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Introduction
The discussions of pharmacokinetic and pharmacodynamic 

interactions between drugs and medicinal plants has been put forward, 
especially with medicinal herbs that can interact with antidiabetic 
drugs. In addition to their treatment, many diabetic patients are 
known to use herbal medicines that have both antidiabetic effects 
and potential benefits.1 Approximately 72.8% of people with diabetes 
use herbal medicine and dietary supplements.2 Interactions between 
herbal mixtures and medicines may increase the effectiveness of 
antidiabetic agents. For example, antidiabetic drugs have been 
shown to increase blood glucose-lowering effects with agrimony.3 
Many anti-diabetic drugs are substrates of the CYP450 enzyme 
system, and many medicinal plants may also affect this system. For 
example, ginkgo inhibits CYP3A4, CYP2C9 and CYP2C19, while 
St John’s wort inhibits CYP2C and CYP3A.4 Some of the commonly 
used antidiabetic drugs include pancreatic beta-cell receptors, 
α-glucosidase inhibitors, e.g., acarbose, peroxisome proliferator 
activated receptor activators, e.g., thiazolidindiones.5 Many of these 
plants which include bio-active molecules such as peptides, alkaloids, 
lipids, terpenoids, amines, sulphur compounds, coumarins, steroids, 
flavonoids, and inorganic ions, have been used in traditional medicine 
as antidiabetics.6 As the use of herbal medicines increases, short-term 
or long-term toxicity due to side effects, overdose, hypersensitivity 
can be detected by pharmacodynamics or pharmacovigilance.7 In 
2010, as a good example practice, the Upsala monitoring center 
created a database of 4 million reports on about approximately 
21000 herbal products from 100 countries in the World.7 In the US, 
herbal products are classified as botanicals or dietary supplements, 
not medicines. In Europe, the definition of a herbal product as a food 
or medicine may have a significant effect on pharmacovigilance, as 

there is no legal requirement for food supplements.7 Classifications 
of adverse reactions of herbal medicines in orthodox medicine were 
formed as Type A (acute); dose-dependent, Type B (specific); not 
dose-dependent, Type C (chronic): cumulative effect, Type D (onset); 
genotoxic, carcinogenic.8 

Adverse effects reports were generally about unaware of the 
using of herbal and nutritional products by physician or patient.9 
There have been an extensive list of herbal remedies used in hospital 
environments in Thailand.10 Consumers and industries can report 
adverse events related to the use of dietary supplements via the 
electronic forms MedWatch 3500, 3500A and 3500B, an adapted 
safety reporting portal by FDA.11 For example, it has been possible 
that mixtures of pharmaceuticals containing aristolochic acid from 
Chinese and Western pharmaceutical components may cause kidney 
damage, and mixtures of drugs containing tripterygium glycosides 
may cause reproductive system disorders and mixtures of Polygonum 
multiflorum from the buckwheat family may cause liver damage.12 
Unexpected adverse effects from digitalis, garlic, senna extract, 
mustard oil, menthol, aloe, and turmeric plant mixtures have been 
reported.13 With comparative pharmacoepidemiology, prospective, 
meta-analysis, retrospective studies, case control and cohort studies, 
the safety of herbal medicines has been investigated by testing the 
signals detected from the self-reporting program systems.14 The scope 
of drug-herbal food studies should be extended to include drug use 
review, photochemical analysis, prescription sequence symmetric 
analysis, quality monitoring, quantification of components and non-
clinical safety studies.15 Organic anion carriers containing more than 
10 transmembrane transport proteins have great potential in many 
dietary supplements-drugs, plant-endogenous compounds, drug-
drugs, plant-drug interactions. Organic anion carriers play an important 
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Abstract

Pharmacovigilance between drug and food supplements is common in the world and it 
is important to take precautions before clinical cases. In this study, interactions between 
food supplements containing herbal food mixes, sweeteners, vitamin blends and commonly 
used painkillers, antibiotics and anticoagulants, were revealed with helping of macrame 
ropes, smartphone, TLC plates and textile dyes and color analysis method supported image 
j program. The sensitivity of the developed method was high (LOD: 0.7ppm, LOQ: 2ppm). 
Color analysis results can provide a color risk scale that can be combined with online drug 
interaction softwares such as Micromedex. 
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role in the excretion and detoxification of many water-soluble 
drugs, compounds or additives (eg: nonsteroidal anti-inflammatory 
drugs, neurotransmitter metabolites, mycotoxins, phenolic acids 
and flavonoids) from the kidneys and liver, respectively.16 Both 
in vitro and in vivo studies have shown that some flavonoids may 
have the ability to regulate organic anion transporter (OAT) activity 
(eg, Apigenin inhibits OAT1 activity while catechin inhibits OAT4). 
Flavonoids present in most plants may cause plant-drug interactions 
in combination with antiviral and antibiotics.17 The natural sweetener 
stevioside and its aglycone metabolite steviol reduce the renal 
clearance of some anionic drugs as they show a high affinity for both 
OAT1 and OAT3.18 

The use of multiple drugs and dietary supplements is very 
common, especially in AIDS and cancer patients.19,20 A mixture of 
dextromethorphan, midazolam (oral and intravenous administration), 
tolbutamide and caffeine were administered to healthy people for 
evaluation of intestinal and hepatic activities by using a cocktail 
approach and a greater effect was observed in the small intestine 
than the liver.21 Consumption of large amounts of grapefruit juice, 
apple juice or orange juice reduces plasma levels of fexofenadine 
(antihistamine), an organic anion carrier substrate in the intestine, by 
inhibition according to in vitro evaluations.22

The British Drug Safety Committee reported five cases of warfarin 
anticoagulation interacting with cranberry juice.23 Red yeast rice, 
obtained by fermenting Monascus purpureus yeast on rice, and was 
developed as a dietary supplement to lower blood lipids, could increase 
the dosage of verapamil.24 Pharmacists and health professionals 
should educate patients appropriately to minimize possible adverse 
juice-drug interactions.25 

Standardised questionnaires were used to determine risky uses of 
herbal medicines and dietary supplements in cancer treatment.26 More 
than half of the reported 108 herb supplement-drug interaction cases 
were sourced of green tea (13.9%), garlic (14.8%), ginger (3.7%), 
mistletoe (9.3%), Chinese herbs (8.3%). The most commonly reported 
drugs that interact with herbal supplements were cyclophosphamide, 
irinotecan, warfarin, nonsteroidal antiinflammatory drugs, paclitaxel 
and vinorelbine. For example, garlic, combined with aspirin and 
omeprazole, increased the risk of gastrointestinal bleeding. The 
interactions between green tea supplements and irinotecan, warfarin 
or cyclophosphamide were also possible.27 Catechin and caffeine 
compounds in green tea inhibited the release of arachidonic acid 
from platelets and inhibited thromboxane and clot formation. Dietary 
supplements such as Marshmallow, Barley, Iceland Moss, Rice Bran, 
Coffee Charcoal, Quince could reduce the absorption of warfarin.28 
Mania induction was observed in depressive patients who mixed 
panax ginseng and antidepressants, while Chinese herbal product, xaio 
chai hu tang (sho-saiko-to), caused a decrease in blood concentrations 
together with prednisolone. Gummy soluble fibers could reduce 
the absorption of drugs.29 In a cell culture experiment, Caco-2 cell 
monolayers containing hepatocytes were used to investigate the in-
vitro effects of various components (curcumin, hesperetin, quercetin, 
naringenin, and piperine) in irinotecan transport and the study was 
followed by in vivo.30 Potential interaction of warfarin with vitamin E, 
coenzyme Q, ginkgo, ginseng, papaya, garlic, Devil’s clam, Danshen, 
Dong quai, fish oils increased international normalized ratio, while 
potential interaction of warfarin with St. John’s wort and green tea 
decreased international normalized ratio.31 

Oral anticoagulants, containing Factor Xa inhibitors (rivaroxaban, 

apixaban and edoxaban), whose safety profile is superior to vitamin K 
antagonists, which are more interacted with herbal supplements or foods, 
have begun to replace warfarin.32 Some of the anti-retroviral agents 
used for the treatment of HIV (eg; ritonavir, nevirapine, saquinavir, 
efavirez) inhibit CYP3A4 enzymes and interact with warfarin, is a 
drug with narrow therapeutic index, to diminish its effectiveness.33 
Royal jelly which is a thick, milky white food produced by bees by 
worker bees (Apis mellifera L.) contraindicates against acute asthma 
exacerbation, eczema, shortness of breath, hemorrhagic colitis, runny 
nose, conjunctivitis, and atopy, facial edema, can cause a possible 
bleeding risk by interacting with warfarin.34 Calcium-supplemented 
foods increase antibiotic resistance and create therapeutic failure. 
Malnutrition may also affect the absorption of drugs. The absorption 
of oral drugs by the intestine is usually in competition with nutrients. 
Therefore, for example, diuretics can cause side effects on urinary 
potassium loss as well as impaired cardiac function.35 Alcohol intake 
causes increased renal excretion of folate and poor absorption of 
niacin, vitamin C, thiamine, vitamin A and vitamin B6.

36 

Foods such as carbonated soft drinks, tea, chocolate, and coffee 
containing methylxantane may interact with medications and 
create deep and undesirable effects on the young central nervous 
system.37 The interaction between an anti-depressant and vitamin B 
complex intake may have a potential effect on the central nervous 
system.38 Curcumin increases the glutathione S-transferase activity 
while valerian reduces uridine diphosphoglucoronosyl transferase 
activity. Due to these enzymatic effects, drug plasma levels are 
adversely affected.39 Medications used in the last 2 weeks of life for 
166 adult patients under palliative care were screened for potential 
interactions by using the ‘Stockley’s Drug Interactions On-line 10th 
Edition’ software with clinical pharmacists. Decreasing body mass 
and decreasing renal and hepatic clearance for these patients may 
help to tolerate side effects of drugs.40 Interactions between herbal 
supplements and analgesic, anti-cancer drugs related to palliative 
care have been documented. Detected supplement-drug interactions 
that increase the risk of potential bleeding included cod liver oil and 
diclofenac, garlic and ibuprofen, cranberry juice and warfarin.41 Drug 
interaction software such as online Lexi-Interact and Micromedex 
are widely used by prescribers to identify clinically meaningful 
drug interactions because interactions between several drugs can be 
controlled at the same time.42 Despite the hepatoprotective effects of 
nutraceuticals such as chlorogenic acid, syringic acid, eriodictyol, 
caffeic acid, ferulic acid, naringenin, resveratrol, quercetin, 
rosmarinic acid, it has been reported that they can adversely affect the 
efficacy and toxicity of analgesics and antipyretic drugs, containing 
acetaminophen.43 Since it is important to develop different techniques 
to detect all these interactions before they become clinical cases, 
the work on this paper can be valuable. In spite of the fact that thin-
layer chromatography (TLC) plates have been useful for quantitative 
analysis of pharmaceutical products and routine qualitative analysis 
of plant extracts,44 the use of TLC plates in combination with the 
developed rope printing technique to investigate drug-herbal food 
supplement interactions in vitro is not available in the literature. For 
this purpose, in this work, the ropes dipped in different drug-food 
supplement liquid mixtures were dyed with textile dyes and then 
printed between TLC plates and the power of interaction (synergist 
and antagonist side effects) was rated by measuring the color intensity 
of these prints with helping of Image J, a color analysis program 
(Figure 1). 
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Figure 1 Color-analysis flow diagram of drug-food supplement interaction after rope staining and TLC printing.

Materials and methods
All textile dye reagents were solved with ultrapure water produced 

by using Milli-Q® IQ 7003/7005 Ultrapure Lab Water System 
(Merck). Dylon trademark Green-Fabric Dye and Tulip Red Fabric 
Dye were purchased from Migros shopping market, Turkey and 
prepared by adding to 150 mL mixtures of hot ultrapure water and 
table salt, separately for rope dyeing. Green Chain vegetable powder 
(135 g, 30 sashe), contains 46 kinds of herb mixes such as Ginkgo 
biloba, green tea, garlic extracts and more, was obtained from The 
LifeCo Company, Turkey. A solution of 4.5 g of a powder mixture 
was prepared by stirring with IsoLab magnetic mixturer in 150 mL 
of warm water. Orzax Ocean Multi Vitamin Mineral Fish Oil Syrup 
(food supplement flavored with honey and orange aroma, 150 mL), 
Supradyn All Day (30 Tablet) vitamin and mineral supplement, 
Aspirin® (Acetylsalicylic acid) 100 mg, (20 Tablet), AKSEF 500 mg 
(cefuroxime axetil) (10 tablet) and Coumadin (Warfarin Sodium) 10 
mg, (28 tablet) drugs were purchased from pharmacy, Turkey for used 
as interaction samples. A solution of one tablet from each drugs in 
150 mL of warm water was prepared separately. TLC Silica gel 60 
F254 Aluminium sheets (20 x 20 cm) were purchased from OrLab® 
laboratory market in order to create the printing surface. YarnArt 
50 g beige cotton macrame rope (5 mm thick and single auger) 
was purchased from haberdashery, Turkey to be used in dyeing and 
printing. With an imaging system consisting of an Apple iPhone 8 
64GB smartphone webcam and a multivariate image analysis program 
(Image J), ​​print images between TLC plates reflecting the intensity of 
interaction after dyeing with textile dyes of ropes dipped in different 
drug-food supplement mixtures were depicted by using as inputs of 
partial least squares with helping plot chart of color values for red (R), 
green (G) and blue (B) parts of the images. Red and green color rope 
print lines were produced between TLC plates and Images of rope 
print lines were photographed with helping a smartphone. The zone 
area lines of images were imported in software to compute the color 
pixel densities proportional to the severity of drug-food supplement 
interactions (Figure 1). 

In addition, function of MATLAB with chemometric methods 
was used in combination of matrix values with number of pixels. 
While pure black or white or unused blue color areas were specified 

with triple matrix code ‘’[R=G=B=0]’’, the others were specified 
with binary matrix code ‘’[R=G=1]’’. For the image color quality, 
% average relative prediction error was determined based on the 
distance between the TLC plate and the mobile phone webcam. If 
this error affects red and green color depth, it is indicated by -1 matrix 
code.45 With good precision and accuracy, high sensitivity, statistical 
validation parameters of this improved method which is one similar 
of computational quantification tests using image,46 were measured 
and regression curve data of this improved method were performed 
by using Microsoft Excel (Microsoft Office Corporation, 2010, 
Redmond, Washington) and SPSS Version 21.0 software program. All 
statistical analysis were reported significantly (p< 0.05) with standard 
deviation. The limit of detection (LOD) and limit of quantification 
(LOQ) were determined by the average of standard deviation of the 
calibration curves by created via Zoner Photo Studio 17 program in 
terms of 3 times and 10 times of rate of ‘slope / standard deviation’ 
obtained from the calibration graphs of color line areas of all drug-
food supplement interactions respectively in which the smallest 
pixel color depth parameters (with CIELAB (L*, a*, b*, h°, K / S) 
color measurement method47) of rope printing images on TLC plates 
painted with textile dyes taken with the help of smartphone. Colour 
intensity values may be transformed into a pseudo absorbance value 
and then plotted against concentration to obtain linearized plots.48

Results and discussions
Detection of colorless molecules based on reversible and rapid 

color change is an example of molecular recognition as it is based 
on strong molecular structures and shapes. Cetirizine, one of the 
most commonly antihistamine drugs, used in the treatment of allergy, 
competes with phenolphthalein, a color indicator to form an inclusion 
complex with β-cyclodextrin.49 

Visible absorption spectra of coal tar dye spots in commercial 
cosmetics were measured with a reversed phase TLC plate by using 
a scanning densitometer.50 The color density analysis of a yellowish 
brown complex formed by passing arsine gas through a filter paper 
pre-soaked in mercury bromide solution was found by scanning the 
image and calculating with the help of software.51 In a study, photo 
color analysis measurements under light source of wool fabrics dyed 
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with pomegranate peel, madder and alkanet root were shown with 
angle and tint color parameters (CIELAB (L*: Light-dark difference, 
a*: Red-green difference, b*: Yellow-blue difference, h°: Light 
angle) and ratio of absorption and scattering coefficients (K/S).52 In 
an other study, for detecting the SO2 concentrations of twenty-five 
practical food samples, practical assay platform including paper 
chip combined color analysis application installed on a smartphone 
was developed.53 Subtle color and shape changes caused by sulfur 
dioxide in the air in moss leaves were detected by a simple webcam 
and imaging processing algorithm to observe the risks of chemical 
exposure through the plant.54 To quickly detect formaldehyde in food 
samples, a simple paper-based analytical device (PAD) was developed 
based on the reaction of formaldehyde with excess sulphide to form 
sodium hydroxide and its acid-base titration with phenolphthalein 
color indicator and via using of a digital camera.55 

The λmax values ​​of microgram amounts of dyes (Victoria Blue R, 
methylene blue and fluorescent) were measured on TLC plates by 
using new sample application discs and TLC scanner.56 In this study, 
Calibration graphs of the color intensities of the TLC line fields in the 

captured images were created (Figure 1). Detection limits (LOD: 0.7 
ppm, LOQ: 2 ppm) were respectively determined as 3 times and 10 
times of the average ratios (slope/standard deviation) obtained from 
the calibration graphs with triplicate smartphone applications. Linear 
range was found between 0.5 ppm-3 ppm (Table 1). For intra-day and 
inter-day conditions, the differences in color intensity measurements 
between the wet or dried dyed images and standard errors due to close 
and distant filming to images of TLC plates were indicated with a 
matrix value of -1 in the triple color matrix. All results were statistically 
significant (p< 0.05). Green and red color densities were expressed 
as +1 matrix value in linear rope print images on TLC plates (Table 
1). Before identical macrame ropes were dipped into the 0.01 sashe 
green chain vegetable powder aqueous solution and into half tablet 
Aspirin® (Acetylsalicylic acid) aqueous solution separately, it was 
dipped into red and green fabric dye solutions and pressed between 
TLC plates. After identical macrame ropes were dipped into the 0.01 
sashe green chain vegetable powder aqueous solution and into half 
tablet Aspirin® (Acetylsalicylic acid) aqueous solution separately and 
dried for 30 seconds separately, dyeing and pressing processes were 
repeated between TLC plates. 

Table 1 Matrix and color depth parameters of drug-food interactions

Sample Interactions
Matrix color codes CIELAB Pixel color depth

(x1) green (x2) red (x3) blue L* a* b* h° K/S Percentage 
error

Green chain powder+Aspirin 0 1 0 61.27±0.02 3.27±0.03 30.42±0.04 85.33±0.01 11.71±0.03 0.17%

Green chain powder+Aksef 0 1 0 53.42±0.02 4.35±0.03 32.45±0.04 83.42±0.01 10.93±0.03 0.30%

Green chain powder+warfarin 1 0 0 55.24±0.02 5.16±0.03 34.85±0.04 78.65±0.01 9.72±0.03 0.50%

Supradyn all day+Aspirin 1 -1 0 65.19±0.02 2.33±0.03 36.48±0.04 93.75±0.01 8.75±0.03 0.75%

Supradyn all day+Aksef -1 1 0 50.42±0.02 6.42±0.03 33.41±0.04 90.45±0.01 12.33±0.03 0.85%

Supradyn all day+warfarin 1 -1 0 45.18±0.02 3.18±0.03 29.87±0.04 86.40±0.01 7.89±0.03 1.00%

Orzax Ocean Multi Vitamin Mineral Fish 
Oil Syrup+Aspirin 1 1 0 47.25±0.02 6.85±0.03 31.33±0.04 77.33±0.01 6.55±0.03 0.25%

Orzax Ocean Multi Vitamin Mineral Fish 
Oil Syrup+Aksef 1 1 -1 49.83±0.02 2.79±0.03 28.46±0.04 79.45±0.01 15.78±0.03 1.20%

Orzax Ocean Multi Vitamin Mineral Fish 
Oil Syrup+warfarin 1 -1 -1 51.12±0.02 4.65±0.03 27.12±0.04 91.15±0.01 17.21±0.03 1.50%

L*, Light-dark difference; a*, Red-green difference; b*, Yellow-blue difference;  h°, Light angle; (K/S), ratio of absorption and scattering coefficients. Values are means 
of triplicate determinations (p<0.05)

Rope printing images of TLC plates were photographed by smart 
phone with three repetitions. Before and after the drug-food supplement 
interactions, the differences in color intensities of linear prints of rope 
printing increased depending on the forces of the interactions with 
color tone clarity from Image J programme (Figure 1). In contrast, 
red and green fabric dye solutions interacting with identical macrame 
ropes dipped into 0.1 tablet AKSEF (cefuroxime axetil) and 5 tablet 
Coumadin (warfarin sodium) aqueous solutions, separately, decreased 
in color intensities of linear prints of rope printing. This manner was 
understood from the increase in the L* value from the pixel color 
depth parameters because sulfo groups in fabric dyes may interact 
with hydroxyl groups in warfarin and amino groups in cefuroxime 

axetil more than carbonyl groups in acetylsalicylic acid (Table 1). All 
concentrations were adjusted to a single dose (0.0003 g/mL) for easy 
comparison of staining color intensities with each other. While 0.1 
tablet Supradyn All Day vitamin and mineral supplement aqueous 
solution caused the discoloration of the rope suppression of the dyes 
between TLC plates by interacting with Aspirin® and Coumadin 
drugs, it caused darkening of color with aqueous solution of 0.1 
tablet AKSEF antibiotic drug. Color lightening showed negative 
interaction and color darkening showed positive interaction (Table 
1). Orzax Ocean multi vitamin mineral fish oil syrup was negatively 
interacting with all medicines (Aspirin®, AKSEF, and Coumadin) 
because the free carboxyl group of the arachidonic acid derivative in 
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fish oil can interact with drugs. Color scale bandages with green and 
red fabric dyes were applied as indicators of drug-food supplement 
interactions. In the all printing process between TLC plates with dyed 
rope, measuring of color intensity as a blind trial against water was 
removed from all actual color interaction trials. 

Conclusion
In Turkey, in vitro qualitative and quantitative measurements of 

interactions of intensely sold commercial dietary supplements and 
commonly used painkillers, antibiotics, each other based on the color 
determination were demonstrated in this paper for the first time and 
in this study, proven results with color analysis can be associated 
with commonly used online drug interaction softwares such as Lexi-
interact and Micromedex for creating risk color scales inserted drug 
package. This in-vitro study, which is an easy and fast applicable 
emergency triage without clinical experience about drug-food 
supplement interactions also supports in-vivo studies. 
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