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The present article claims that the fundamental nature of the scalar 
field responsible for cosmological inflation1-3 as well for the “dark 
phenomena” - dark energy and dark matter - may be geometrical, 
i.e. based on the Conformal differential geometry introduced by 
Hermann Weyl two years after the publication of the first Einstein 
paper on General Relativity (GR).7,8 Weyl’s theory rests on the 
following general statements: “All Laws of Physics are invariant 
under” (A) “any change of coordinates including time” and (B) 
“any change of calibration”. The first part, (A) expresses the well 
known “covariance” of the GR based on Riemann geometry.4-6 
The second part (B) expresses the “conformal covariance” or “co-
covariance” of metric theory. Accordingly, the metric structure of the 
geometry implies two fundamental forms: the quadratic Riemannian 
one, accounting for Einstein’s “gravitation”: i j

ijg dx dx , where ijg

is the metric tensor, and the linear one, accounting for the parallel 
displacement of vectors in curved space-time: i

idxφ . In Riemann’s 
geometry is 0iφ = . The parallel displacement is “integrable” iff a 

“scalar Weyl potential ( )xφ exists such as ( ) ( )( )/ i
i x x xφ ≡ ∂φ ∂ , the 

“Weyl vector”, both fields defined in the space-time spanned by the 
ix  coordinates.9 The integrable formulation of the theory avoids the 

unphysical “second clock” argument criticized by Einstein.7,12,13 On a 
more general perspective, the Weyl conformal theory was originally 
recognized to present implications with Quantum Mechanics (QM) as 
the “quantum potential” Q  of the De Broglie-Bohm QM theory was 
found closely related formally to ( )i xφ  and to ( )xφ . In the present 

study it is claimed that the scalar field accounting for the Dark Energy 
process and the Inflationary process is the “gauge field” ( )xφ filling 

the entire universe and propagating with the velocity of light.7,10 The 
Weyl geometry, that is an abelian local scale-invariance gauge theory 
implies the following group of transformations:

ln ,
2

i
ij ij i ig g ∂ λ
→ λ φ → φ +                                                      (1)

The first equation is the conformal change of the metric. The 
insightful perspective offered by the integrable theory was supported 
by P.A.M. Dirac in a 1973 seminal paper:11 “There is a strong reason 
in support of the Weyl’s theory. It appears as one of the fundamental 
principles of nature is that equations expressing basic laws should 
be invariant under the widest possible group of transformations. 
The confidence that one feels in Einstein GR theory arises because 
its equations are invariant under a wide group of transformations 
of curvilinear coordinates in Riemann space. The passage to Weyl 
geometry is a further step in the direction of widening the group of 
transformations underlying the physical laws. One has to consider 
transformations [...] which impose stringent conditions on them”. 
All these concepts can be applied to a very general integrable Weyl-
Dirac conformal scalar-tensor theory in the context of cosmology. It is 
well known that a most important result is the overall Riemann - Weyl 
curvature scalar: WR R R= + :,7

( )( ) ( )
( )11 2 2 1

i
ij

W i j i

g
R R R R n n g n

xg

∂ − φ
= + = − − − φ φ + −

∂−
      (2)

where R is the standard Riemann curvature due to Einstein 
gravitation and WR is a contribution that is absent in Einstein’s 
theory.7,8 Equation (2) reproduces the standard structure of the D=4 
scalar curvature within any “conformal geometry”: Ref.8 (Ch.15). 
The dynamical field should be obtained by means of the variation 
of a convenient Lagrangian L . The general theory outlined here 
was considered in a previous article.21 In the present work a simpler 
approach is considered which assumes at the start the field action:

4
2 4

3 16( )
2

k
k

o
GI d x g R L

c
 ∇ ρ∇ ρ π

= − ρ + − 
ρ 

∫                                      (3) 
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Abstract

The article claims that the nature of the scalar field responsible for cosmological inflation 
is rooted in the most fundamental concepts of Hermann Weyl’s Conformal Differential 
Geometry. Within a cosmological context the Euler-Lagrange theory based on a scalar-
tensor Lagrangian, similar to the one already adopted by C.Brans and R.H.Dicke, leads via 
an extended and complete variational procedure, to a complete Einstein equation admitting 
an energy-momentum tensor accounting for the essential geometrical background as a 
source. In the article, the integrable Weyl theory applied to the dynamics of a relativistic 
fluid shows a hitherto never explained “negative pressure” condition responsible for the 
scale-acceleration of the dynamical expansion of the Universe. As a significant example, 
the case of a spherically symmetrical star filled with a fluid of constant mass density is 
also discussed. The dynamics of the curvature constructed over the differentials of this 
geometrical scalar field, here identified by “scalar Weyl potential” ( )xφ is found to account 
for various critical aspects of the overall quantum phenomenology. A model for dark matter 
and dark energy, based on the sound hypotesis of a gravity induced de-localization of 
the zero-point vacuum energy is also presented and discussed in the article, showing the 
possibility of detection of the dark-fields by advanced Gravitational Wave (GW) techniques. 
An extension of the conformal theory to relevant local and nonlocal quantum processes is 
also briefly included. Finally, an extended comment by Gerhard t’Hooft about the absolute 
relevance of the Conformal Symmetry, as a “missing symmetry component for space-time”, 
is reproduced and discussed in the context of our theoretical perspective and of the inner 
significance of the methods and results expressed in the article.
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for: D=4. The second term in (3) is the Lagrangian density of 

the scalar field ( ) ( )x xρ = ρφ   and L  is the lagrangian density 

of matter here expressed by a relativistic fluid. It is assumed that 
L does not explicitly depend on ρ and on the derivatives of ijg

. The dimensionless ( )xφ is a real-valued scalar field:   and ( )xρ is 

introduced through the Weyl potential:

( ) ( )1 1
2 2

i
i i ix ln ∂ ρ
φ ≡ ∇ φ = − ∇ ρ = −

ρ
                                                                                   (4) 

for D=4. Note that action (3) is not Weyl-gauge invariant but differs 
from a gauge invariant action by a boundary term, the integral of a 
divergence. Note also that 0I is similar to the action adopted by C. 
Brans and R.H.Dicke.14 Variation with respect to the field ρ  yields:

4
0 2 4

3 163 0
2

k k
k k GI d x g R L

c
 ∇ ρ∇ ρ ∇ ∇ ρ π

δ − + − − δρ = ρ 
=

ρ
∫    (5)

Variation with respect ijg  yields: ( )0Iδ = ( )0 1Iδ  - ( )0 2Iδ  = 0 
where:

( ) 4
0 2 21

1 3 1
2 2

.
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i j i j ijk k

ij ij ij ijI d x g R g R g g g
 ∇ ρ∇ ρ ∇ ∇ ρ   ∇ ρ∇ ρ ∇ ∇ ρ δ = ∫ − ρ − + − − + δ         ρ ρρ ρ      

       (6)

and:

( )
( )4

0 4 42 .8 2 8ij ij

ij

gLG GI d x g g T
gc cg

 ∂ −π ρ π ρ δ = ∫ − δ =
 ∂−
 

       (7)

Finally the Einstein field equation may be expressed in the form:8

4
1 8
2ij ij ij ij

GR g R t T
c
π − + = 

 
                                                                                                               (8)

where ijR and R are the Ricci tensor and the curvature scalar of the 
Riemann geometry, respectively. The “geometrical” tensor ijt arising 
from the variation (6) is:

2 1
2

k
i jk k

ij i j ij k ijt g g− ∇ ∇ ρ   ∇ ∇ ρ = ξ ∂ φ∂ φ − ∂ φ∂ φ − −    ρ ρ    
         (9)

The tensor ijt , expressing the dynamics of the affine geometry in 
the context of conformal theory, physically represents the full action 
of the scalar field ( )xφ on the dynamics of the universe. The “Energy-

Momentum”tensor ijT  accounts for the “external” mass and radiation 
fields. In the case of a material medium composed of a relativistic 
fluid the energy-momentum tensor and scalar are:

[ ]( ) : 3ij
ij i j ij ijT u u pg And T T g p = − σ + ρ + ≡ = −σ +             (10)

where σ and ( )p x are the energy density (with  

dimensions: 1 2ML T− − ) and the pressure density of the fluid. 

In  (9) the factor: 
( )

2 2 1
4 1 6

n
n
−

ξ = =
−

for 4D = , referred 

to as the “conformal coupling constant” was selected. 
As we can see, the structure of the Einstein field Eqs. (8,9) is somewhat 
surprising since it reproduces almost exactly the basic equations of the 
modern inflation theory reported by the standard texts on cosmology , 
including the celebrated text by C.Brans and R.H.Dicke [ ]B D− , where 

a tensor somewhat similar to ijt is added “by hand” and “ad hoc” to the 
Einstein equation to represent artificially a modified matter model, e.g. 
a kind of “quintessence”.20 In contrast, the expression of ijt given by 

(9) is obtained by the exact formal application of the standard Euler-
Lagrange variational procedures to the expression in Eq.  (2) of the

4D = scalar curvature WR which is absent in the standard Riemann’s 
geometry. This leads to several consequences of dynamical relevance. 
For instance, because we are adopting, at variance with [ ]B D− , a 
“constant” gravitational parameter i.e. the “Gravitational Constant” 
G, the “strange terms” ( ) ( )3 2 , 4 2 .etc+ ω + ω  which impair the results 

of the [ ]B D− theory with respect to some classical experimental GR 

tests (for example the Mercury perihelion rotation, the deflection of 
light, the gravitational red shift) do not show up in the present theory. 
A relevant expression appears in the Eq (9) as follows:

1 4 2
k

kk
B k B

−∇ ∇ ρ
≡ ρ ∇ ρ = φ φ − ∇ φ

ρ
                                              (11)

where B∇  is the D’Alembertian (or Laplace-Beltrami) 
operator that, when applied to φ , is expressed as follows:                           

2 2
2

2 2
1 ij ij f

B iji j i j fg g g
c t x x x x xg

 ∂ φ ∂ ∂φ ∂ φ ∂φ ∇ φ ≡ − +∇ φ = = − Γ  ∂ ∂ ∂ ∂ ∂ ∂   

where f
ijΓ is a Christoffel symbol. In the context of relativity

B∇ φ  replaces the Poisson Gravitational potential: 2
4

4 G
c
π

∇ φ = σ . 

Let us now consider a the zero-order part of the field ( )xφ acting within 
a relativistic fluid under the condition of homogeneity and isotropy. 
The field ( )xφ  

depends only on time t, that is on the variable 0x ct=

. Then
2

0
0

k
k c t

∂φ φ φ = φ φ = − ∂ 
. The (00) components of the diagonal 

tensors ijT  expressed by Eq. (10) is equal to the energy-density σ  of 

the relativistic fluid.4 Consider the well known Friedmann-Robertson-
Walker (FRW) classical result accounting for the first term on the lhs 
of Eq(8):4

2
2

4
8
3

a GH
a c

π  ≡ = σ 
 



                                                                     (13)

There ( )a t is the “cosmological scale factor” and ( )H t , the 

“Hubble rate” which measures how rapidly ( )a t changes with time 

(the dot over a(t) means derivative respect to time c× ).4 The ( )00  
component of first term at the lhs of the Einstein equation, Eq. (8) is: 

2

00 00
1 3
2

aR g R
a

   − = ×   
   



while the second term of the same equation 

is: 
2

00 3t
c t
∂φ = ×  ∂ 

. If 0
c t
∂φ  ≥ ∂ 

(no universe’s contractions) we may 

then adopt the following identification:
a H

c t a
∂φ   = =   ∂   



                                                                    (14)

This equation expresses the direct action of the scalar field ( )xφ

on the (FRW) space-time. A first important result is that the Weyl 

potential is related exponentially to the “scale” i.e. ( ) ( )ta t eφ∼ . 

Finally, the full ( )00 component of Einstein’s equation, Eq. (8) reads:

2

4
82 .
3

G
c t c
∂φ π × = σ ∂ 

                                                                      (15)
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Now consider the condition: iiT where i = 1, 2, 3 are the spatial 

components of the diagonal tensor ,i jT . The first term in lhs in Eq. 
(8) is given by:4

2 22

2 2
1 3
2 2ii

aG
c

a
tca a t

∂ φ ∂φ     = + = +     ∂∂     

 

                                             (16) 

The second term in this equation is the well known classical 
(FRW) expression given in all cosmology textbooks, e.g. Ref. 4 (page 
151), while the third term is obtained by adopting the identification 
Eq. (14). By adopting the same identification, the second term in the 
lhs of Eq. (8) is found:

22

2 2
13
2iit H

c t c tc t

  ∂ φ ∂φ ∂φ = + −     ∂ ∂∂     
                                            (17)

By summing up the last two equation the “negative pressure” is 
found:

( )
22

1 1
2 22 2ii iip A G t A

c tc t
− −

 ∂ φ ∂φ = − + = − +  ∂∂    
                             (18)

Where: 4
8 GA
c
π

≡ . In this equation 
2

2 2c t
 ∂ φ
  ∂ 

 and 
c t
∂φ 

 ∂ 
 

represent the “acceleration” and the “velocity” of the expansion 
process, respectively. In theoretical cosmology it is well known 
that inflation requires: ( )3 0p + σ < ; Ref. 4  (page 151). Indeed, by 

Eqs.   (15,18) we obtain: ( )
24 2

2 2
33 3
4

cp
G c tc t

  ∂ φ ∂φ + σ = − +     π ∂∂     
. 

Note that Eq. (10) can be expressed as follows:

[ ]4
4 2
3B

G T
c
π

∇ φ = − σ                                                                              (19)

Equation (18) may be compared with the classical FRW result or 
with the result of any theory adopting in the present context any artificial 
scalar field or artificial “quintessence”.4,20 In all of these theories the 
fluid pressure is always positive. In contrast, our present theory shows 
that because of its “geometrical” nature the scalar ( )xφ leads to a 
“negative pressure” of the fluid because the expression in square 
brackets in the rhs of Eq: (18) is positive for any value of the expansion 
“velocity” and if the value of the “acceleration” is not too negative. 
Eq. (18) provides a most important result. We believe that this result 
of high cosmological relevance supports our present identification of 
the field ( )xφ with the “Inflation” and, presumably, with the agent of 
“dark energy”.1-3

According to, Ref. 4 (page 151): “..This result is perhaps not 
surprising as [..] the accelerated expansion which cause supernovae 
to appear very faint can be caused only by dark-energy with negative 
pressure. Inflation was apparently driven by a similar form of energy 
with 0p < . Negative pressure is not something with which we have 
any familiarity. Non relativistic matter has small positive pressure 
proportional to temperature divided by mass, while a relativistic gas 
has pressure again positive. So whatever it is that drives the inflation 
is not ordinary matter or radiation...”.

Indeed, as already emphasized, the nature of ( )xφ is not “material”, 
that is either radiative or massive, but exclusively “geometrical”. 
According to the present theory the time evolution of field: ( )xφ can 
be expressed by Eq.  (19). This enables us to express the “retarded 
time” solution of the field, ( )xφ which propagates with the velocity 
of light:

( )
'

3
4

( ' 2 ) '
'3

G Tx d x
Rc

′ − σ
φ = − ∫                                                          (20)

where: ( ) ( ) ( )2 2 22' ' ' 'R x x y y z z = − + − + −  , 

( ) ( )' ' 3 'T x p x≡ −σ +   , ( )'xσ′ ≡ σ   , being x’ the point: '', Rx t
c

 − 
 

. Integration is performed over the past light-cone of point x. 
Equation (20) shows that an extremely large expansion is expected in 
the Big-Bang region, where a very large density of energy and pressure 
are present. It is known that at the beginning of inflation an expansion

( )
( )

3010
a t

a t
∆

∼ was realized in a time 3510 st −∆ ∼ .5 This corresponds 

to: a very large value of the expansion speed: 56 13. .3 10 m
c t

−∂φ
∼ ×

∂

In summary, the scalar field ( )xφ appears to be the dominant 

source of the expansive effects of the space-time curvature, which 
is the role requested to the “inflation” field. We stress here that the 
peculiar “geometric” nature of ( )xφ implies that this truly “dark 

matter” or “dark energy” field as well as all geometrical physical 
processes in the skies, that is motions of masses and fields of any 
kind, can be properly investigated by highly sensitive Gravitational 
Wave (GW) detectors. Recently an advanced GW detector based on 
Mach-Zehnder interferometry with modern hollow-core optical fibers 
was proposed.15

As a general statement, we should consider that in the universe the 
gravitation process pervasively affects every cosmological structure 
carrying energy/mass, including the ( )xφ field, as shown in (20). This 
process should also conceivably include the zero-point vacuum energy 
contributed by all the quantum fields in the universe. In other words, 
large amounts of zero-point vacuum energy in the universe can move 
in space being gravitationally attracted by the massive structure of the 
galaxies and of the galaxy clusters. If this simple (likely, not original) 
statement, implying gravity induced delocalization of all vacuum 
fields, is truthful, the enigma implied by the real nature of “dark 
matter” is resolved. The large, very massive and nearly transparent 
“halos” of unseen non barionic mass surrounding the galaxies - e.g. 
detected by gravitational lensing effects     - may merely consist of 
the “zero-point” “vacuum energy” which, by definition, is devoid of 
quantum particles. Since every quantum detector - including our own 
eyes - is only excited via the annihilation of the quantum particles 
of the field under measurement, these “halos” of dark mass/energy 
surrounding the galaxies are necessarily “transparent” to any action 
of measurement on that field. In other words the “dark energy” and 
the “dark matter” are dark simply because all the quantum detectors 
adopted for measurement are necessarily blind. However, since the 
“dark” fields may be gravitationally active, it is possible that they 
could be investigated by the methods of advanced GW Spectroscopy, 
as said. The above argument, which resolves the enigma of the “dark” 
fields, may be easily extended to resolve another cosmological puzzle: 
the small value of the measured “cosmological constant”, Λ .

A good example of theoretical cosmology showing the effect 
of “negative pressure” is the standard model of a stable spherical 
symmetric star which is simple enough to allow an exact solution of 
the Einstein’s equations.6,26,29 The geometry of space time dominated 

by the field ( )xφ is characterized by a metric tensor of the “standard” 
form:6
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( ) ( ) ( )2 2 2 2 2 2 2ds B r dt A r dr r d sin d= − − θ + θ ϕ                       (21)

The metric tensor ijg is diagonal and has non vanishing elements: 

( )rrg A r= , 2g rθθ = , 2 2g r sinϕϕ = θ , ( )ttg B r= − . The model 

for the star may consist of a spherically symmetric cosmological 
structure filled by a fluid of constant and uniform mass-density: 

( ) ( )2 33 / 4Tr M c R σ = π 
 where TM  and R  are the mass of the star 

and radius, respectively. The negative pressure of the fluid is found: 

( ) ( ) [ ] ( ) ( )12 3 1 2 3/ 4 1 1 3 / 4
3T T
r

p r M c R D D M c R
−− σ    = − π × − × − − π = −    







where:

 
1

2
2 2

2 2(1 1T TM G M GD
Rc Rc

−
   = − × − η       

and: 
2

2 1r
R

 η =  
 



. The relevant metric components are: ( )
12

3 2
1 2 TM GrA r

R c

−
 −

=  
 

and: 

( )
2

2
2 2

1 2 23 1 1
4

T TM G M GB r
Rc Rc

 
= − − − η 

   

. This result is often referred 

to as a Schwarzschild interior solution.6,26

Within a parallel perspective, we may briefly consider in the 
framework of conformal theory the quantum effects on the motion of 
a particle which are due to a quantum force equal to the gradient of 
the scalar curvature WR  in the configuration space. The geometrical 
structure of space is affected by the presence of the particle owing either 
to gravitation and to the affine law of “parallel vector displacement”.7 
This scenario parallels the well known J. A. Wheeler’s conception 
according to which “the mass of the particle affects the geometry 
while the geometry imposes the particle’s trajectory”. Guided by this 
conceptual parallelism, Enrico Santamato developed a nonrelativistic 
quantum theory based on a Schroedinger equation(24)  acting on a 

appropriate wave-function ( ) ( )/x exp i S xΨ = ρ    , ( ) ( )S x x= ξσ

. The corresponding theory can be obtained by adding to the rhs of 

Eq.  (9) the expression for the “phase”: 1
2

k
i j ij kg  ∂ σ∂ σ − ∂ σ∂ σ    

. An inspection of Eqs.(9) shows that a close relationship exists 

between the wave-function and the ( )xφ field: ( ) ( )2† e − φΨΨ = i.e. 

( )†1
2

lnφ = − ΨΨ . This means that, according to the Born rule, the 

( )xφ field expresses the quantum probability density of the particle’s 
trajectory, that is the quoted back effect of the geometry on the 
particle’s dynamics. Furthermore, the same quantum theory of the 
particle’s “external” vector properties, e.g. position and velocity, was 
found to apply also to a relevant particle’s “internal” property, the 

particle’s 1
2

spin − . In particular this led to a novel derivation of the 

Dirac’s Equation.22 Furthermore, the extension of the same theory to 

the Einstein-Podolsky-Rosen (EPR) process involving two 1
2

spin −

in the entangled state was found to allow an exact, complete and 
fully consistent analysis of the Bell’s inequalities leading to a novel 
insightful approach to the enigma implied by“quantum nonlocality” 
and “quantum entanglement”.21,22,27,31 In agreement with the standard 

quantum theory, superluminal correlations between measurements on 
distant entangled particles are found to occur within the extension of 
the quantum wave function Ψ . More precisely, at the core of the EPR 
theory, the explicit expression of the scalar Riemann-Weyl curvature 
R in the configuration space, Eq. (2) of the two entangled spin system 
shows that the particle positions, i.e. the”external” coordinates, can 
freely fly apart toward very distant places in the universe while the 
corresponding “internal” coordinates cannot be formally disentangled 
within the formal local structure of WR . This is the source of the 
nonlocal correlations. The internal coordinates, that in the EPR case 
are the Euler-angles connecting the two geometrical “tetrads” assumed 
to model the spins, are generally referred to as “hidden-variables” in 
the standard literature.

The above action theory also leads to an interesting Klein-Gordon 
(KG) equation:

0B T∇ | Ψ | + | Ψ |=                                                                      (22)

where: 2ij
ijT T g R≡ = −ξ . This KG equation has been considered 

to construct the relativistic analogue of the classical Schroedinger-
Newton problem.25 A static, spherically symmetric metric, equal to 
the one already expressed above, can be computed by assuming a 
perfect fluid in hydrostatic equilibrium. The source of the equation 

is: ( ) ( )2
4

8 , 3 ,G t r p t r
c
π Σ = | −σ + | 

   
and the field can be expressed 

in terms of spherical harmonics as: ( ) ( ) ( ) ( ), ,t l lmt r t R r| Ψ |= Φ Υ θ ψ

. A complete solution of the KG equation has been worked out 
numerically by.25 However the time dependence of the field can be 

given immediately: ( ) ( )
2

2
2
t

t
t

t
t

δ Φ
= Σ Φ

δ
or: ( ) 2(t t exp t| Φ |= Σ , 

showing an exponential increase in the wave function with the cosmic 
time t.

As a final consideration, the general relevance of conformal 
symmetry and of the symmetry-breaking of the vacuum is well 
emphasized by the following comment by Gerhard t’Hooft:23

“....We still do not know what happens at higher energies even if we 
do understand the laws at low energies. Or more to the point: small time 
and distance scales seem not to be related to large time and distance 
scales. Now, we argue, this because we fail to understand symmetry of 
the scale transformations. This symmetry, of which the local form will 
be local Conformal Symmetry, if exact, should fulfill our needs. Since 
the world appears not to be scale invariant, this symmetry, if it exists 
must be spontaneously broken: This means that the symmetry must 
be associated with further field transformations leaving the vacuum 
not invariant. It is the implementation of the symmetry that we should 
attempt to construct from the evidence we have. In conclusion, there 
must be a component in space-time symmetry group (the Poincaré 
group) that both Lorentz and Einstein dismissed…”. The Title of 
the paper from which the last excerpt was taken: “Local Conformal 
Symmetry: the missing Symmetry Component for space and time”. 
Indeed, this “missing Symmetry Component” can precisely consist 
of the “Weyl Conformal Symmetry” on which rests the geometrical 
background of the present work. This is actually the key of our work.

Eventually, as proposed recently,28 the exact symmetry of the 
universe spacetime - either riemannian, or weylan, or other - is 
expected to be definitely ascertained by gravitational-wave (GW) 
measurements via the next generation of highly sensitive GW 
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telescopes, for example the multi satellite LISA system or by ground 
based advanced detectors such as, in the future, the EINSTEIN 
apparatus or the efficient optical interferometer recently proposed.15 
We believe that the conformal geometrical mechanism proposed in the 
present work represents a unifying scenario by which the scalar field 
( )xφ appears to play an essential role in determining the evolution 

of the Universe “at large” as well as, at the microscopic level - via 
the dynamics of the scalar curvature WR - of the everyday quantum 
phenomenology 
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