipid metabolism. The PEMT
pathway was shown to have a critical role in supplying PC during
periods of starvation. PC, via PEMT, plays numerous physiological
roles: cholin synthesis, hepatocyte membrane structure, bile secretion
and very low-density lipoprotein secretion. The binding site in the
region of PEMT promoter may increase the risk of liver steatosis
an estrogen choline deficiency.” PEMT is associated with liver
disorders® and with DMZ.”7

ABCB4 (ATP Binding Cassette Subfamily B Member 4)
gene. Cytogenetic location: 7q21.12. This gene plays a role in the
metabolism and homeostasis of glucose;”® it protects hepatocytes
against the damaging activity of bile salts,’ participates in recruiting
phosphatidylcholine (PC), phosphatidylethanolamine (PE) and
sphingomyelin molecules (SM); “° in bile formation, as a transporter
of bile salts, it mediates the ATP-dependent lipid efflux and excretes
phosphatidylcholine and cholesterol in the presence of bile salts;” it
participates in the transport of phospholipids from hepatocytes into
the bile.'” ABCB4 is associated with severe liver diseases,'”' liver
steatosis,'? non-alcoholic fatty liver disease and obesity.'*

CHDH (choline dehydrogenase) gene. Cytogenetic location: 3p21.1%
CHDH is involved in physiological processes and aterogenesis.!® It is
associated with CVD,'% type 2 diabetes mellitus and obesity.'””
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FADS2 (Fatty acid desaturase 2) gene. Cytogenetic location:
11q12.2.1% FADS?2 participates in fatty acid metabolism via its PPAR
signalling pathways, alpha-linoleic acid (omega 3) and linoleic acid
(omega 6).* FADS?2 is associated with type 2 diabetes mellitus, CAD,
MS, myocardial infarction and dyslipidemia,'” and with MS.!°

PCYT1A (Phosphate cytidylyltransferase 1, choline, alpha) gene.
Cytogenetic location: 3g29. PCYTI1A is involved in the normal
functioning of fatty tissue and insulin action,'" and in the control of
phosphatidylcholine synthesis.!”> PCYTIA is associated with severe
fatty liver, DM and steatosis.!'?

PCYT1B (Phosphate cytidylyltransferase 1, choline, beta) gene.
Cytogenetic location: Xp22.11. PCYT1B participates in the control
of phosphatidylcholine biosynthesis and in the suppression of the
growth of calcium oxalate (CaOx) crystals."* PCYTIB is associated
with CVD, DM, HBP and MS.'"®

PNPLA3 (Patatin like phospholipase domain containing 3)
gene. Cytogenetic location: 22q13.31."'¢ The normal function of
PNPA3 provides instructions to a protein called adiponutrin, which
can be found in fat cells (adipocytes) and liver cells (hepatocytes).
The function of adiponutrin is not well known, but it is believed to
help the regulation of adipocyte development, the fat production
and decomposition (lipogenesis and lipolysis) in hepatocytes and
adipocytes;® it may be involved in the energy balance of adipocytes. '
PNPLA3 is associated with a whole range of non-alcoholic fatty liver
lesions: steatohepatitits, cirrhosis and hepatocellular carcinoma (HCC),
chronic viral hepatitis, alcoholic liver disease, haemochromatosis,'’
obesity, liver steatosis,''* NAFLD, MS and type 2 diabetes mellitus.'"

SCD (Stearoyl-CoA desaturase) gene. Cytogenetic location:
10q24.31.1°SCD1 plays an important role in the lipid metabolism.'*!
SCD is associated with CVD, obesity, non-insulin-dependent diabetes
mellitus, HBP, neurological diseases, immune system disoders and
cancer,'?! type 2 diabetes mellitus and MS.'?

SLC44A1 (Solute Carrier Family 44 Member 1) gene. Cytogenetic
location: 9q31.2. SLC44A1 acts as a choline transporter in the central
nervous system.!? It participates in membrane synthesis and myelin
production.'?* SLC44A1 is associated with liver steatosis, MS and
type 2 diabetes mellitus.'*

STAT3 (Signal Transducer And Activator Of Transcription 3)
gene. Cytogenetic location: 17q21.2.'% The transcription factor
STAT3 is constitutively active in many types of cancer, where it
mediates important biological effects, including cell proliferation,
differentiation, survival and angiogenesis. The N-terminal domain of
STAT3 fulfills multiple functions, such as cooperative DNA binding,
nuclear translocation.'”” STAT3 gene is associated with fatty liver
diseases,'* MS and abdominal obesity.'?

UBE2E2 (Ubiquitin Conjugating Enzyme E2 E2) gene is located
on chromosome 3p24.3.% Tt participates in insulin secretion and
synthesis. It is associated with type 2 diabetes mellitus'? and MS.'3°

ADAMTS9-AS2 (RNA gene ADAMTS9-Antisense RNA2) gene
is located on chromosome 3p14.1.#° Tt is involved in the inhibition
of the proliferation and migration of non-small cell lung cancer
cells(NSCLC) and in renal cell carcinoma(RCC)."! It is associated
with type 2 diabetes mellitus and obesity. '3

KLHDCS (Kelch Domain-Containing Protein 5) gene is located on
chromosome 12p11.22. It plays a role in the microtubule dynamics
during mitosis.*’ It is associated with type 2 diabetes mellitus, obesity
and metabolic syndrome.'3
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MEFV(Mediterranean fever sau Pyrin Innate Immunity
Regulator) gene. It is located on chromosome 16p 13.3. % Tt is
involved in the abnormal purine synthesis, to prevent the effects of
suppression and inflammation. It is associated with MS."3*

HFE (Homeostatic iron regulator) gene. It is located on chromosome
6p22.2.% 1t is involved in the absorption of circulating iron via the
regulation of the interaction of transferrin receptor with tranferrin.'*
This gene is associated with type 2 diabetes mellitus and MS."3¢

PPARA (Protein Coding, Peroxisome Proliferator Activated
Receptor Alpha) gene. It is located on chromosome 22q13.31.# Tt is
involved in the regulation of carbohydrate and lipid metabolism. This
gene is associated with MS and type 2 diabetes mellitus."?’

SLC16A1 (Solute carrier family 16 member 1) gene. It is located on
chromosome 1p13.2.#° Tt participates in the energy (glucose) supply,
particularly in the brain, which is not able to use fatty acids directly.'**
This gene is associated with MS and obesity.'*

Advanced NGx test uses the sequencing method, which allows
several iterations (repeats) of the DNA sequence identifiction reaction,
by which several genetic variations can be identified.*

Odds Ratio is a mathematical method to calculate the risk of disease
conferred by genotypes.'*

Software Jalview is a program for the 3D vizualisation of the
secondary structure and the nucleic acid composition of a DNA
sequence.’

MDR (Multifactor dimensionality reduction software). MDR is a
method used to detect gene-environment interactions, based on the
dimension reduction to one size. One challenge in human genetics
is identifying polymorphisms or DNA sequence variations which
present a high risk of disease. In order to detect genotypes interactions,
predictor genotypes are effectivley reduced from N-dimensions to one
dimension.'*!

Conclusion

The conclusion is that the clinical data, the biochemical and
hematological laboratory investigations and the genetic variations of
the 28 genes of interest: UCP2, UCP3, FABP2, PLIN1, PONI1, FTO,
ADRB3, BHMT2, MTHFR, IRS1, TRPM6, MT1A, APOAS, PEMT,
ABCB4, CHDH, FADS2, PCYTIA, PCYTIB, PNPLA3, SCD,
SCL44A1, STAT3, UBE2E2, ADAMTS9-AS2, KLHDCS5, MEFV,
MFE, INS, IGF2, ACE, TGF beta, HSPG Bam HI, sequenced by
the Advanced NGx test and statistically interpreted by Jalview 2.8,
MDR software version 3.0.2. programs, were correlated and they are
associated with a high risk of developing metabolic syndrome.'#*145
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