

Utilization from ultraviolet to infrared light for CO_2 reduction with $\text{P}_4\text{O}_{10}/\text{TiO}_2$ photocatalyst

Abstract

This study aims to extend the light spectrum which could be absorbed by TiO_2 to infrared ray light (IR) by loading P_4O_{10} in order to promote the CO_2 reduction performance of TiO_2 photocatalyst. Three ranges of light with $\text{P}_4\text{O}_{10}/\text{TiO}_2$ film are studied, which are ultra violet light (UV) + visible light (VIS) + IR, VIS + IR, and IR only. This study also investigates the impact of molar ratio of $\text{CO}_2/\text{H}_2\text{O}$ or CO_2/NH_3 on the CO_2 reduction characteristics of $\text{P}_4\text{O}_{10}/\text{TiO}_2$ film. The largest CO_2 reduction performance in case of $\text{CO}_2/\text{H}_2\text{O}$ and CO_2/NH_3 is obtained at $\text{CO}_2/\text{H}_2\text{O} = 1:1$ and $\text{CO}_2/\text{NH}_3 = 3:2$ respectively, irrespective of light illumination condition. With IR light illumination only, the largest molar quantity of CO per unit weight of photocatalyst for $\text{P}_4\text{O}_{10}/\text{TiO}_2$ film in case of $\text{CO}_2/\text{H}_2\text{O}$ and CO_2/NH_3 is 2.36 $\mu\text{mol/g}$ and 33.4 $\mu\text{mol/g}$, respectively.

Keywords: $\text{P}_4\text{O}_{10}/\text{TiO}_2$ photocatalyst, CO_2 reduction, Visible light, Infrared ray light, Reductant combination

Volume 6 Issue 4 - 2022

Akira Nishimura,¹ Homare Mae,¹ Takahiro Kato,¹ Eric Hu²

¹Division of Mechanical Engineering, Graduate School of Engineering, Mie University, Japan

²School of Mechanical Engineering, the University of Adelaide, Australia

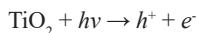
Correspondence: Akira Nishimura, Division of Mechanical Engineering, Graduate School of Engineering, Mie University, 1577 Kurimamachi-cho, Tsu, Mie 514-8507, Japan, Tel +81 59 231 9747, Email nisimur@mach.mie-u.ac.jp

Received: November 02, 2022 | **Published:** November 08, 2022

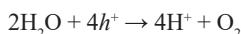
Introduction

The global average concentration of CO_2 in the atmospheric air has been increasing up to 416 ppmV in July 2022, indicating that it is an increase of 76 ppmV compared to 1980.¹ It is necessary to develop CO_2 reduction technologies to prevent the continues rise of global temperature.

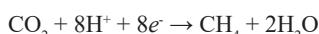
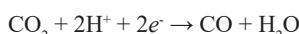
Many researches have investigated that CO_2 can be converted/reduced into fuel species such as CO, CH_4 , CH_3OH , and so on, by photocatalyst.²⁻⁵ TiO_2 is one of popular photocatalysts applied for CO_2 reduction.²⁻⁵ Pure TiO_2 can work under ultra violet light (UV) illumination condition only. UV light accounts for 4 % only in sunlight.⁶ If we could use the visible light (VIS) and infrared ray light (IR) which accounts for 44 % and 52 % of solar energy reaching the earth⁶ for photocatalytic CO_2 reduction, it would promote the photocatalytic CO_2 reduction performance significantly. Additionally, it can be claimed that the whole solar energy can be utilized for the photocatalytic CO_2 reduction.


As to the photocatalytic studies on extending the absorption of light wavelength from UV to VIS, many approaches have been tried.⁷⁻¹⁶ One of the popular attempts is a metal doping. Cu is usually adopted as a metal dopant. Cu/TiO_2 has performed absorption of light whose wavelength is from 400 nm to 800 nm and produced CO of 0.5 $\mu\text{mol/g}$ and H_2 of 4 $\mu\text{mol/g}$.⁷ $\text{Cu}_2\text{O}/\text{TiO}_2$ has produced CO of 80 $\mu\text{mol/g}$ under the Xe lamp illumination condition whose wavelength of light is 320 – 780 nm.⁸ Cu ultrathin TiO_2 absorbing the light whose wavelength is from 400 nm to 800 nm has produced CO of 7 $\mu\text{mol/g}$.⁹ $\text{Cu}_2\text{O}/\text{TiO}_2$ heterostructures absorbing the light whose wavelength is from 300 nm to 650 nm has produced CO of 2 $\mu\text{mol/g}$.¹⁰ Pd is also adopted as a metal dopant. Pd/TiO_2 nanowire has performed the absorption of light whose wavelength is 350 nm – 700 nm, which has produced CH_4 yield of 26.7 $\mu\text{mol/g}$ and CO yield of 50.4 $\mu\text{mol/g}$.¹¹ Pd/TiO_2 (3 wt% of Pd) extending the absorption limit up to 700 nm has produced CH_4 of 4.2 $\mu\text{mol/g}$ and CO of 2.1 $\mu\text{mol/g}$.¹² Zn and Pd co-modified TiO_2 has exhibited CH_4 yield of 53.5 $\mu\text{mol/g}$ under the illumination condition of 500 W Xe arc lamp whose wavelength of light is from 290 nm to 800 nm.¹³ Pt is another candidate as a metal dopant. Graphene-wrapped Pt/TiO_2 has shown the light absorption from 300 nm to 750 nm, resulting in CO production of 320 $\mu\text{mol/g}$ and CH_4 production

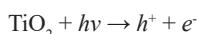
of 45 $\mu\text{mol/g}$.¹⁴ Pt/TiO_2 synthesized by thermal hydrolysis of two different precursors has exhibited the light absorption from 200 nm to 700 nm and produced CH_4 of 0.73 $\mu\text{mol/g}$ and CO of 0.17 $\mu\text{mol/g}$.¹⁵ Nanocrystal-supported PtRu/TiO_2 has performed the light absorption from 300 nm to 750 nm and CH_4 of 300 $\mu\text{mol/g}$.¹⁶


As to the photocatalytic studies on extending the absorbed wavelength up to IR, there are some reports.¹⁷⁻²⁰ $\text{W}_{18}\text{O}_{49}/\text{g-C}_3\text{N}_4$ composite has displayed the CO production of 45 $\mu\text{mol/g}$ and CH_4 production of 28 $\mu\text{mol/g}$ under the illumination condition whose wavelength is from 200 nm to 2400 nm.¹⁷ $\text{WS}_2/\text{Bi}_2\text{S}_3$ nanotube has exhibited the absorption of VIS and near IR light (wavelength: 420 nm – 1100 nm), which has produced CH_3OH of 28 $\mu\text{mol/g}$ and $\text{C}_2\text{H}_5\text{OH}$ of 25 $\mu\text{mol/g}$.¹⁸ CuInZnS decorated $\text{g-C}_3\text{N}_4$ has exhibited the absorption performance of light whose wavelength is from 200 nm to 1000 nm, performing the CO production of 38 $\mu\text{mol/g}$.¹⁹ Hierarchical ZnIn_2S_4 nanorods has prepared by solvothermal method, which has produced CO of 54 $\mu\text{mol/g}$ and CH_4 of 9 $\mu\text{mol/g}$.²⁰

Though several studies on extending the absorbed light of wavelength up to IR have been reported, there is no report investigating the extension of light absorption performance of TiO_2 up to IR. Therefore, this study attempts to extend the light absorption performance of TiO_2 up to IR. According to the reference,²¹ the composite photocatalyst of black phosphorus (P) and $\text{g-C}_3\text{N}_4$ has performed the H_2 production from H_2O under VIS and near IR light illumination condition. P has a layer structure absorbing the light whose wave length is from UV to IR. Therefore, this study investigates the preparation procedure of P/TiO_2 and its CO_2 reduction performance under IR light illumination condition. The purpose of this study is to investigate the CO_2 reduction performance of P/TiO_2 changing the wavelength of illuminated light by UV + VIS + IR, VIS + IR, and IR only. This study also investigates the impact of molar ratio of $\text{CO}_2/\text{H}_2\text{O}$ or CO_2/NH_3 on the CO_2 reduction characteristics of P/TiO_2 . For the photocatalytic CO_2 reduction reaction, a reductant is important since it is a partner for CO_2 . It is found from review papers^{22,23} that H_2O and H_2 are usually adopted as a reductant. It is necessary to clarify the optimum reductant providing the proton (H^+) for the reduction reaction in order to enhance the CO_2 reduction performance. According to the past studies,²⁴⁻²⁶ we can show the reaction scheme of CO_2 reduction with H_2O as below:

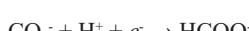
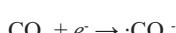


<Photocatalytic reaction process>

<Oxidation reaction process>

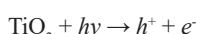


<Reduction reaction process>

Regarding the reaction scheme of CO_2 reduction reacting with H_2 , we can show it as follows:²⁷

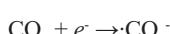


<Photocatalytic reaction process>

<Oxidation reaction process>



<Reduction reaction process>

Though the previous studies investigated CO_2 reduction reacting with H_2O or H_2 ,^{22,23} the effect of NH_3 including 3H^+ , which outmatches H_2O and H_2 , on photocatalytic CO_2 reduction performance is not investigated yet except for the previous studies carried out by the authors using Fe ,²⁸ Cu ,^{29,30} or Pd .³¹ They have been investigated the combination of CO_2 , H_2O and NH_3 .²⁸⁻³¹ However, regarding the reaction scheme to reduce CO_2 with NH_3 , we can show it as follows:^{27,32}



<Photocatalytic reaction process>

<Oxidation reaction process>

<Reduction reaction process>

We investigate the CO_2 reduction characteristics of P/TiO_2 changing the wavelength of illuminated light by UV + VIS + IR, VIS + IR and IR only. In addition, this study also clarifies the optimum molar ratio of $\text{CO}_2/\text{H}_2\text{O}$ or CO_2/NH_3 for the CO_2 reduction characteristics of P/TiO_2 changing the wavelength of illuminated light by UV + VIS + IR, VIS + IR, and IR only.

Experiments

The Preparation procedure of TiO_2 film

We prepared the TiO_2 film by sol-gel and dip-coating process.²⁹⁻³¹ $[(\text{CH}_3)_2\text{CHO}]_4\text{Ti}$ (purity: 95 wt%, producer: Nacalai Tesque Co., Kyoto, Japan) of 0.3 mol, anhydrous $\text{C}_2\text{H}_5\text{OH}$ (purity: 99.5 wt%, producer: Nacalai Tesque Co., Kyoto, Japan) of 2.4 mol, distilled water of 0.3 mol, and HCl (purity: 35 wt%, producer: Nacalai Tesque Co., Kyoto, Japan) of 0.07 mol were mixed to prepare the TiO_2 sol solution. We coat the TiO_2 film on a netlike glass fiber (SILLIGLASS U, producer: Nihonmuki Co., Tokyo, Japan) via sol-gel and dip-coating process. The glass fiber with a diameter of about 10 μm , which is weaved as a net, is assembled to be the diameter of about 1 mm. According to the specification on netlike glass fiber, the porous diameter of glass fiber and the specific surface area is approximately 1 nm and 400 m^2/g , respectively. The netlike glass fiber consists of SiO_2 of 96 wt%. The netlike glass fiber has the opening space of about 2 mm \times 2 mm. The netlike glass fiber has porous characteristics, resulting that the netlike glass fiber can trap the TiO_2 film easily via sol-gel and dip-coating processes. In addition, it can be expected that CO_2 and reductant such as H_2O and NH_3 are more easily absorbed by the prepared photocatalyst since the netlike glass fiber has the porous characteristics. The netlike glass fiber is cut to be disc form with the diameter of 50 mm and thickness of 1 mm. We immersed the netlike glass disc into TiO_2 sol solution by controlling the speed at 1.5 mm/s and drew it up by controlling the fixed speed of 0.22 mm/s. We dried it out and fired it by controlling a firing temperature (FT) and a firing duration time (FD), resulting that the TiO_2 film is fastened on the base material. We set FT and FD at 623 K and 180 s, respectively.

The Preparation procedure of $\text{P}_4\text{O}_{10}/\text{TiO}_2$ film

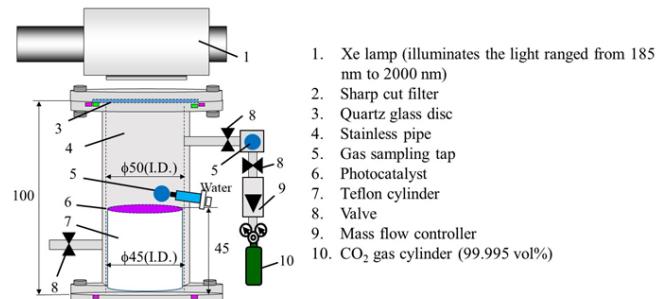
In this study, P_4O_{10} is made from the red P by a mechanical synthesis.³³ The red P (average diameter: 75 μm , producer: Nacalai Tesque Co., Kyoto, Japan) was filled in a ball mill crusher (AV-1, producer: Asahi Rika Factory, Chiba, Japan) with Al_2O_3 ball whose diameter was 3/8 inch (HD-10, producer: NIKKATO CORPORATION, Osaka, Japan). The weight ratio of Al_2O_3 balls to red P particles in the ball mill crusher was set at 20.³³ Rotation with the speed of 600 rpm was kept for 12 hours, after that the P_4O_{10} was prepared.

The prepared P_4O_{10} particles were put into TiO_2 sol solution and mixed with TiO_2 sol solution by a magnetic stirrer for 60 min. After that, the netlike glass disc was immersed into this mixed solution. The following process was same as explained above. The weight ratio of P_4O_{10} to TiO_2 were set at 10 wt%. Figure 1 shows the photo of prepared $\text{P}_4\text{O}_{10}/\text{TiO}_2$ film coated on netlike glass disc.

The characterization procedure of $\text{P}_4\text{O}_{10}/\text{TiO}_2$ film

The characteristics of external and crystal structure of P loaded TiO_2 film were evaluated by SEM (JXA-8530F, producer: JEOL Ltd., Tokyo, Japan) and EPMA (JXA-8530F, producer: JEOL Ltd., Tokyo, Japan).²⁹⁻³¹ In these procedures, we use electron to characterize a sample. Therefore, the sample should conduct electricity. The netlike glass disc which was used for base material to coat TiO_2 film cannot conduct electricity, resulting that we deposited the vaporized Pt by the means of the Pt coating device (JEC-1600, producer: JEOL Ltd., Tokyo, Japan) on the surface of the TiO_2 film before the characterization. The deposited Pt has the thickness of 15 nm. The electrode emits the electrons to the sample by setting the acceleration voltage and current at 15 kV and $3.0 \times 10^{-8} \text{ A}$, respectively, to analyze the external structure of TiO_2 film by means of SEM. We analyze the

character X-ray by means of EPMA at the same time, resulting that the amount of chemical element is estimated based on the relationship between character X-ray energy and atomic number. The space resolution of SEM and EPMA is 10 nm. We can clarify the structure of prepared TiO_2 photocatalyst by the EPMA analysis.


Figure 1 Photo of prepared $\text{P}_4\text{O}_{10}/\text{TiO}_2$.

In addition, this study also evaluated the chemical composition state of $\text{P}_4\text{O}_{10}/\text{TiO}_2$ film by XPS (PHI Quantera SXMTM, producer: ULVAC. PHI. Inc., Chigasaki, Japan). This procedure uses X-ray to analyze the characterization. The X-ray is emitted from the probe whose diameter is 100 μm to the sample by setting the acceleration voltage of 15 kV. In this study, XPS analysis is conducted to identify the type of P loaded on TiO_2 film.

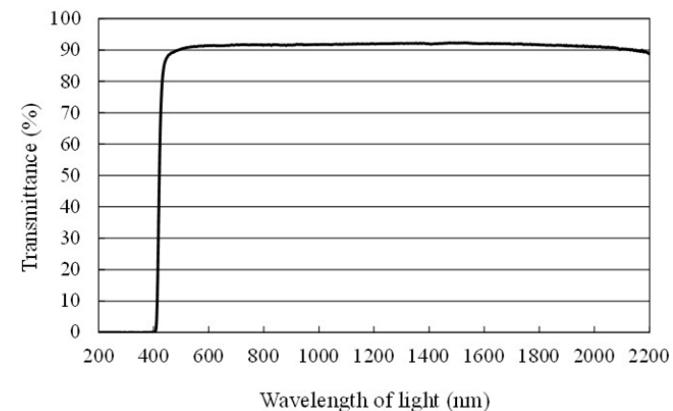

CO₂ reduction with H₂O

Figure 2 exhibits the experimental apparatus. The reactor consists of a stainless tube with a scale of 100 mm (H) \times 50 mm ($I.D.$), TiO_2 film or $\text{P}_4\text{O}_{10}/\text{TiO}_2$ which is coated on netlike glass disc with a scale of 50 mm (D) \times 1 mm (t) positioned on the Teflon cylinder with a scale of 50 mm (H) \times 50 mm (D), a quartz glass disc having a scale of 84 mm (D) \times 10 mm (t), a sharp cur filter removing the wavelength of light which is below 400 nm (SCF-49.5C-42L, producer: SIGMA KOKI CO LTD., Tokyo, Japan) or 800 nm (ITF-50C-85IR, producer: SIGMA KOKI CO. LTD., Tokyo, Japan), a 150 W Xe lamp (L2175, producer: Hamamatsu Photonics K. K.), mass flow controller and CO_2 gas cylinder (purity: 99.995 vol%) in case of CO_2 reduction experiment with H_2O .²⁹ The reactor size for charging CO_2 is $1.25 \times 10^{-4} \text{ m}^3$. The light of Xe lamp located on the stainless tube is illuminated toward TiO_2 film or $\text{P}_4\text{O}_{10}/\text{TiO}_2$ film passing the sharp cut filter and the quartz glass disc positioned on the top of stainless tube. The wavelength of light illuminated from Xe lamp is distributed from 185 nm to 2000 nm. The sharp cut filter can remove the UV from the Xe lamp, providing the wavelength of light illuminating TiO_2 film or $\text{P}_4\text{O}_{10}/\text{TiO}_2$ film ranged from 401 nm to 2000 nm or 801 nm to 2000 nm.³⁴ Figure 3 shows the light transmittance data of sharp cut filter cutting the wavelength below 400 nm to clarify the light illumination conditions as an example. The mean light intensity of light illuminated from Xe lamp from 185 nm to 2000 nm is 72.0 mW/cm², that from 401 nm to 2000 nm is 60.0 mW/cm², and that from 801 nm to 2000 nm is 51.0 mW/cm². After filling CO_2 gas with the purity of 99.995 vol% in the reactor pre-vacuumed by means of a vacuum pump for 15 min, we closed the valves which were installed at the inlet and the outlet of reactor during CO_2 reduction experiment with H_2O . We confirmed the pressure and gas temperature at 0.1 MPa and 298 K, respectively in the reactor. After that, the distilled H_2O was injected into the reactor via the gas sampling tap, resulting that the Xe lamp was turned on the same time. We changed the amount of injected H_2O according to

the considering molar ratio. The injected H_2O solution was vaporized by the heat of IR light components illuminated by the Xe lamp. We confirmed that the temperature in the reactor attained at 343 K within an hour, and we kept at approximately 343 K during the CO_2 reduction experiment. We changed the molar ratio of $\text{CO}_2/\text{H}_2\text{O}$ by 1:0.5, 1:1, 1:2 and 1:4. We extracted the reacted gas filled in the reactor by means of gas syringe via gas sampling tap and we analyzed using an FID gas chromatograph (GC353G, producer: GL Science) and a methanizer (MT221, producer: GL Science). The minimum resolution of FID gas chromatograph and methanizer is 1 ppmV. The CO_2 reduction experiment was conducted up to 8 hours. Gas sampling was carried out from the start of experiment till 8 hours by 2 hours.

Figure 2 Schematic diagram of experimental apparatus of CO_2 reduction with H_2O . The reactor consists of stainless pipe, TiO_2 film or $\text{P}_4\text{O}_{10}/\text{TiO}_2$ film photocatalyst located on Teflon cylinder, a quartz glass disc, sharp cut filter, a 150 W Xe lamp, mass flow controller, CO_2 gas cylinder.

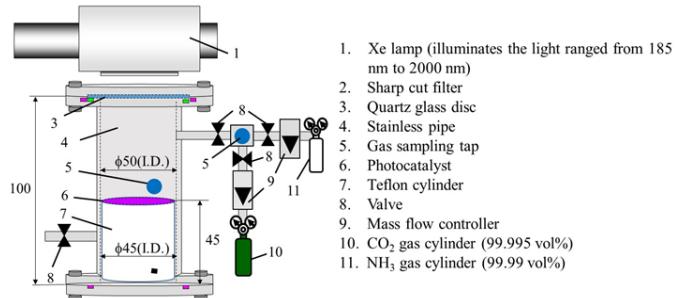


Figure 3 Light transmittance data of sharp cut filter cutting the wavelength below 400 nm.

CO₂ reduction with NH₃

Figure 4 exhibits the experimental apparatus. The reactor consists of a stainless tube with a scale of 100 mm (H) \times 50 mm ($I.D.$), TiO_2 film or $\text{P}_4\text{O}_{10}/\text{TiO}_2$ film coated on netlike glass disc with a scale of 50 mm (D) \times 1 mm (t) positioned on the Teflon cylinder with a scale of 50 mm (H) \times 50 mm (D), a quartz glass disc with a scale of 84 mm (D) \times 10 mm (t), a sharp cut filter removing the wavelength of light which is below 400 nm (SCF-49.5C-42L, producer: SIGMA KOKI CO LTD., Tokyo, Japan) or 800 nm (ITF-50C-85IR, producer: SIGMA KOKI CO. LTD., Tokyo, Japan), a 150 W Xe lamp (L2175, producer: Hamamatsu Photonics K. K.), mass flow controller, CO_2 gas cylinder (purity: 99.995 vol%) and NH_3 gas cylinder (purity: 99.99 vol%). The reactor size to charge CO_2 is $1.25 \times 10^{-4} \text{ m}^3$. We illuminate the light of Xe lamp located on the stainless tube toward TiO_2 film or $\text{P}_4\text{O}_{10}/\text{TiO}_2$ film passing the sharp cut filter and the quartz glass disc positioned on the top of the stainless tube. The wavelength of light illuminated from Xe lamp is distributed from 185 nm to 2000 nm. We can eliminate the UV from the Xe lamp by the sharp cut filter,

resulting that the wavelength of light illuminating TiO_2 film or $\text{P}_4\text{O}_{10}/\text{TiO}_2$ film is distributed from 401 nm to 2000 nm or 801 nm to 2000 nm. The mean light intensity of light illuminated from Xe lamp from 185 nm to 2000 nm is 73.0 mW/cm², that from 401 nm to 2000 nm is 52.8 mW/cm², and that from 801 nm to 2000 nm is 44.0 mW/cm². After filling CO_2 gas with the purity of 99.995 vol%, the reactor was pre-vacuumed by means of a vacuum pump for 15 min, we closed the valves installed at the inlet and the outlet of reactor during CO_2 reduction with NH_3 . We confirmed the pressure and temperature at 0.1 MPa and 298 K in the reactor. The temperature of gas in reactor rose due to the heat of IR light components illuminated by the Xe lamp. The temperature of experimental room was controlled and set at 293 K by air conditioner. This study changed the molar ratio of CO_2/NH_3 by 1:0.5, 1:1, 1:2, 1:4, 3:2 and 3:8. We extracted the reacted gas filled in the reactor by means of gas syringe via gas sampling tap and analyzed by means of a FID gas chromatograph (GC353B, producer: GL Science) and a methanizer (MT221, producer: GL Science). The minimum resolution of FID gas chromatograph and methanizer is 1 ppmV. The CO_2 reduction experiment was conducted up to 8 hours. Gas sampling was carried out from the start of experiment till 8 hours by 2 hours.

Figure 4 Schematic diagram of experimental apparatus of CO_2 reduction with NH_3 . The reactor consists of stainless pipe, TiO_2 film or $\text{P}_4\text{O}_{10}/\text{TiO}_2$ film photocatalyst located on Teflon cylinder, a quartz glass disc, sharp cut filter, a 150 W Xe lamp, mass flow controller, CO_2 and NH_3 gas cylinder.

Results and discussion

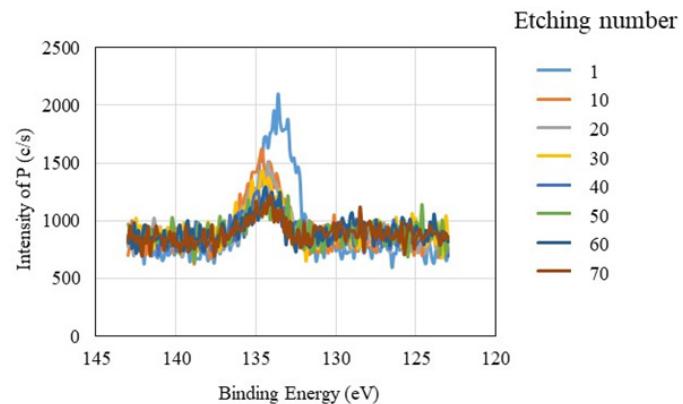
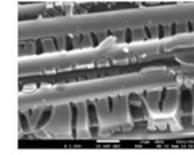
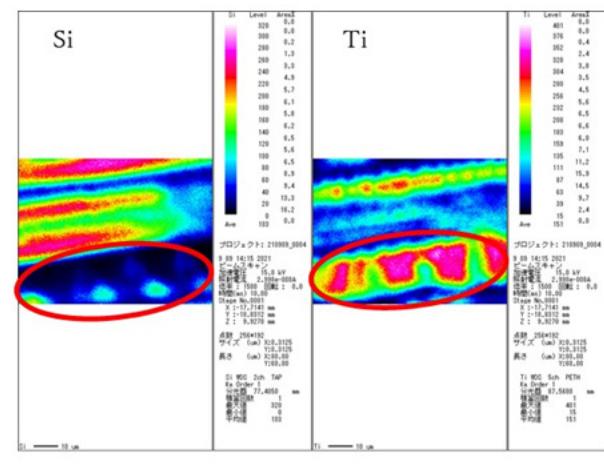

The analysis of characterization of TiO_2 film

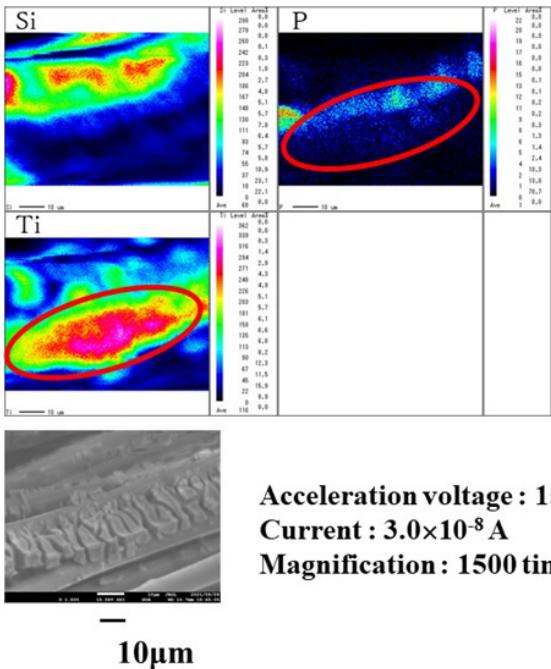
Figure 5 shows XPS (X-ray Photoelectron Spectroscopy) data of P in prepared P/TiO_2 film coated on netlike glass disc. In this study, Ar ion laser sputtering was conducted to analyze the characterization toward the thickness direction. Ar sputtering was controlled by the function of XPS and its etching rate of 1.5 nm/min can be converted into the etching rate in case of SiO_2 . In this figure, the etching number is also shown. When the etching number increases, we can know the characteristics at more inside position of P/TiO_2 film. It is seen from Figure 5 that the $2\text{P}_{3/2}$ spectrum shows the peaks with binding energies (BE) of 134 eV which indicates P_4O_{10} .³⁵ Therefore, it is confirmed that the P in the film exists in the form of P_4O_{10} .



Figure 6 shows SEM (Scanning Electron Microscope) and EPMA (Electron Probe Microanalyzer) images of TiO_2 film coated on netlike glass disc. We obtained the black and white SEM image whose magnification was 1500 times. It was also used for EPMA analysis. Regarding the EPMA images, we show the concentration distribution of each chemical element in observation area exhibited by the diverse colors. If the amount of chemical element is small, dark colors such as black and blue are adopted.

It is seen from Figure 6 that it can be seen TiO_2 film with a teeth-like shape is coated on the netlike glass fiber. We can think that the temperature distribution of TiO_2 solution which was adhered on

the netlike glass disc was not even during firing process, resulting from that the thermal conductivity of Ti and SiO_2 at 600 K are 19.4 W/(m K) and 1.82 W/(m K), respectively.³⁶ Since the thermal expansion and shrinkage around the net like glass fiber might be occurred, it is thought a thermal crack formed within TiO_2 film.³⁰ Consequently, we can obtain TiO_2 film on the netlike glass fiber with teeth-like.

Figure 5 XPS analysis result on P in prepared P/TiO_2 film which is coated on netlike glass disc.



Acceleration voltage : 15 kV
Current : 3.0×10^{-8} A
Magnification : 1500 times

Figure 6 SEM and EPMA images of TiO_2 film coated on netlike glass disc.

Figure 7 shows SEM and EPMA images of $\text{P}_4\text{O}_{10}/\text{TiO}_2$ coated on netlike glass disc. It is seen from Figure 7 that the black and white SEM image whose magnification is 1500 times is applied for EPMA analysis. From Figure 7, it is found that TiO_2 film with a teeth-like shape coated on the netlike glass fiber, indicating the same tendency as Figure 6. In addition, P_4O_{10} is not detected in the area where many Ti are detected according to EPMA images. According to the etching number as shown in Figure 5, P_4O_{10} is loaded in the deep layer in TiO_2 film. In addition, it is thought that the concentrated TiO_2 sol solution which is adhered on net like glass fiber occurs the thermal expansion and shrinkage around the net like glass fiber due to large temperature difference between TiO_2 and SiO_2 composing of net like glass disc, resulting that a thermal crack formed within TiO_2 film as discussed

above. Therefore, it is observed that P_4O_{10} is not detected in the area where many Ti are detected.

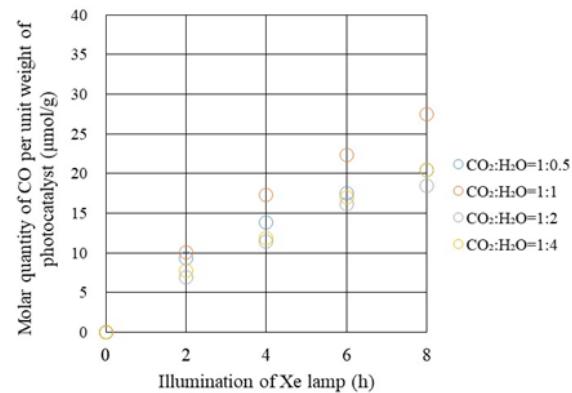
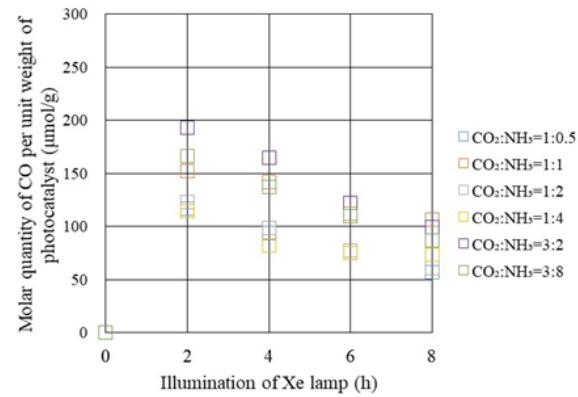


Figure 7 SEM and EPMA images of $\text{P}_4\text{O}_{10}/\text{TiO}_2$ film coated on netlike glass disc.

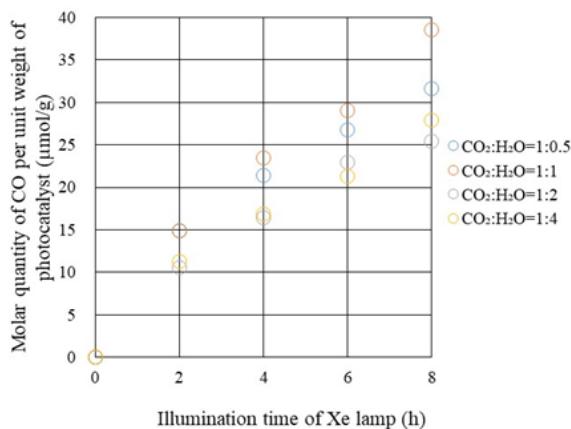

In addition, we analyze the center part of netlike glass disc with a diameter of 300 μm , which is the observation area, by EPMA to count the amount of loaded P_4O_{10} within the TiO_2 film. We estimate the ratio of P_4O_{10} to Ti by averaging the data detected in the observation area. The ratio of amount of P_4O_{10} to the total amount of $\text{P}_4\text{O}_{10}/\text{TiO}_2$ film counted is 13.45 wt%, which is approximately same as the preparation condition as described later. Therefore, the sol-gel and dip-coating process proposed by this study is effective to prepare P/TiO_2 film. On the other hand, we have measured the total weight of TiO_2 film and $\text{P}_4\text{O}_{10}/\text{TiO}_2$ film by an electron balance, which is 0.014 g and 0.018 g, respectively.

The CO_2 reduction characteristics of TiO_2 film with H_2O and NH_3 under the illumination condition with UV + VIS + IR

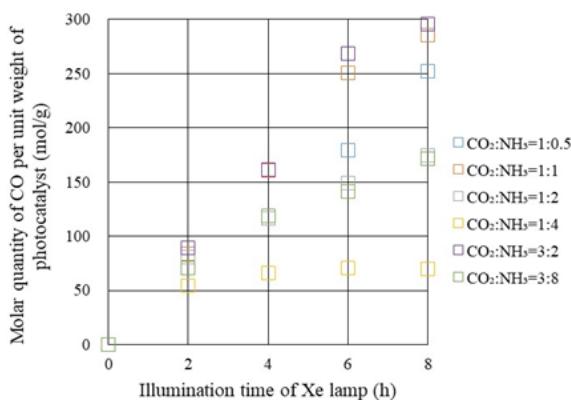
Figures 8 and 9 exhibit the concentration change of CO formed with time for TiO_2 in case of $\text{CO}_2/\text{H}_2\text{O}$ or CO_2/NH_3 under the illumination condition with UV + VIS + IR. In Figures 8 and 9, this study evaluates the produced CO by the molar quantity of CO per unit weight of photocatalyst ($\mu\text{mol/g}$) quantitatively. The other fuels were not detected. Regarding a blank test, we carried out the same experiment under no Xe lamp illumination condition as a reference test before the experiment. As a result, no fuel was detected during the blank test as we expected. In addition, this study conducted that the CO_2 reduction experiment with H_2O or NH_3 without photocatalyst under the illumination condition with UV + VIS + IR. As a result, no fuel has been detected. Regarding the reproducibility of experiments, we show the average data of three experiments. After three time experiments, the change of surface structure can not be confirmed by the naked eye. Moreover, we have tried to touch the surface of photocatalyst, resulting that the degradation of surface has not been observed.

Figure 8 Comparison of molar quantity of CO per unit weight photocatalyst of TiO_2 film among different molar ratios in case of $\text{CO}_2/\text{H}_2\text{O}$ under the illumination condition with UV + VIS + IR.

Figure 9 Comparison of molar quantity of CO per unit weight photocatalyst of TiO_2 film among different molar ratios in case of CO_2/NH_3 under the illumination condition with UV + VIS + IR.


Figure 8 also displays the molar quantity of CO per unit weight of photocatalyst increases with time. The formation rate of CO ($\mu\text{mol/g}$) is calculated by every 2 hours during the experiment time of 8 hours, resulting that it decreases after the illumination time of 2 hours irrespective of molar ratio of $\text{CO}_2/\text{H}_2\text{O}$. For example, in case of $\text{CO}_2/\text{H}_2\text{O} = 1:1$, the 2 hours formation rate of CO is 0.09, 0.07, 0.05 and 0.02 $\mu\text{mol/h}$ from the start to the end of CO_2 reduction experiment. Therefore, it can be expected the molar quantity of CO per unit weight of photocatalyst would be saturated if the illumination time extends over 8 hours. On the other hand, it is seen from Figure 9 that the molar quantity of CO per unit weight of photocatalyst shows the peak at the illumination time of 2 hours and decreases with time gradually. According to the reaction scheme of CO_2/NH_3 as shown by Eqs. (12) – (19), compared to $\text{CO}_2/\text{H}_2\text{O}$, the reaction process is complex and more electron are needed for the reaction with H^+ since NH_3 has 3H^+ . Since the CO_2 reduction performance of TiO_2 is low, it is thought that CO production would stop after the reaction surface covered by products.³⁷ If the reaction surface is covered by products, the reductant, i.e. CO_2 and NH_3 can not reach the reaction surface, resulting that CO production would stop.

It can be seen from Figure 8 that the molar quantity of CO per unit weight of photocatalyst is the largest in case of $\text{CO}_2/\text{H}_2\text{O} = 1:1$, providing the largest molar quantity of CO per unit weight of photocatalyst is 27.5 $\mu\text{mol/g}$. Additionally, it is found from Figure 9 that the molar quantity of CO per unit weight of photocatalyst is

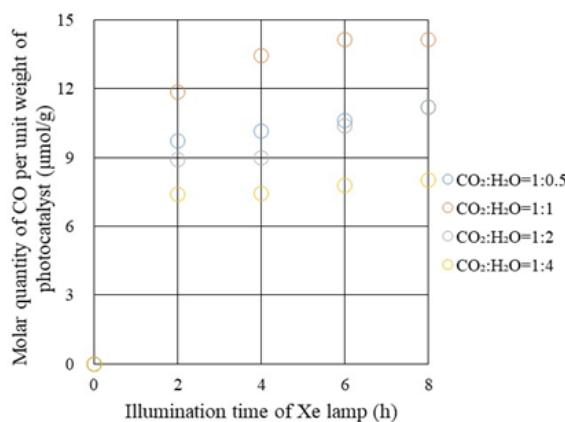

the largest in case of $\text{CO}_2: \text{NH}_3 = 3:2$, providing the largest molar quantity of CO per unit weight of photocatalyst is $193.0 \mu\text{mol/g}$. The theoretical molar ratio to produce CO in case of $\text{CO}_2/\text{H}_2\text{O}$ and CO_2/NH_3 is $\text{CO}_2: \text{H}_2\text{O} = 1:1$ and $\text{CO}_2: \text{NH}_3 = 3:2$, respectively, according to the reaction scheme of $\text{CO}_2/\text{H}_2\text{O}$ and CO_2/NH_3 shown by Eqs. (1) – (19).

The CO_2 reduction characteristics of $\text{P}_4\text{O}_{10}/\text{TiO}_2$ film with H_2O and NH_3 under the illumination condition with UV + VIS + IR

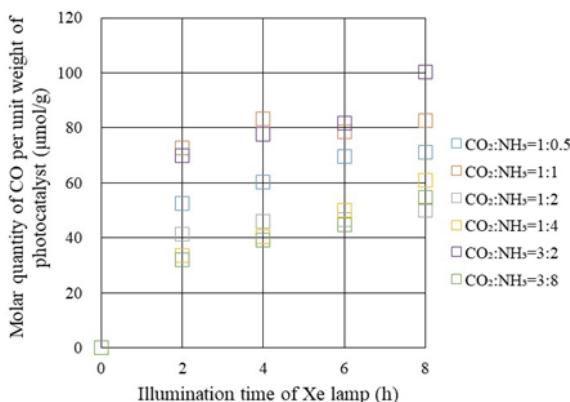
Figures 10 and 11 present the concentration change of formed CO with time in case of $\text{CO}_2/\text{H}_2\text{O}$ or CO_2/NH_3 under the illumination condition with UV + VIS + IR. The other fuels were not detected. Regarding the blank test, we carried out the same experiment under no Xe lamp illumination condition as a reference test before the experiment. As a result, no fuel was detected during the blank test as we expected. In addition, this study conducted that the CO_2 reduction experiment with H_2O or NH_3 without photocatalyst under the illumination condition with UV + VIS + IR. As a result, no fuel has been detected. As to the reproducibility of experiments, Figures 10 and 11 show the average data of three experiments. After three time experiments, the change of surface structure can not be confirmed by the naked eye. Moreover, we have tried to touch the surface of photocatalyst, resulting that the degradation of surface has not been observed.

Figure 10 Comparison of molar quantity of CO per unit weight photocatalyst of $\text{P}_4\text{O}_{10}/\text{TiO}_2$ film among different molar ratios in case of $\text{CO}_2/\text{H}_2\text{O}$ under the illumination condition with UV + VIS + IR.

Figure 11 Comparison of molar quantity of CO per unit weight photocatalyst of $\text{P}_4\text{O}_{10}/\text{TiO}_2$ film among different molar ratios in case of CO_2/NH_3 under the illumination condition with UV + VIS + IR.


According to Figure 10, the molar quantity of CO per unit weight of photocatalyst increases with time. The formation rate of CO ($\mu\text{mol/g}$) is calculated by every 2 hours during the experiment time of 8 hours, which was found starting to decrease after 2 hours irrespective of molar ratio of $\text{CO}_2/\text{H}_2\text{O}$. For example, in case of $\text{CO}_2: \text{H}_2\text{O} = 1:1$, the 2 hours formation rate of CO is $0.1, 0.06, 0.04, 0.06 \mu\text{mol/h}$ from the start to the end of CO_2 reduction experiment. Therefore, it was thought that the molar quantity of CO per unit weight of photocatalyst would be saturated if the illumination time extends over 8 hours. On the other hand, according to Figure 11, the molar quantity of CO per unit weight of photocatalyst increases with time. However, the formation rate of CO ($\mu\text{mol/h}$) is calculated by every 2 hours during the experiment time of 8 hours, resulting that it indicates the saturation of formation rate of CO with time irrespective of molar ratio of CO_2/NH_3 . For example, in case of $\text{CO}_2: \text{NH}_3 = 3:2$, the 2 hours formation rate of CO is $0.6, 0.5, 0.7, 0.2 \mu\text{mol/h}$ from the start to the end of CO_2 reduction experiment. Therefore, it was thought that the molar quantity of CO per unit weight of photocatalyst would be saturated if the illumination time extends over 8 hours. The reason why the difference of CO production characteristics between TiO_2 film and $\text{P}_4\text{O}_{10}/\text{TiO}_2$ film in case of CO_2/NH_3 occurred is due to the promotion of CO_2 reduction performance of TiO_2 by loading P_4O_{10} . As discussed later, the light absorption performance is improved, resulting that CO_2 reduction performance of $\text{P}_4\text{O}_{10}/\text{TiO}_2$ film is promoted. Therefore, the CO production keeps up to 8 hours as shown in Figure 11. Comparing the CO_2 reduction performance shown in Figures 10 and 11 with that in Figures 8 and 9, it is revealed that the CO_2 reduction performance of $\text{P}_4\text{O}_{10}/\text{TiO}_2$ film is superior to that of TiO_2 film, resulting that the light absorption range might be up to IR.

According to Figure 10, the molar quantity of CO per unit weight of photocatalyst is the largest in case of $\text{CO}_2: \text{H}_2\text{O} = 1:1$, providing the largest molar quantity of CO per unit weight of photocatalyst is $38.6 \mu\text{mol/g}$. In addition, according to Figure 11, the molar quantity of CO per unit weight of photocatalyst is the largest in case of $\text{CO}_2: \text{NH}_3 = 3:2$, providing the largest molar quantity of CO per unit weight of photocatalyst is $295.4 \mu\text{mol/g}$. The theoretical molar ratio to produce CO in case of $\text{CO}_2/\text{H}_2\text{O}$ and CO_2/NH_3 is $\text{CO}_2: \text{H}_2\text{O} = 1:1$ and $\text{CO}_2: \text{NH}_3 = 3:2$, respectively, according to the reaction scheme of $\text{CO}_2/\text{H}_2\text{O}$ and CO_2/NH_3 shown by Eqs. (1) – (19). Therefore, it can be said that the theoretical result is obtained for $\text{P}_4\text{O}_{10}/\text{TiO}_2$ film in this study. Additionally, compared the molar quantity of CO per unit weight of photocatalyst for $\text{P}_4\text{O}_{10}/\text{TiO}_2$ film to that for TiO_2 film, the molar quantity of CO per unit weight of photocatalyst for $\text{P}_4\text{O}_{10}/\text{TiO}_2$ film is larger than that for TiO_2 film. As to the case of $\text{CO}_2: \text{H}_2\text{O} = 1:1$, the molar quantity of CO per unit weight of photocatalyst for TiO_2 film increases by $11.1 \mu\text{mol/g}$ by loading P_4O_{10} . As to the case of $\text{CO}_2: \text{NH}_3 = 3:2$, the molar quantity of CO per unit weight of photocatalyst for TiO_2 film increases by $102.4 \mu\text{mol/g}$ by loading P_4O_{10} . Consequently, the promotion of CO_2 reduction performance of TiO_2 film is obtained by loading P_4O_{10} .

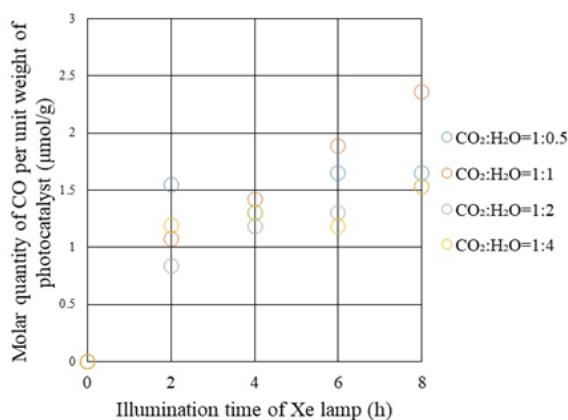

The CO_2 reduction characteristics of $\text{P}_4\text{O}_{10}/\text{TiO}_2$ film with H_2O and NH_3 under the illumination condition with VIS + IR

Figures 12 and 13 present the concentration change of formed CO with time for $\text{P}_4\text{O}_{10}/\text{TiO}_2$ film in case of $\text{CO}_2/\text{H}_2\text{O}$ and CO_2/NH_3 under the illumination condition with VIS + IR. In Figures 12 and 13, we evaluate the produced CO by the molar quantity of CO per unit weight of photocatalyst with the unit of $\mu\text{mol/g}$ quantitatively. We have not detected the other fuels. Regarding a blank test, we carried out the same experiment under no Xe lamp illumination condition as a reference test before the experiment. As a result, no fuel was

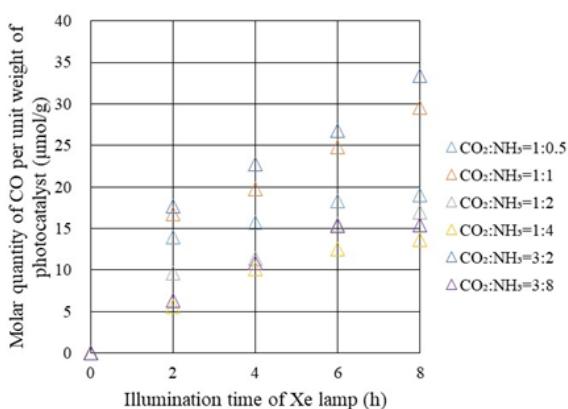
detected during the blank test as we expected. In addition, this study conducted that the CO_2 reduction experiment with H_2O or NH_3 without photocatalyst under the illumination condition with VIS + IR. As a result, no fuel has been detected. Regarding the reproducibility of experiments, we show the average data of three experiments. After three time experiments, the change of surface structure can not be confirmed by the naked eye. Moreover, we have tried to touch the surface of photocatalyst, resulting that the degradation of surface has not been observed. In addition, no fuel was detected from the CO_2 reduction experiment using TiO_2 film in case of $\text{CO}_2/\text{H}_2\text{O}$ and CO_2/NH_3 under the illumination condition with VIS + IR. Therefore, it is confirmed from Figures 12 and 13 that the CO_2 reduction performance of $\text{P}_4\text{O}_{10}/\text{TiO}_2$ film is superior to that of TiO_2 film.

Figure 12 Comparison of molar quantity of CO per unit weight photocatalyst of $\text{P}_4\text{O}_{10}/\text{TiO}_2$ film among different molar ratios in case of $\text{CO}_2/\text{H}_2\text{O}$ under the illumination condition with VIS + IR.

Figure 13 Comparison of molar quantity of CO per unit weight photocatalyst of $\text{P}_4\text{O}_{10}/\text{TiO}_2$ film among different molar ratios in case of CO_2/NH_3 under the illumination condition with VIS + IR.


According to Figure 12, the molar quantity of CO per unit weight of photocatalyst increases with time gradually. The formation rate of CO ($\mu\text{mol/h}$) is calculated by every 2 hours during the experiment time of 8 hours, indicating that the rate would be stable at 8 hours irrespective of molar ratio of $\text{CO}_2/\text{H}_2\text{O}$. For example, in case of $\text{CO}_2:\text{H}_2\text{O} = 1:1$, the 2 hours formation rate of CO is 0.06, 0.0003, 0.009, 0.006 $\mu\text{mol/h}$ from the start to the end of the experiment. It can be expected that the molar quantity of CO per unit weight of photocatalyst would be saturated if the illumination time extends over 8 hours. On the other hand, according to Figure 13, the molar quantity of CO per unit weight of photocatalyst increases with time gradually. The formation rate of CO ($\square\text{mol/h}$) is calculated by every 2 hours during the experiment time of 8 hours, resulting that it indicates the

saturation of formation rate of CO with time irrespective of molar ratio of CO_2/NH_3 . For example, in case of $\text{CO}_2:\text{NH}_3 = 3:2$, the 2 hours formation rate of CO is 0.5, 0.05, 0.03, 0.1 $\mu\text{mol/h}$ from the start to the end of CO_2 reduction experiment. It can be expected that the molar quantity of CO per unit weight of photocatalyst would be saturated if the illumination time extends over 8 hours. Compared the molar quantity of CO per unit weight of photocatalyst for $\text{P}_4\text{O}_{10}/\text{TiO}_2$ film under the illumination condition with VIS + IR to that under the illumination condition with UV + VIS + IR, the molar quantity of CO per unit weight of photocatalyst for $\text{P}_4\text{O}_{10}/\text{TiO}_2$ film under the illumination condition with VIS + IR is smaller than that under the condition with UV + VIS + IR. The total amount of light absorption under the illumination condition with VIS + IR is smaller than that under the condition with UV + VIS + IR, resulting that the molar quantity of CO per unit weight of photocatalyst for $\text{P}_4\text{O}_{10}/\text{TiO}_2$ film under the illumination condition with VIS + IR is smaller than that under the condition with UV + VIS + IR. However, we can confirm that the light absorption performance of TiO_2 film extends to VIS by loading P_4O_{10} . It is also observed from Figures 12 and 13 that the molar quantity of CO per unit weight of photocatalyst is saturated up to the illumination time of 8 hours. It can be claimed that this tendency is obtained due to the lower CO_2 reduction performance under the illumination condition with VIS + IR compared to that under the illumination condition with UV + VIS + IR.


According to Figure 12, the molar quantity of CO per unit weight of photocatalyst is the largest in case of $\text{CO}_2:\text{H}_2\text{O} = 1:1$, providing the largest molar quantity of CO per unit weight of photocatalyst is 14.2 $\mu\text{mol/g}$. In addition, according to Figure 13, the molar quantity of CO per unit weight of photocatalyst is the largest in case of $\text{CO}_2:\text{NH}_3 = 3:2$, providing the largest molar quantity of CO per unit weight of photocatalyst is 100.4 $\mu\text{mol/g}$. The theoretical molar ratio to produce CO in case of $\text{CO}_2/\text{H}_2\text{O}$ and CO_2/NH_3 is $\text{CO}_2:\text{H}_2\text{O} = 1:1$ and $\text{CO}_2:\text{NH}_3 = 3:2$, respectively, according to the reaction scheme of $\text{CO}_2/\text{H}_2\text{O}$ and CO_2/NH_3 shown by Eqs. (1) – (19). Therefore, it can be said that the theoretical result is obtained for $\text{P}_4\text{O}_{10}/\text{TiO}_2$ film under the illumination condition with VIS + IR, which is same as that under the condition with UV + VIS + IR.

The CO_2 reduction characteristics of $\text{P}_4\text{O}_{10}/\text{TiO}_2$ film with H_2O and NH_3 under the illumination condition with IR

Figures 14 and 15 present the concentration change of formed CO with time for $\text{P}_4\text{O}_{10}/\text{TiO}_2$ film in case of $\text{CO}_2/\text{H}_2\text{O}$ or CO_2/NH_3 under the illumination condition with IR. The other fuels were not detected. Regarding a blank test, we carried out the same experiment under no Xe lamp illumination condition as a reference test before the experiment. As a result, no fuel was detected during the blank test as we expected. In addition, this study conducted that the CO_2 reduction experiment with H_2O or NH_3 without photocatalyst under the illumination condition with IR. As a result, no fuel has been detected. Regarding the reproducibility of experiments, we show the average data of three experiments. After three time experiments, the change of surface structure can not be confirmed by the naked eye. Moreover, we have tried to touch the surface of photocatalyst, resulting that the degradation of surface has not been observed. In addition, no fuel was detected from the CO_2 reduction experiment using TiO_2 film in case of $\text{CO}_2/\text{H}_2\text{O}$ and CO_2/NH_3 under the illumination condition with IR. Therefore, it is confirmed from Figures 14 and 15 that the CO_2 reduction performance of $\text{P}_4\text{O}_{10}/\text{TiO}_2$ film is superior to that of TiO_2 film.

Figure 14 Comparison of molar quantity of CO per unit weight photocatalyst of $\text{P}_4\text{O}_{10}/\text{TiO}_2$ film among different molar ratios in case of $\text{CO}_2/\text{H}_2\text{O}$ under the illumination condition with IR.

Figure 15 Comparison of molar quantity of CO per unit weight photocatalyst of $\text{P}_4\text{O}_{10}/\text{TiO}_2$ film among different molar ratios in case of CO_2/NH_3 under the illumination condition with IR.

According to Figure 14, the molar quantity of CO per unit weight of photocatalyst increases with time gradually. The formation rate of CO ($\mu\text{mol}/\text{h}$) is calculated by every 2 hours during the experiment time of 8 hours, resulting that it indicates the saturation of formation rate of CO with time irrespective of molar ratio of $\text{CO}_2/\text{H}_2\text{O}$. For example, in case of $\text{CO}_2/\text{H}_2\text{O} = 1:1$, the 2 hours formation rate of CO is 0.006, 0.002, 0.0008, 0.002 $\mu\text{mol}/\text{h}$ from the start to the end of CO_2 reduction experiment. It can be expected that the molar quantity of CO per unit weight of photocatalyst would be saturated if the illumination time extends over 8 hours. On the other hand, according to Figure 15, the molar quantity of CO per unit weight of photocatalyst increases with time gradually. The formation rate of CO ($\mu\text{mol}/\text{h}$) is calculated by every 2 hours during the experiment time of 8 hours, resulting that it indicates the saturation of formation rate of CO with time irrespective of molar ratio of CO_2/NH_3 . For example, in case of $\text{CO}_2/\text{NH}_3 = 3:2$, the 2 hours formation rate of CO is 0.1, 0.03, 0.03, 0.05 $\mu\text{mol}/\text{h}$ from the start to the end of CO_2 reduction experiment. It can be expected that the molar quantity of CO per unit weight of photocatalyst would be saturated if the illumination time extends. Consequently, the same tendency is obtained for $\text{P}_4\text{O}_{10}/\text{TiO}_2$ film in case of $\text{CO}_2/\text{H}_2\text{O}$ and CO_2/NH_3 under the illumination condition with IR. Compared the molar quantity of CO per unit weight of photocatalyst for $\text{P}_4\text{O}_{10}/\text{TiO}_2$ film under the illumination condition with IR to that under the illumination condition with UV + VIS + IR as well as that under the illumination condition with VIS + IR, the molar quantity of CO per unit weight of photocatalyst for $\text{P}_4\text{O}_{10}/\text{TiO}_2$ film under the illumination

condition with IR is smaller compared to that under the illumination condition with UV + VIS + IR as well as that under the illumination condition with VIS + IR. Since the total amount of light absorption under the illumination condition with IR is smaller compared to that under the illumination condition with UV + VIS + IR as well as that under the illumination condition with VIS + IR, it is thought that the molar quantity of CO per unit weight of photocatalyst for $\text{P}_4\text{O}_{10}/\text{TiO}_2$ film under the illumination condition with IR is smaller compared to that under the illumination condition with UV + VIS + IR as well as that under the illumination condition with VIS + IR. However, it is revealed that the light absorption performance of TiO_2 film extends to IR by loading P_4O_{10} .

It is found from Figure 14 that the molar quantity of CO per unit weight of photocatalyst is the largest in case of $\text{CO}_2/\text{H}_2\text{O} = 1:1$, providing the largest molar quantity of CO per unit weight of photocatalyst is 2.36 $\mu\text{mol}/\text{g}$. Additionally, it is found from Figure 15 that the molar quantity of CO per unit weight of photocatalyst is the largest in case of $\text{CO}_2/\text{NH}_3 = 3:2$, providing the largest molar quantity of CO per unit weight of photocatalyst is 33.4 $\mu\text{mol}/\text{g}$. The theoretical molar ratio to produce CO in case of $\text{CO}_2/\text{H}_2\text{O}$ and CO_2/NH_3 is $\text{CO}_2/\text{H}_2\text{O} = 1:1$ and $\text{CO}_2/\text{NH}_3 = 3:2$, respectively, according to the reaction scheme of $\text{CO}_2/\text{H}_2\text{O}$ and CO_2/NH_3 shown by Eqs. (1) – (19). Therefore, it can be said that the theoretical result is obtained for $\text{P}_4\text{O}_{10}/\text{TiO}_2$ film under the illumination condition with IR, which is same as that under the illumination condition with UV + VIS + IR and VIS + IR.

From the investigation by this study, it is revealed that $\text{P}_4\text{O}_{10}/\text{TiO}_2$ film can reduce CO_2 into CO with H_2O as well as NH_3 under the illumination condition with IR. This is a new finding on the photocatalytic CO_2 reduction of TiO_2 . However, the CO_2 reduction performance with $\text{P}_4\text{O}_{10}/\text{TiO}_2$ film is still low. Therefore, it is necessary to improve the CO_2 reduction performance more. For example, it is thought that optimization of the amount of loaded P_4O_{10} is one approach. In addition, the preparation procedure of P for loading TiO_2 should be examined. The other type of P might have a potential to absorb IR light more. They are the next works.

Conclusion

This study has investigated the CO_2 reduction performance with $\text{P}_4\text{O}_{10}/\text{TiO}_2$ film in various wavelength range of illuminating light, i.e. in UV + VIS + IR or VIS + IR or IR ranges. In addition, this study also clarifies the optimum molar ratio of $\text{CO}_2/\text{H}_2\text{O}$ and CO_2/NH_3 for the CO_2 reduction performance with $\text{P}_4\text{O}_{10}/\text{TiO}_2$ film in the wavelength ranges studied. The following conclusions are drawn from the study:

- (1) In the light range of UV + VIS + IR, the molar quantity of CO per unit weight of photocatalyst of TiO_2 film is promoted by loading P_4O_{10} in case of $\text{CO}_2/\text{H}_2\text{O}$ as well as CO_2/NH_3 . As to the case of $\text{CO}_2/\text{H}_2\text{O} = 1:1$, the molar quantity of CO per unit weight of photocatalyst for TiO_2 film increases by 11.1 ppmV by loading P_4O_{10} . As to the case of $\text{CO}_2/\text{NH}_3 = 3:2$, the molar quantity of CO per unit weight of photocatalyst for TiO_2 film increases by 102.4 ppmV by loading P_4O_{10} .
- (2) It has been revealed that the light absorption performance of TiO_2 film extends to VIS and IR ranges by loading P_4O_{10} .
- (3) In case of $\text{CO}_2/\text{H}_2\text{O}$, the molar quantity of CO per unit weight of photocatalyst for TiO_2 film and $\text{P}_4\text{O}_{10}/\text{TiO}_2$ film is the largest in case of $\text{CO}_2/\text{H}_2\text{O} = 1:1$ under the condition with UV + VIS + IR, VIS + IR, and IR, which is the same as the theoretical molar ratio to produce CO according to the reaction scheme of $\text{CO}_2/\text{H}_2\text{O}$.

- (4) In case of CO_2/NH_3 , the molar quantity of CO per unit weight of photocatalyst for TiO_2 film and $\text{P}_4\text{O}_{10}/\text{TiO}_2$ film is the largest in case of $\text{CO}_2/\text{NH}_3 = 3:2$ under the condition with UV + VIS + IR, VIS + IR, and IR, which is the same as the theoretical molar ratio to produce CO according to the reaction scheme of CO_2/NH_3 .
- (5) With IR light only, the largest molar quantity of CO per unit weight of photocatalyst for $\text{P}_4\text{O}_{10}/\text{TiO}_2$ film in case of $\text{CO}_2/\text{H}_2\text{O}$ is $2.36 \mu\text{mol/g}$, while that in case of CO_2/NH_3 is $33.4 \mu\text{mol/g}$.

Funding details

JSPS KAKENHI.

Acknowledgements

The authors would like to gratefully thank from JSPS KAKENHI Grant Number JP21K04769 for the financial support of this work.

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

References

1. Global Monitoring Laboratory. 2022.
2. Jesic D, Jurkovic LD, Pohar A, et al. Engineering photocatalytic and photoelectrocatalytic CO_2 reduction reactions: mechanisms, intrinsic kinetics, mass transfer resistances, reactors and multi-scale modeling simulations. *Chemical Engineering Journal*. 2021;407.
3. Razzaq A, Ali S, Asif M, et al. Layered double hydroxide (LDH) based photocatalysts: an outstanding strategy for efficient photocatalytic CO_2 reduction. *Catalysts*. 2020;10.
4. Matavos-Aramyan S, Soukhakian S, Jazebizadeh MH, et al. On engineering strategies for photoselective CO_2 reduction – a through review. *Applied Materials Today*. 2020;18.
5. Abdullah H, Khan MMR, Ong HR, et al. Modified TiO_2 photocatalyst for CO_2 photocatalytic reduction: an overview. *Journal of CO_2 Utilization*. 2017;(22):15–32.
6. Remiro-Buenamanana S, Garcia H. Photoassisted CO_2 conversion into fuels. *Chem Cat Chem Minirev*. 2019;(11):342–356.
7. Zhu S, Chen X, Li Z, et al. Cooperation between inside and outside of TiO_2 : lattice Cu^+ accelerates carrier migration to the surface of metal copper for photocatalytic CO_2 Reduction. *Applied Catalysis B: Environmental*. 2020;264.
8. Jeong S, Kim GM, Kang GS, et al. Selectivity modulated by surface ligands on $\text{Cu}_2\text{O}/\text{TiO}_2$ catalysts for gas-phase photocatalytic reduction of carbon dioxide. *The Journal of Physical Chemistry C*. 2019;(123):29184–29191.
9. Jiang Z, Sun W, Miao W, et al. Living atomically dispersed Cu ultrathin TiO_2 nanosheet CO_2 reduction photocatalyst. *Advanced Sciences*. 2019;6.
10. Aguirre ME, Zhou R, Eugene AJ, Guzman MI, et al. $\text{Cu}_2\text{O}/\text{TiO}_2$ heterostructures for CO_2 reduction through a direct Z-scheme: protecting Cu_2O from photocorrosion. *Applied Catalysis B: Environmental*. 2017;(217):485–493.
11. Su KY, Chen C Y, Wu R J. Preparation of Pd/TiO_2 nanowires for the photoreduction of CO_2 into renewable hydrocarbon fuels. *Journal of the Taiwan Institute of Chemical Engineers*. 2019;(96):409–418.
12. Camarillo R, Toston S, Martinez F, et al. Enhancing the photocatalytic reduction of CO_2 through engineering of catalysts with high pressure technology: Pd/TiO_2 photocatalysts. *The Journal of Supercritical Fluids*. 2017;(123):18–27.
13. Yu Y, Lan Z, Guo L, et al. Synergetic effects of Zn and Pd species in TiO_2 towards efficient photo-reduction of CO_2 into CH_4 . *New J Chem*. 2018;(42):483–488.
14. Zhao Y, Wei Y, Wu X, et al. Graphene-wrapped Pt/TiO_2 photocatalysts with enhanced photogenerated charges separation and reactant adsorption for high selective photoreduction of CO_2 to CH_4 . *Applied Catalysis B: Environmental*. 2018;(226):360–372.
15. Toston S, Camarillo R, Martinez F, et al. Supercritical synthesis of platinum-modified titanium dioxide for solar fuel production from carbon dioxide. *Chinese Journal of Catalysis*. 2017;(38):636–650.
16. Wei Y, Wu X, Zhao Y, et al. Efficient photocatalysts of TiO_2 nanocrystals-supported PtRu alloy nanoparticles for CO_2 reduction with H_2O : synergistic effect of Pt–Ru. *Applied Catalysis B: Environmental*. 2018;(236):445–457.
17. Hong LF, Guo R T, Yuan Y, et al. Urchinlike $\text{W}18\text{O}49/\text{g-C3N4}$ Z-scheme heterojunction for highly efficient photocatalytic reduction of CO_2 under full spectrum light. *Energy Fuels*. 2021;(35):11468–11478.
18. Dai W, Yu J, Luo S, et al. WS_2 quantum dots seeding in Bi_2S_3 nanotubes: a novel vis–NIR light sensitive photocatalyst with low–resistance junction interface for CO_2 reduction. *Chemical Engineering Journal*. 2020;389.
19. Gan J, Wang H, Hu H, et al. Efficient synthesis of tunable band-gap CuInZnS decorated g-C3N4 hybrids for enhanced CO_2 photocatalytic reduction and near-infrared-triggered photodegradation performance. *Applied Surface Science*. 2021;564.
20. Yu M, Lv X, Idris AM, et al. Upconversion nanoparticles coupled with hierarchical ZnIn2S_4 nanorods as a near-infrared responsive photocatalyst for photocatalytic CO_2 reduction. *Journal of Colloid and Interface Science*. 2022;(612):782–791.
21. Zhu M, Kim S, Mao L, et al. Metal-free photocatalyst for H_2 evolution in visible to near-infrared region: black phosphorus/graphitic carbon nitride. *Journal of The American Chemical Society*. 2017;(139):13234–13242.
22. Nahar S, Zain MFM, Kadhum AAH, et al. Advances in photocatalytic CO_2 reduction with water: A Review. *Materials*. 2017;(10):629.
23. Tahir M, Amin NS. Advances in visible light responsive titanium oxide based photocatalysts for CO_2 conversion to hydrocarbon fuels. *Energy Convers Manag*. 2013;(76):194–214.
24. Goren Z, Willner I, Nelson AJ. Selective photoreduction of $\text{CO}_2/\text{HCO}_3^-$ to formate by aqueous suspensions and colloids of Pd/TiO_2 . *J Physic Chem*. 1990;(94):3784–3790.
25. Tseng IH, Chang W C, Wu J CS. Photoreduction of CO_2 using sol-gel derived titania and titania-supported copper catalysts. *Appl Catal B*. 2002;(37):37–38.
26. Izumi Y. Recent Advances in the photocatalytic conversion of carbon dioxide to fuels with water and/or hydrogen using solar energy and beyond. *Coord Chem Rev*. 2013;(257):171–186.
27. Lo CC, Hung C H, Yuan C S, et al. Photoreduction of carbon dioxide with H_2 and H_2O over TiO_2 and ZrO_2 in a circulated photocatalytic reactor. *Sol Energy Mater Sci*. 2007;(91):1765–1774.
28. Nishimura A, Ishida N, Tatematsu D, et al. Effect of Fe loading condition and reductants on CO_2 reduction performance with Fe/TiO_2 Photocatalyst. *Int J Photoenergy*. 2017;2017.
29. Nishimura A, Sakakibara Y, Inoue T, et al. Impact of molar ratio of NH_3 and H_2O on CO_2 reduction performance over Cu/TiO_2 photocatalyst. *Phys Astron Int J*. 2019;(3):176–182.
30. Nishimura A, Sakakibara Y, Koshio A, et al. The impact of amount of Cu on CO_2 reduction performance of Cu/TiO_2 with NH_3 and H_2O . *Catalysts*. 2021;11.

31. Nishimura A, Shimada R, Sakakibara Y, et al. Comparison of CO_2 reduction performance with NH_3 and H_2O between Cu/TiO_2 and Pd/TiO_2 . *Molecules*. 2021;26.
32. Nemoto J, Goken N, Ueno K. Photodecomposition of ammonia to dinitrogen and dihydrogen on platinized TiO_2 nanoparticles in an aqueous solution. *J Photochem Photobiol A Chem*. 2007;(185):295–300.
33. Moulder JF, Stickle WF, Sobol PE, et al. Handbook of X-ray photoelectron spectroscopy: a reference book of standard spectra for identification and interpretation of XPS data, 1st ed.; Chastain J, King RC Jr., ULVAC-PHI, Inc.: Chigasaki, Japan. 2010:15–17.
34. Japan Society of Mechanical Engineering. Heat Transfer Hand Book, 1st ed.; Maruzen: Tokyo, Japan. 1993: 367–369.
35. Nishimura A, Komatsu N, Mitsui G, et al. CO_2 reforming into fuel using TiO_2 photocatalyst and gas separation membrane. *Catalysis Today*. 2009;(148):341–349.
36. Japan Science and Technology Agency, J-STORE. P2009–184861A. 2022.
37. Nishimura A, Mitsui G, Nakamura K, et al. CO_2 reforming characteristics under visible light response of Cr- or Ag-doped TiO_2 prepared by sol-gel and dip-coating process. *International Journal of Photoenergy*. 2012.