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An overview of pleiotropic effect of statins in

cardiovascular disease

Abstract

HMG CoA-reductase (3-hydroxy-3-methylglutaryl coenzyme A reductase) inhibitors,
also called statins, are at present exerting an effect on the therapeutic treatment
decision for hypercholesterolemia. Hypercholesterolemia is a known risk factor for
cardiovascular malady, and statin treatment has prompted a significant decline in
grimness and mortality from undesirable cardiovascular events, stroke, and fringe
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blood vessel malady. Notwithstanding accomplishing a remedial diminishing in serum

cholesterol levels, statin treatment appears to advance different impacts that are
autonomous of changes in serum cholesterol. These “pleiotropic” impacts incorporate
constriction of vascular aggravation, enhanced endothelial cell work, adjustment
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of atherosclerotic plaque, diminished vascular smooth muscle cell relocation and

expansion, and restraint of platelet total. This review an attempt to compile published

reports on the pleiotropic impacts of statins at the cellular level.
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Introduction

Statins also known as 3-hydroxy-3-methylglutaryl co-protein
A (HMG-CoA) reductase inhibitors. These are the medications
regularly utilized to lower down the cholesterol and appeared to
decrease the frequency of essential and optional coronary illness in
clinical trials." They were found in 1970s. Statins are competitive
inhibitors of hydroxylmethyl glutaryl coenzyme-A reductase
(HMGCR), which is the rate limiting enzyme in cholesterol
biosynthesis.** The positive results of statin treatment in experimental
animals were confirmed and reached out to patients in extensive scale
clinical investigations that built up a strong influence of statin in the
treatment associated with fundamentally lessened,rates of mortality
in patients with atherosclerosis.*®” Nevertheless evoking helpful
impacts in the cardiovascular framework that incorporates enhanced
endothelial function furthermore, neo-angiogenesis, HMG COA
inhibitors apply pleiotropic activities in different tissues including
the focal apprehensive framework. For example, statins seem to
apply mitigating activities in illnesses, for example, rheumatoid
joint inflammation, Alzheimer and Parkinson’s ailment, and various
sclerosis.®

Statins pleiotropy: associated with

cholesterol

lowering of

Statins are believed to have “pleiotropic effects”, which is a term
referred as the useful impacts of statins which are not dependent
on levels of cholesterol (Figure 1).%° According to these pleiotropic
impacts, positive results utilizing statin treatment have been
acknowledged in cardiovascular disease (CVD) and in addition
other ailment states including disease, sepsis, dementia, immune
system ailment, macular degeneration, osteoporosis, and incendiary
gut infection.* > The water solvency of statins may decide some of
their pleiotropic impacts and is straightforwardly inferable from their
chemical structure.'® As 60-70% of serum cholesterol is synthesised
from liver and HMG-CoA reductase is the vital, rate-constraining
compound in the cholesterol biosynthetic pathway, hindrance of this
enzyme by statins brings about an dramatic lessening in low density
lipoprotein (LDL)-cholesterol (Figure 2). Likewise, lessening of
LDL-cholesterol prompts upregulation of the LDL receptor and
expanded LDL leeway. The downfall in serum cholesterol levels is

in this manner thought to be the essential component fundamental the
helpful advantages of statin treatment in cardiovascular sickness.'"!8
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Figure | Pleiotropic effects of statins.
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Figure 2 Isoprenoids and statins: cholesterol biosynthesis pathway and the

impacts of HMG-CoA-reductase hindrance by statins.
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Statins exerts their pleiotropic effects by hindering the conversion
of HMG-CoA to L-mevalonic corrosive, statins keep the union of
imperative isoprenoids, for example, farnesylpyrophosphate (FPP)
and geranylgeranylpyrophosphate (GGPP), which are antecedents
of cholesterol biosynthesis (Figure 1)."” These intermediates fill in
as imperative lipid connections for the post-translational change of
proteins, for example, nuclear lamins, Ras, Rho, Rac and Rap.?’ Protein
isoprenylation empowers appropriate subcellular confinement and
trafficking of intracellular proteins. Given that isoprenylated proteins
might control various cell capacities, it is not amazing that statins
may have extra impacts past lipid lowering. In fact, late examinations
propose that statins may be included in immunomodulation,
neuroprotection and cell senescence.?'2® Rho is the real focus of
GGPP; in this way, restraint of Rho and its downstream target, Rho
kinase is a probable system intervening a portion of the pleiotropic
impacts of statins on the vascular membrane.”’?%3! Rho kinase
increase the affectability of vascular smooth muscle to calcium in
hypertension, and coronary spasm. Conversely, activation of Rac
prompts the development of lamellipodia, membrane unsettles, and
oxidative anxiety, while initiation of Cdc42 initiates actin-rich surface
projections called filopodia.?3!

Statins associated with lowering of cholesterol

A study known as “Framingham Heart study” has shown that
hoisted cholesterol is a vital risk factor for cardiovascular illnesses
and lower cholesterol levels are related with lower cardiovascular
dangers.”* Late proof likewise demonstrates that more escalated
bringing down of LDL- cholesterol by statins is related with more
prominent clinical advantages.”® The systems credited to lipid
bringing down with statin treatment incorporate atheromatous plaque
adjustment, change of the atherosclerosis movement and enhanced
endothelial capacities.?® Consequently, statins diminish cardiovascular
occasions in hypercholesterolemic as well as normocholesterolemic
patients with coronary illness (CHD) or cardiovascular risks."”

Atherosclerotic plaque and endothelial injury

Atherosclerosis is responsible for the continual process of
endothelial injury and dysfunction with subsequent remodeling and
repair.’? After endothelial damage happens, platelets are among the
first to react by clinging to the damage site and selecting macrophages
to the range of damage.**** Macrophages phagocytize lipid-loaded
platelets and move into the intima where they take in more lipids.
These macrophages are commonly alluded to as “’froth cells,”
as the substantial measure of lipid they ingest gives them a frothy
appearance when seen minutely.*> Furthermore, VSMCs move from
the media to the intima close to the territory of endothelial damage
with a large portion of them taking in a lot of lipid to likewise move
toward becoming froth cells. Serum lipoproteins amass in the intima
at these territories of damage and alongside these three cell sorts,
turn out to be a piece of what is named the “’greasy streak”’-the most
punctual sore in the arrangement of atherosclerotic plaque.®

Fatty streak is the first visible lesion in the process of atherosclerosis.
It appears as an irregular yellow-white discoloration on the luminal
surface of an artery. They can be visualized without magnification.
The fatty streak experiences additionally renovating to frame a sinewy
top made for the most part out of VSMCs and the extracellular lattice
they emit. Hidden this top is a center of necrotic cell flotsam and jetsam
and froth cells pressed with lipid.* Interruption of the sinewy top
starts a provocative reaction that can prompt thrombus arrangement,
with possible joining into the complex atherosclerotic plaque itself.*
The final product of this procedure is narrowing or finish blockage
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of the vascular lumen with a resultant trade off in blood stream. A
systematic assessment of fatty streak formation carried out in fetal
aortas from normocholesterolemic mothers, hypercholesterolemic
mothers and mothers who were hypercholesterolemic only during
pregnancy suggests that intimal LDL accumulation and oxidation
contributes to monocyte recruitment in vivo.*

Neointimal hyperplasia associated blood vessel wall
injury

Neointimal hyperplasia is a noteworthy reason for reconstructive
disappointment in patients after angioplasty, stenting, and sidesteps
procedures.’® Both open and endovascular strategies create blood
vessel harm that triggers a physiologic reaction.’® Platelets quickly
cause thrombus development at the surface of vessel divider damage.**
37 An incendiary course follows, with monocytes, neutrophils, and
lymphocytes moving to the region of intimal damage.*> Average
VSMCs move to this region of intimal damage too, and throughout
the following a while they multiply and deliver a lot of extracellular
framework.*®* The entirety of these cell and sub-atomic reactions
prompts neointimal hyperplasia and restenosis of the instrumented
vein.*

Targets of statins

There are some main targets of statins like Isoprenylated Proteins,
Rho/Rho Kinase, Rac and Peroxisome Proliferator—Activated
Receptor

Statins: isoprenylated proteins

By restraining mevalonic acid biosynthesis, HMG COAR Inhibitors
keep the blend of isoprenoid intermediates farnesylpyrophosphate
and geranylgeranylpyrophosphate.” FPP and GGPP fill in as lipid
connections for the post-translational modification of heterotrimeric
G proteins, including Ras and Rho.* Ras and Rho control cell
expansion, separation, apoptosis, and the cytoskeleton.* In endothelial
cells (ECs), Ras translocation is subject to farnesylation, while
Rho translocation is reliant on geranylgeranylation.*** Although
the restraint of isoprenoid moderate amalgamation is vital to the
conceivable pleiotropic impacts of statins, it is un-clear whether the
essential LDL-C—lowering advantage of statins is a direct result of
diminished cholesterol generation and lessened mevalonic corrosive
creation or upregulation of the LDL receptor.*® There is a relative
scarcity of human examinations on the levels of FPP and GGPP with
perpetual statin treatment.

Statins: Rho/Rho kinase

The organic impacts of Rho are interceded by its downstream
effectors, including ROCK, protein kinase N-related kinases,
citron kinase, rhotekin, mDia and the myosin restricting subunit of
myosin light-chain (MLC) phosphatase.”” Rho kinases (ROCKs)
are protein serine/threonine kinases of 160 kDa that add to the
downstream impacts of Rho GTPases. ROCK movements to a
dynamic open adaptation when RhoA ties to ROCK.* ROCKs
control actin cytoskeletal changes through impacts on myosin light
chain phosphorylation. This influences central attachment complex
arrangement, smooth muscle withdrawal, cell relocation, and quality
expression.* ROCK activity is frequently hoisted in disorders of the
cardiovascular framework.”® Accordingly, statins could influence
vascular smooth-muscle compression in any event somewhat through
impacts on Rho/ROCK.*'? Through hindrance of isoprenylation
of Rho, translocation of Rho to the cell layer is hindered and the
downstream initiation of ROCK is diminished.”® Without a doubt,
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ROCK inhibitors anticipate cerebral vasospasm after subarachnoid
discharge,> hinder the advancement of atherosclerosis™ and anticipate
blood vessel renovating after vascular damage.*

The Rho/ROCK pathway could likewise control cell works other
than the actin cytoskeleton. For instance, ROCK can phosphorylate
insulin receptor substrate-1 (IRS-1) and adjust the insulin/PI3K/Akt
pathway. The Rho/ROCK pathway is included in oxidative push,
aortic firmness and changes in circulatory strain. Besides, ROCK
controls cell survival through phosphorylation of the protein kinase
B/Akt and FOX0.7*° ROCK can likewise control adipogenesis and
myogenesis. In p190-B Rho GAP-insufficient mice, the Rho/ROCK
pathway is actuated constantly and there is a deformity in adipogenesis
with a preference towards myogenesis. Different procedures
or conditions including the RhoA/ROCK pathway incorporate
angiogenesis, hypertension, cardiovascular hypertrophy, perivasclar
fibrosis and aspiratory hypertension. Fasudil, a particular ROCK
inhibitor, enhances endothelial capacity in patients with coronary
conduit ailment.®*** These discoveries propose that ROCK restraint
may add to a portion of the pleiotropic impacts of statin treatment.

Statins: RAC

Two vital effector-reaction pathways lie downstream of Rac:
cytoskeletal redesigning furthermore, responsive oxygen species
(ROS) era. Racl impacts different cytoskeletal rebuilding proteins,
for example, Wiskott-Aldrich disorder protein, calmodulin-restricting
GTPaseactivating proteins and p21l-actuated kinase. Racl likewise
ties to p67phox and prompts enactment of the NADPH oxidase
framework and consequent era of ROS. In fact, Rac movement is
firmly identified with ROS creation and ROS produced by NADPH
oxidase in light of development factors and fiery cytokines is
interceded by Rac.® Imperatively, statins hinder Racl-intervened
NADPH oxidase movement and in this manner lessen angiotensin
IT-actuated ROS generation and hypertrophy in smooth muscle and
heart.*¢’ The initiation of Racl in the vascular divider has been
related with atherosclerosis, neointimal multiplication, cardiovascular
hypertrophy and endothelial brokenness.®® Racl has numerous parts
in various cell forms and cardiovascular physiology.®® Consequently,
Racl hindrance may likewise add to a portion of the pleiotropic
impacts of statins.

Statins: peroxisome proliferator-activated receptor

Statins have been appeared to enact peroxisome proliferatorenacted
receptors (PPARs).™ Statins intensely diminish lipopolysaccharide-
related aggravation in wild-sort mice yet not in PPARa-invalid
mice, autonomous of cholesterol-bringing down mechanisms.”
Statins increment PPAR-y action and repress lipopolysaccharide
instigated tumor putrefaction factor-o and monocyte chemotactic
protein-1 activity.”>” The organization of simvastatin in mix with
PPAR-y agonists inspires added substance gainful vascular effects.”
Atorvastatin diminishes progressed glycation finished results in rats
and lessens fibroblast multiplication and heart fibrosis, which was
switched with the PPAR-y adversary GW9662.” Statins diminished
ROS creation by expanding the mRNA articulation of the PPAR-y
coactivator, which is an essential controller of mitochondrial
biogenesis. However, statins, particularly the high-power statins,
increment the danger of diabetes mellitus. Thus, the capacity of the
PPAR-y agonists, thiazolidinediones, to bring down blood sugar
is rather than the impacts of statins on PPAR-y and exhibits the
unpredictable idea of statin communications with different pathways,
including glucose digestion.

Statins: vascular smooth muscle
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The expansion of vascular SMCs is critical in vascular injury
pathogenesis.” Transplant arteriosclerosis is an insusceptible
reaction coordinated against giver ECs and vascular SMCs free
of hypercholesteremia that is as yet constricted by statins.”
Inhibition of isoprenoid blend by statins diminished platelet-
determined development factor—induced DNA blend in vascular
SMCs by expanding the cyclindependent kinase, p27Kipl,
which was potentially intervened by Rho GTPase.” Simvastatin
diminishes intimal thickening and lessens cell expansion, leukocyte
aggregation, and platelet-determined development consider receptor
phosophorylation LDL receptor—deficient mice.”” In vitro, atorvastatin
decreases the impacts of the proinflammatory cytokine IL-18, which
hinders SMC movement, atomic factor-kB initiation, and framework
metalloproteinase-9 expression. In ox-like aspiratory supply route
SMCs, atorvastatin represses the relocation of pneumonic supply
route SMC, which was turned around by GGPP and mevalonate,
again ensnaring the potential for the Rho/ROCK pathway in SMC
proliferation.””

Statins and platelet function

In (ACS) Acute Coronary Syndromes, a major factor, which
plays a critical role, is platelets, which are allied in the formation of
mural thrombus at the site of vascular injury and plaque rupture. This
concept is directly linked with the enhanced cholesterol: phospholipid
ratio in platelets.’» HMG COA reductase inhibitors or Statins affect the
functions of platelets, but there is no well understandable mechanism
for this concept. According to well considered effects of endothelial
NO, inhibits the platelet aggregation. Statins upregulates the
endothelial nitric oxide, which considerably decreases the reactivity
of platelets. Further mechanism shows the reduced production
thromboxane A2 and modifies the platelet membrane cholesterol.?'$

Conclusion

The pleiotropic effects of statins in CVD are aid to a variety of
methodology at both the sub-nuclear and cell levels. Some of these
supportive effects of statins join change in endothelial cell work,
limitation of platelet start/accumulation, block of VSMC migration
and extension, lessened vascular aggravation, and extended soundness
of atherosclerotic plaques. With these pleiotropic impacts in mind, the
signs for statin use may continue growing, as the frameworks for these
effects are totally outlined.
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