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Introduction
In the last years, ferroelectric materials have been widely studied 

aiming the development of ferroelectric random-access memories 
(FeRAM’s).1,2 Also, ferroelectromagnetic materials presenting 
simultaneous magnetic and electric order, have been widely studied, 
due to the coexistence of magnetic and electric responses that 
allows new designs for actuators, transducers and storage devices3,4 

through the use of magnetoelectric switching, i.e., the possibility of 
reversing the material magnetization by the application of an electric 
field (or vice-versa). In magnetoelectric random-access memories 
(MERAM’s) it would be possible to combine several advantages as 
ultrafast (250 ps) electrical writing and non-destructive magnetic 
reading, combining the best qualities of FeRAM and magnetic 
resistive RAM (MRAM), what is becoming technically feasible, as 
pointed out by some authors.4 By the way, there are limited choices 
for single-phase materials presenting strong ferro or ferrimagnetic 
ordering and ferroelectricity.5,6 Nowadays, ferrite bismuth (BiFeO3 or 
BFO) is the only known pure material presenting both magnetic and 
strong ferroelectric effects at room temperature, having a huge impact 
on the multiferroics field. Besides being a lead-free material, with 
clear additional benefits ensuring safe usage and future recycling, 
BFO also presents interesting optical and piezoelectric properties,4,7,8 
opening possibilities for utilization in piezoelectric, magneto-optical 
or optoelectronic devices.

The bulk BFO crystallographic structure is the rhombohedrally 
distorted perovskite structure with space group R3c (ICSD Card 
# 15299; a = 5.588 Å; c = 13.867 Å) shown in figure 1. In BFO, 
the ferroelectric order is attributed to the Bi+3 6s electrons and the 
magnetic order is attributed to the Fe+3 3d electrons. A good review on 
BFO structure, physics and applications, including a phase diagram in 
function of temperature, is shown in Catalan & Scott (2009) (Figure 
1).4

Bulk BFO is a commensurate ferroelectric (Curie Temperature, TC 
= 1103 K) and an incommensurate antiferromagnet (Néel Temperature, 
TN = 643 K) at room temperature,10,11 due to the long-wavelength 
(62 nm) spin cycloid existing in the material11 that makes the linear 
magnetoelectric effect tend to zero and, indeed, only the quadratic 
effect has been observed.12 Anyhow, the linear magnetoelectric effect 
can be recovered if the spin cycloid is extinguished13 by applying 
large magnetic fields, by chemical substitution or by the insertion of 

epitaxial constraints in the thin films structure.6,14-16 As large magnetic 
fields of 20 T are unfeasible in practical magnetoelectric devices, 
the other two options are usually considered. Since some of these 
epitaxial BFO(001) films have shown significant magnetization, 
large electric polarization of about 50-60 μC/cm2 in the c direction 
and strong magnetoelectric coupling,6 they are promising candidate 
materials for magnetoelectric device applications.

Figure 1 Unit cell of bulk BiFeO3 (ICSD Card # 15299). Red, gold and magenta 
spheres represent oxygen, iron and bismuth atoms, respectively. Structure 
drawn using Vesta software.9

The BFO thin films deposition may be carried out using low-cost 
techniques such as spin-coating, liquid phase epitaxy and sol-gel 
processes,17-19 however, expensive physical deposition apparatuses as 
MOCVD, sputtering, MBE or PLD are more  often preferred,20-24 due to 
the possibility of avoiding contamination and/or improved deposition 
conditions control. This is precisely the case if the objective is the 
epitaxial thin films deposition, generally grown onto buffer layers 
deposited on oriented substrates in deposition processes assisted by 
high temperature and clean atmosphere/vacuum. 

Furthermore, there are still challenges to be overcome for the high 
quality BFO production, such  as obtaining single perovskite phase 
free of impurities, its tendency to fatigue,25  bismuth volatilization  
during annealing, decomposition close to the coercive voltages,26 and  
the ferroelectric properties lowering due to high leakage current.20,25,26  
Another important question to be solved is the BFO integration 
with silicon technologies. In this last challenge, a natural choice for 
the BFO thin films integration with silicon could be the deposition 
of a ferroelectric epitaxial BFO thin film on Si(001) substrate. 
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Abstract

To achieve the epitaxial thin films deposition, it is necessary to use properly oriented 
substrates, with or without buffer layers, matching the lattice parameters of the epitaxial 
thin film we want to grow. In this work, one-step deposition of epitaxial Bi2SiO5(200) and 
BiFeO3(001) thin films on Si(001) substrates by pulsed electron deposition (PED) technique 
is reported without special substrate preparation. The deposition of epitaxial BSO(200) and 
T-BFO(001) directly onto Si(001) substrates during a single target deposition process is 
relevant and presents enormous potential to reduce costs and improve practicality, interface 
quality and  BFO integration efficiency  with Si(001) substrates.
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Particularly, for better integration, an epitaxial phase is desirable 
due to their improved interface quality and homogeneity27-29 but, as 
mentioned before, there are difficulties to achieve that. The epitaxial 
BFO phase that could be grown directly on Si(001) is T-BFO, a 
substrate depending27,30-32 stress-induced metastable pseudo-tetragonal 
(monoclinic) lattice extremely sensitive to the substrate misfit strain.31 
Pure T-like BFO has only been observed on few substrates structurally 
but not chemically compatible with Si and/or BFO, including oriented 
perovskites20 and hexagonal Al2O3.

31,33-35

Only recently, results found in the literature27 have shown that 
integration of BFO with Si(001) is possible when growing T-BFO 
phase onto a Bi2SiO5 (BSO) buffer layer, an oxide chemically and 
structurally compatible with both Si and T-BFO36 having Curie 
temperature (TC) of 673 K and a relatively large spontaneous 
polarization in the c direction up to 23.5 μC/cm2.37 Specifically, Zhu 
et al.27 found that T-like BFO structure exhibited a true tetragonal 
symmetry and a memory window up to 6.5 V for an Au/BFO/BSO/Si 
capacitor with BFO thickness of 135 nm, demonstrating its potentials 
in the nonvolatile memory applications. 

In this research, the BFO thin films deposition by PED is reported, 
a technique which, according to the authors’ knowledge, was not used 
previously for the deposition of this material. It was found that, in 
function of the deposition temperature, microcrystalline or epitaxial 
Bi2SiO5 and BFO phases can be obtained onto Si(001) substrates. 
The present work not only confirms that growth of T-BFO onto a 
Bi2SiO5 (BSO) buffer layer is possible,27 but also shows that epitaxial 
BSO(200) and T-BFO(001) can be epitaxially deposited on Si(001) 
substrates during a single target deposition process, a methodological 
procedure that can reduce costs and improve practicality, quality and 
efficiency of BFO integration with Si(001) substrates.

Materials and methods
BiFeO3 thin films were grown on Si(001) substrates using a Neocera 

PED System of the Thin Films Deposition Laboratory (‘Laboratório 
de Deposição de Filmes Finos’ - LaDeFF) installed at the Physics 
Institute of Federal University of Mato Grosso (IF/UFMT – Cuiabá – 
MT, Brazil). The deposition was performed using a pure BiFeO3 target 
(from Stanford Advanced Materials, USA), a pulse voltage of 20 kV 
and ultra-pure (N4.0) O2 atmosphere (10 mtorr/15 sccm). Deposition 
temperature on the substrate holder was about 560 °C and 640 °C, 
respectively for the microcrystalline (BFO1) and epitaxial (BFO2) 
sample presented in this work. After deposition, sample BFO1 was 
annealed at about 650 °C for 2 hours.

The X-ray diffraction (XRD) patterns were obtained using a 
Shimadzu XRD-6000 diffractometer installed at the Multiuser 
Laboratory of Analytical Techniques (‘Laboratório Multiusuário de 
Técnicas Analíticas’ – LaMuTA) at the Geosciences School of Federal 
University of Mato Grosso (FAGEO/UFMT – Cuiabá – MT, Brazil). 
The diffractometer was equipped with graphite monochromator and 
conventional Cu tube (0.154178 nm) working at 1.2kW (40 kV - 30 
mA) and Bragg-Brentano geometry. A silicon powder was used as 
standard in order to verify the goniometer alignment and quality of 
the diffraction data. Errors in the position of the diffraction peaks 
were verified, being smaller than angular step (0.02°) used during the 
acquisition. The mean crystallite size of each epitaxial phase, in the 
out-of-plane direction, was estimated using the Scherrer’s equation.42 
Fourier Transform Infrared Spectrometry (FTIR) measurements were 
performed in a Varian 660 spectrometer, installed at the Physics 
Institute of Federal University of Mato Grosso (IF/UFMT – Cuiabá – 
MT, Brazil), on samples grown on Si(001) substrates. The films were 

measured at room temperature in conventional atmosphere (air), using 
a resolution of 4 cm-1.

Results and discussion
Figure 2 shows the x-ray diffraction profile of sample BFO1, after 

annealing at about 650 °C for 2 hours. It is possible to identify the 
BiFeO3 (ICSD Card # 15299; S.G.: R3c; a = 5.588 Å; c = 13.867 
Å) and Bi2SiO5 (ICSD Card # 30995; S.G.: Cmc21; a = 15.173 Å; b 
= 5.473 Å; c = 5.313 Å) phases. Figure 3 shows the unit cell of the 
referred Bi2SiO5 crystalline structure. The small peak at 28.2° in 2θ, 
the only peak not corresponding to the BFO or BSO phases in figure 
2, is probably due to a small amount of bismuth rich oxide in the 
sample because Bi2O3 (ICSD Card # 15072) has diffraction peaks in 
this angular range and a Bi2O3 like diffraction profile was observed in 
other BFO samples deposited at lower temperature.  

Figure 2 XRD patterns of the BFO1 sample with asterisks (*) and crosses 
(+) respectively indicating bismuth ferrite (ICSD Card # 15299) and bismuth 
silicate (ICSD Card # 30995) diffraction peaks.

Figure 3 Unit cell of Bi2SiO5 (ICSD Card # 30995). Red, blue and magenta 
spheres represent oxygen, silicon and bismuth atoms, respectively. Structure 
drawn using Vesta software.9

Figure 4 shows the XRD data of the BiFeO3 thin film deposited 
on Si(001) substrate at approximately 640 °C (Sample BFO2). The 
diffraction pattern clearly shows that an epitaxial BiFeO3 thin film was 
successfully grown. One can note the dominant diffraction peaks from 
epitaxial (001) and (002) crystallographic planes of R-type BiFeO3. 
Also, one can see the bismuth ferrite diffraction peaks related to the 
pseudo-tetragonal (T-BFO and TR-BFO) epitaxial phases.

Due to the identification of nanocrystalline bismuth silicate 
(Bi2SiO5 - ICSD Card # 30995) in sample BFO1, as indicated in Figure 
2, it was possible to identify the diffraction peaks from (200), (400) 
and (600) crystallographic planes in Figure 3, related to the epitaxial 
growth of bismuth silicate on the Si(001) substrate. Another important 
peak shown in Figure 3, at 33.0° in 2θ, is caused by the forbidden 
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(200) silicon substrate reflection, observed after deposition at high 
temperature, due to the substrate lattice distortion.38 The presence of 
this forbidden peak shows that the silicon substrate atomic structure 
is distorted during the deposition process, indicating influence of 
the deposited film on the substrate. Minor diffraction peaks, at 29.3° 
and 31.8° in 2θ, are also observed. These peaks are related to a 
small amount of nanocrystalline BiFeO3 and Bi2SiO5 phases, being 
compatible with the main nanocrystalline BSO and BFO peaks shown 
in figure 2.

Figure 4 XRD pattern of the epitaxial BFO2 sample, deposited directly on 
a Si(001) substrate and presenting only BFO(00l) and BSO(h00) diffraction 
peaks.

The out-of-plane lattice parameter of the crystalline epitaxial 
phases determined for the sample BFO2 are 15.20 Å, 4.64 Å, 4.29 Å 
and 3.93 Å for the epitaxial BSO(200), T-BFO(001), TR-BFO(001) and 
R-BFO(001) phases, respectively. In good agreement with previous 
results found by other authors.27,30-32 Unfortunately, the determination 
of the in-plane lattice parameters of these epitaxial phases is not 
possible with a conventional θ-2θ diffractometer, the equipment used 
in this work. Anyway, the existence of epitaxial BSO, T-BFO, TR-
BFO and R-BFO in the deposited films is evident and uncontestable.

T-BFO(001) epitaxial phase is reported in the literature as a 
monoclinic Pm or Pc crystallographic phase (pseudo-tetragonal lattice 
with a ≈ b ≈ 3.77 Å and c = 4.64 Å). Theoretical and experimental 
works point that a and b lattice parameters (of the monoclinic lattice) 
are, approximately, 3.83 Å and 3.71 Å, respectively, but the values 
found depend on the substrate used [27,30-32]. However, XRD and 
Raman studies suggest a further change in symmetry, from monoclinic 
to tetragonal, as film thickness is reduced below 100 nm.40 In the 
sample studied here, T-BFO(001) epitaxial phase is represented by the 
diffraction peak at 19.12° in 2θ (c = 4.64 Å).  R-BFO(001) epitaxial 
phase is monoclinic, presenting pseudo-tetragonal lattice parameters 
a ≈ b ≈ 3,96 Å and c ≈ 4,04 Å.30,32 This phase is represented in Figure 
4 by the diffraction peaks at 22.60° and 46.13° in 2θ (c = 3.93 Å). 
The literature data for TR-BFO(001) epitaxial phase exhibit lattice 
parameter c = 4.28 Å, with a ≈ b ≈ 3.82 Å.30 Here, it is represented by 
the broad diffraction peak at 20.67° (c = 4.29 Å) in Figure 4, among 
those of T-BFO and R-BFO epitaxial phases. An important point here 
is that, if TR-BFO grows between monoclinic T-BFO and R-BFO 
phases, due to the misfit strain reduction as the thin film thickness 
increases, the only acceptable possibility is that TR-BFO lattice is, 
also, monoclinic. Values of the mean crystallite size found for the 
BSO(200), T-BFO(001), TR-BFO(001) and R-BFO(001) phases are 
29 nm, 17 nm, 6 nm and 38 nm, respectively.

Silicon from the substrate is necessary to the BSO layer formation, 
just because there is not another possible source of this chemical 
element in the system. This necessity indicates that BSO phase 
is below all BFO phases, that is, in direct contact with the silicon 
substrate. Some works reported that BSO crystallization occurs at 
650 °C,40 in agreement with the deposition temperature for sample 
BFO2 studied in this work, at about 640 °C. This result shows that 
bismuth oxide diffused into the silicon (001) substrate, forming an 
epitaxially oriented BSO(200) buffer layer between the substrate 
and epitaxial BiFeO3 phases. The oxygen atoms required to obtain 
the stoichiometric bismuth silicate phase are taken from the oxidized 
surface of the substrate after exposition to oxygen atmosphere at high 
temperature, from the material deposited by PED onto the substrate 
and/or from the O2 atmosphere used during deposition. 

In the early stages of growth, in general, epitaxial BFO thin films 
present T-BFO phase, followed by TR-BFO phase when increasing 
thickness, and finally R-BFO phase.30 Consequently, it is possible to 
define the sequence of crystalline epitaxial phases from the substrate 
to the surface, namely Si(001), BSO(200), T-BFO(001), TR-BFO(001) 
and R-BFO(001). As one can see, all these different structures/
materials presented peaks in the diffraction pattern shown in Figure 
4. In the case of the sample studied in this work, considering the 
pseudo-tetragonal cell and the expected values (from the literature) 
of the in-plane lattice parameter for all the epitaxial phases identified 
in the diffraction profile, it is possible to estimate a contraction of 
approximately 0.8% from Si(001) to BSO(200) buffer layer (in 
agreement with the 0.2% elongation observed in the out-of-plane 
lattice parameter, when compared with the bulk out-of-plane lattice 
parameter). Normally, when bismuth ferrite is epitaxially grown as 
a thin film onto, for example, an SrTiO3(001) substrate, the resulting 
morphology is monoclinic, where the symmetry lowering distortion 
arises from in-plane contraction and out-of-plane elongation as a result 
of lattice mismatch between film and substrate, as pointed by several 
groups.4 It is also possible to estimate a contraction of approximately 
0.5% from BSO(001) to T-BFO(001), an elongation of approximately 
0.9% from T-BFO(001) to TR-BFO(001) phase, and an elongation of 
approximately 3.9% from TR-BFO(001) to R-BFO(001). All these 
variations are acceptable from the experimental and theoretical 
point of view, for the epitaxial growth of BSO and BFO thin films. 
According to the literature, transitions from T-BFO to TR-BFO and/
or from TR-BFO to R-BFO epitaxial phases occur as a function of 
the film thickness, through stress constraints or stress relaxation 
mechanisms of the deposited film.30

The Bi2SiO5 crystalline structure in the a-axis direction consists of 
an alternating bismuth and silicon oxide layers, as one can see in Figure 
3. In the situation of the epitaxial BSO(200) thin film, c-axis direction 
is in-plane (parallel to the substrate surface and perpendicular to the 
epitaxial growth direction). Nevertheless, epitaxial BFO(001) phases 
display a very large spontaneous polarization in the c direction (Pc), 
but c-axis direction in this case is out-of-plane direction (perpendicular 
to the substrate surface and parallel to the epitaxial growth direction). 
Consequently, there is a sample presenting two epitaxial layers with 
important spontaneous polarization in perpendicular directions, an 
unusual characteristic in ferroelectric structures, due to necessity of 
epitaxial growth of both phases to achieve a controlled orientation 
of the spontaneous polarization, and probably useful for future 
applications.

The FTIR spectrum of the BFO sample studied in this work is 
shown in Figure 5. One can see all the typical vibrational modes of 
Bi2SiO5,

41 i.e., Bi-O stretching at 437 cm-1, Bi-O-Si stretching at 854 
cm-1, (SiO5)

6- stretching at 945 cm-1 and Si-O stretching at 1032 cm-
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1. The FTIR Bi-O-Si stretching peak at 854 cm-1 is only present in 
samples with nanocrystalline or epitaxial BSO phases detected by 
XRD and, consequently, in agreement with the XRD data shown in 
Figure 4.  

Figure 5 FTIR spectrum of the thin film deposited onto Si(001) substrates.

It is also possible the identification, in Figure 5, of the Fe-O 
stretching peak at 526 cm-1 and Si-O stretching peak at 981 cm-1 
and 1099 cm-1. This last peak is probably a consequence of the 
substrate oxidation during deposition in oxygen atmosphere at high 
temperature. Literature also reports contribution of the bending Fe-O 
vibrational mode near 437 cm-1, however bending Fe-O vibrations 
present weak intensity and, consequently, their contribution for the 
final spectra is small.

Conclusion 
The BFO integration with Si(001) substrates is very important 

to allow the use of BFO with silicon technologies, and the use of 
epitaxial BFO thin films are desirable due to their improved interface 
quality and homogeneity.27-29 As previously cited, there are difficulties 
integrating epitaxial T-like BFO with Si, and pure T-like BFO has only 
been observed on a few substrates, including oriented perovskites and 
hexagonal Al2O3 not simultaneously compatible with Si and BFO. 
Anyway, recent results found in the literature show that integration 
of the epitaxial T-BFO(001) thin film with the Si(001) substrate 
is possible if an epitaxial BSO buffer layer is deposited onto the 
substrate. The bismuth silicate is an oxide chemically and structurally 
compatible with both Si and T-BFO,36 obtaining an heterostructure 
with good potential for nonvolatile memory applications.27

In this work, X-ray diffraction shows the growth of the epitaxial 
BSO, T-BFO, TR-BFO and R-BFO as a function of the thickness 
of the deposited film, in the cited order, from the Si(001) substrate 
to the superficial R-BFO epitaxial phase. FTIR measurements also 
evidenced the presence of BSO and BFO normal modes of vibration 
in the deposited heterostructure. After a complete analysis of the 
experimental data, the results demonstrated that T-like BFO can be 
epitaxially deposited on Si(001) substrates during a single target 
deposition process that creates an intermediary Bi2SiO5 (BSO) 
epitaxial layer due to Bi2O3 diffusion into the Si substrate. The 
diffusion of bismuth oxide in the silicon substrate occurs in a large 
range of temperatures, but the growth of an epitaxial BSO layer 
occurs, only, if deposition is carried out at an appropriate temperature 
(~640 °C). 

Despite the PED technique used for the thin films deposition 
studied in this work, the authors consider that similar results can also 
be obtained using other deposition techniques as sputtering or PLD. 
The deposition of epitaxial BSO(200) and T-BFO(001) onto Si(001) 
substrates during a single target deposition process, and without 
the necessity of a previously deposited buffer layer, is relevant and 
presents enormous potential to reduce costs and improve practicality, 
interface quality and efficiency of BFO integration with Si(001) 
substrates.
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