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Introduction
The Landau theory of second order phase transitions (PT-2) was 

offered in the middles of previous century,1,2 but interest to it does 
not weaken to the present, for example, in phase fields theories.3–11 
By more late researches in the theory of PT-2 very important one-
valued connection was set up between the order parameter (OP) and 
the configurational entropy.12 Such connection allows choosing as an 
independent variable one of them. PT-2 was based traditionally on the 
use of OP, but a variant will be first considered here, in basis of which 
as an independent variable configurational entropy is fixed.

Connection between the free and internal energy

Let’s set the free energy functional F{φ(x)} for the non-equilibrium 
state of the system with given OP φ(x) in a form typical for PT-212
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Free energy is here presented, actually, as expansion of a functional 
F{φ(x)} in a series over the small φ(x) and its spatial derivatives. 
The first term in square brackets is energy of the heterogeneous 
distribution, h(x) is the external field. The type of dependence on the 
spatial derivate φ(x) is dictated by considering of a homogeneous and 
isotropic system. In obedience to ideology of PT-2 the free energy 
depends on a temperature, however its dependence on a temperature 
is concentrated only in a coefficient a, which besides changes a sign in 
a critical point. It is considered that other coefficients do not depend 
on a temperature at all.

For a homogeneous case

                                                                      
,		 (2)

Here and below the extensive thermodynamic variables are 
designated by large characters F, S et cetera, and their densities are 
designated by small characters f, s et cetera. A derivative of the free 
energy on the temperature differs from entropy by a sign only. As the 
coefficient a depends on temperature only, than differentiating (2), we 
get12
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where sc is configurational entropy density, Tc is a critical 
temperature, the constant α does not depend on a temperature, and is 
determined by a relation
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where T is the absolute temperature (thermostat). Actually, sc is not 
total entropy, but its configurational part only, as pure thermal effects 
in PT-2 are not explicitly considered. In addition, the relation (3) is not 
general, but a model. However within the framework of this model a 
one-valued connection between OP and the configurational entropy is 
established. It means that it is possible to choose one of these variables 
as an independent thermodynamic variable and to outline a theory of 
PT-2, for example, not in terms of OP, but in terms of configurational 
entropy. Besides, it prompts the idea for application of similar model 
relations in more wide area (not only for PT-2), including modeling 
of severe plastic deformation processes. We mark that a similar 
situation arises up in the theory of vacancies. There Boltzmann 
offers a formula, uniquely relating the configurational entropy and 
the vacancy concentration that also allows choosing one of them as 
an independent variable.13 It is possible to conclude from it, that all 
three variables, configurational entropy, defect concentration and 
order parameter, in a different form characterize the same structural 
reality of solid, its defectiveness. In the case of phase transitions the 
defectiveness obviously can be related to the spontaneous origin of 
embryos of a new phase. Within the framework of this model relation 
it is possible to pass in accordance with expression

c cF U TS= − 			   (5)

from the configurational free energy to the internal energy and vice 
versa. Here, to underline configurational nature of free energy and 
entropy, they are supplied a lower index c.

Differentiating (5) we get useful relations

	 	                                                              (6)

from which follows

				                                  (7)
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by virtue of that the derivative of configurational entropy on 
temperature is the second derivative of the free energy on temperature, 
but the last depends linearly on the temperature. It is follows from 
there that both the configurational entropy and the internal energy do 
not explicitly depend on temperature. Using Eqs. (2) and (5) we find 
an explicit expression for the internal energy (for a homogeneous case 
and without the account of the external field)
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2 4

u f bφ αφ φ= − + 	 	 (8)

where already all coefficients do not depend on a temperature 
at all. It is possible to consider by virtue of generality of result that 
namely expression (8) is base model relation of theory of PT-2, and 
temperature dependence of the coefficient a (4) and the free energy 
(1), (2) is simple consequence of this fact. Indeed, let us consider that 
simple base relation for internal energy (8), in which all of coefficients 
do not depend on a temperature, is initially given. In this case ∂U/∂T 
≡ 0, and according to (7) ∂Sc/∂T ≡ 0 too. Then configurational entropy 
can be also presented as a series expansion on OP, limited here 
quadratic approaching only

21 ...
2cs cφ= +  				    (9)

Substituting it in Eq. (5) and taking into account Eq. (8) we get
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We define coefficient c from a condition that in the critical point T 
= Tc a total coefficient at φ2 must be a zero

2 c
c

T
α

= −  			   (11)

Collecting all formulas, we get (2). We mark that in area of small φ 
in (8) the first term prevails, and the internal energy has a maximum. 
Therefore for the nonequilibrium states with a zero value OP (T>Tc) 
the internal energy has a maximum too (curve 1, Figure 1), while the 
free energy has, as it must be, a minimum (curve 3). At large OP, the 
second term prevails, and the internal energy has already minimums 
in non-zero extreme points, determined from a conditions

Figure 1 Internal (1) and free (1-3) energies: 1 – at T = 0K; 2 – at T = 200K; 
3 – at T = 400K. It is here accepted α = 1, b = 1, Tc = 300K.
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and equal
1 2

bµ
αφ  = ± 
 

 				                   (13)

Here μ is the “chemical potential” as surplus energy, being on unit 
of OP. In area of zero OP the internal energy is convex; it is concave 
in area of non-zero values of OP (13). Inflection points, dividing these 
areas, are deduced from a condition

2
2
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that gives a value
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 
 				    (15)

(it is dotted vertical line in Figure1). Now we compare positions 
of extremums of the internal and free energy. For the last they are 
determined from a condition
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and non-zero roots are equal

 	 	                                                                  (17)

From where we notice that at a zero temperature non-zero roots of 
the free and internal energy coincide (their graphs coincide fully, see 
curve 1 in Figure 1)

 	 	                                                                  (18)

With growth of temperature non-zero roots of the free energy diminish 
(curve 2) and in a critical point goes to zero (curve 3). Here they meet 
with identically zero roots. Higher than critical point expression (17) 
is lost meaning, and there are only roots of equations (16) identically 
equal to the zero. If the system is in the non-equilibrium state, it tends 
to the equilibrium state in accordance with the Landau- Khalatnikov 
equation (see arrows along to the curve 2, Figure 2).

 			                                                     (19)

Figure 2 Internal (1) and free (2) energies at T = 200K, Arrows pointer specify 
direction of the system evolution along relief of the free and internal energy.

where f is the free energy density, γf is a kinetic coefficient. But 
tending of the system to the equilibrium state it is possible to express 
and in terms of the internal energy. We must take into account thus 
that in the equilibrium state the tangent to the graph of the free energy 
has a zero inclination by definition, while tangent to the graph of the 
internal energy has a non-zero inclination. Then evolution equation in 
terms of the internal energy must look like.
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                                                                                      (20)

where u is the internal energy density, γu is a new kinetic 
coefficient, µeq is “chemical potential” in the equilibrium state. Sign 
a “plus” gets out, if in the equilibrium state the internal energy is 
convex, sign “minus” if concave (Figure 3). Tending of the system to 
the equilibrium state in this case is shown by arrows along relief of the 
internal energy in Figure 2 & 3. Both in terms of the free energy and in 
terms of the internal energy, the system tends to the same steady-state 
(Figure 2). It follows from that in a steady-state a condition of equality 
to zero of right parts of evolution Eqs. (19) and (20) is satisfied at the 
same agreed solutions (13) and (17). Eq. (20) can be directly deduced 
from Eq. (19). For this purpose it is enough to substitute (5) in (19) 
with taking in account (3)

 	                                                                                    (21)

Figure 3 Internal energy and its derivatives. Vertical line conducted through 
minimums of free energy (eq1, eq2).

We consider that deviation from the equilibrium state is small, and 
value of the second term in (21) is little differing from equilibrium. 
Then, taking the equilibrium value OP from (17), we get

 			                                  (22)
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Expression for μeq it is possible to get also, substituting (17) in (12). 
The curve of its dependence on a temperature is resulted in Figure 
4, from which is obvious, that μeq always less zero, that however is 
obvious and from the curve U′ in Figure 3. In addition, from Figure 
4 it is obvious that most sharply μeq changes at approaching to the 
critical point. Eq. (22) coincides with Eq. (20), if to consider that 
kinetic coefficients are connected with a relation

             ( )u f sign uγ γ ′′=  			   (24)

The validity of choice of signs in Eq. (20) it is possible to check 
with help of Figure 3, where the curves of the internal energy and 
its first two derivatives on OP are resulted only. For illustration the 
equilibrium states are chosen on the left and on the right of inflection 

point in area of convex and concavity of the internal energy. If the 
system is in the non-equilibrium state φ >φeq1 (dotted line on the right 
of eq1 in Figure 3), then

1eq

u u
φ φ

 ∂ ∂
≤  ∂ ∂ 

, 			   (25)

and returning force is directed toward diminishing of OP, and the 
sign in Eq. (20) must be positive. In area of concavity at condition 
φ>φeq2 inequality is just opposite

2eq

u u
φ φ

 ∂ ∂
>  ∂ ∂ 

, 			   (26)

and sign in Eq. (20) must be chosen negative. Thus, following 
connection between the configurational entropy and OP (3), it was 
succeeded to set connection between the free and internal energy, 
and to find the alternative form of evolution equations in terms of the 
internal energy (20). In an order to use evolution equation (20) it is 
needed to know an equilibrium value of “chemical potential”. For its 
finding again all the same it is necessary to use a minimum of the free 
energy (16), in which it is possible to calculate all of descriptions the 
internal energy and its derivatives.

Figure 4 Dependence of the “chemical potential” on the temperature.

Fluctuation formulation of problem in terms 
of internal energy

For a heterogeneous problem a functional of the internal energy by 
analogy with (1) and with taking in account (8) looks like

( ){ } ( )2 2 4
0

1 1 2
2 2

U x F c b h dVφ φ αφ φ φ = + ∇ − + −  ∫ . (27)

Evolution equation of type (20) is in this case

                                        
, 	 		  (28)

or in an explicit form

                                                              .		  (29)

Equation contains algebraic part (sources and sinks) and differential 
one. If to ignore algebraic part at a negative coefficient c<0 the 
equation is diffusive type. In such form it can describe the processes 
of spreading (diffusion) of OP, resulting in its more homogeneous 
distribution and, consequently, it is favorable for resorption of possible 
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fluctuations. Vice versa, at a positive sign c>0 this equation can 
describe the processes of strengthening of fluctuations or avalanche-
type transition to the new phase. Chemical potential of OP unlike (12) 
is now determined through a functional derivative

3u c b hδµ φ αφ φ
δφ

= = − ∆ − + −  			   (30)

and it depends on gradient part. At the same time, its equilibrium 
value μeq must not depend on gradient part, because the equilibrium 
state is supposed the homogeneous distribution by definition. Therefore 
an equilibrium value is determined on those formulas (23) as for a 
homogeneous problem. The evolution equation (29), following from 
functional of the internal energy (27), as well as evolution equations, 
followings from functional of free energy (1)12 can describe relaxation 
(suppression) of the heterogeneous field of fluctuations. But they do 
not contain an active constituent, describing the generation of thermal 
fluctuations (noise). For modeling of this we add an accidental source 
of OP to right part (29)

 	                                                                                        (31)

Thus, if the system is initially in the equilibrium state and 
a temperature strongly differs from critical one, expression in 
parentheses in Eq. 31 equals zero for all volume of the system. The 
origin of thermal fluctuations of OP due to the last term transfers 
locally the system into separate areas in a non-equilibrium state. Now 
for these areas expression in parentheses becomes different from zero, 
and the reaction of the system is directed on suppression of arising 
up fluctuations. Note that suppression them goes in all of volume 
due to algebraic part of the evolution equation (rapid process), and 
additionally due to gradient part on the boundaries of areas (slow 
process).

At the same time, fluctuations are arisen in other places. The 
processes of their generation and suppression, which will dynamically 
counterbalance each other, go in parallel. Actually, thermal fluctuations 
displace slightly the true equilibrium state of the system, and it will 
take nature of stationary-state. These processes in vicinity of a critical 
point, when two (zero and non-zero) steady-states are close to each 
other, will go quite othergates. Thermal fluctuation can transfer part 
of volume of the system from one stable state in another stable state. 
In this case, the volume (rapid) suppression of fluctuation is absent, 
and there is only slow suppression it on the boundaries of area and 
the boundary of an area will be gradually reduced. As this process is 
slow by virtue of dimension factor, long-living fluctuations are arisen. 
As the process of generation of fluctuations continues with same 
intensity, and the process of their suppression is strongly slowed, 
the total number of fluctuations increases, what is observed at PT-
2. It is of interest to probe numerically the transition of the system 
through a critical point on some model example. In view of calculable 
resource limiting of serial computers we consider the 2D variant of 
problem. Parameters for calculations the same, as higher (Figure 
1), a coefficient at a gradient term is chosen equal c=0.5. All of area 
with zero OP consists of 100×100 squares of unit sizes. For testing 
of problem a heterogeneity is entered in the left overhead corner of 
model with coordinates 25÷40 on a horizontal line and on a vertical 
line (Figure 5). OP in this area gets out equal 0.1.

The evolution of heterogeneity goes in an expected manner. 
The area of heterogeneity diffuses, broadening in size. Amplitude 
diminishes here, both due to diffusion and due to relaxation in a 
volume. The evolution is slowed in the course of time, and the system 
tends to pass fully to the equilibrium state. For modeling of accidental 

fluctuations the function of sources n(φ) in (31) chooses in a form 
of white noise with amplitude 0.1, setting accidentally in every cell. 
The example of the system evolution is resulted in Figure 6. We 
see that fluctuations in the initial state have branching fractal-like 
structure, (the first frame in Figure 6). On later stages of evolution 
they are localized hearth-like areas (the second frame in Figure 6), 
which becomes less and less in number, and they diminish in size 
(the third frame in Figure 6). Finally, they disappear practically from 
the visible field (the last frame in Figure 6).the chosen relationship 
between intensity of production of fluctuations and their annihilation, 
the last prevails. At other parameters other situation is possible. The 
variant of the second order phase transition reported in this section 
is comfortable for generalization in the nonequilibrium evolution 
thermodynamics approaches for description of defect evolution 
under severe external mechanical load,13–17 regularities in stick-
slip phenomenon in lubricant of different nature18–21 and so on. 
Unfortunately, a transition through the critical point Tc did not give 
the effect of growing of fluctuations; therefore investigation of this 
case will be executed in the next section, in which the theory of PT-2 
is presented in terms of the configurational entropy. 

Figure 5 Evolution of 2D system with heterogeneity through the equal 
intervals of time.

Figure 6 Evolution of 2D system with heterogeneity through the equal 
intervals of time.

Problem of PT-2 in terms of the configurational 
entropy

Relation (3) shows a potential possibility for formulation of 
theory of phase transitions without resorting to the concept of order 
parameter, but being based directly on (configurational) entropy. It is 
here necessary to rewrite the base relation (3) in a form

 	     			    ,                                    (32)

Because of that, a sign of expression under a root is minus, entropy 
can be either a negative value that corresponds partial or complete 
ordering or identical zero that corresponds the complete disordering. 
The free energy (2) in absence of an external field must be written 
down in a form

                                               at            ,              at             . (33)

In this formulation, however, the free energy cannot be presented 
by unified expression for all of temperature interval, but it is presented 
as a locally determined function. It is related to that fact that the 
configurational entropy peaks at the temperature of T=Tc, and at 
further growth of temperature it remains at this (zero) value. The 
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equilibrium values are determined from a condition

( )
2

2 2 0c
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Tf T T b s
s α

 ∂   = − − + =  ∂     
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1
1
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c
s T T

b T
α 

= −  
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 at cT T< , 2 0s =  at cT T> .	 (35)

At T>Tc the system is in a state of indifferent equilibrium. Any 
constant s formally satisfies the condition, however, from considering 
of continuity of the free energy and its first derivatives it follows 
to choose the second equilibrium value as zero. In principle, it is 
necessary to write separately Landau – Khalatnikov-like evolution 
equations for every temperature interval. For the interval T<Tc the 
type of equation is quite obvious

( )
2

12 2 c
c

Ts T T b s
t

γ
α

 ∂   = − − +   ∂   
 		  (36)

For the interval T>Tc situation is more difficult. Here the system 
is in the equilibrium state with a maximal chaos. Deviation from this 
equilibrium state can be only by fluctuation toward diminishing of 
chaos and appearance of partial ordering. This effect can be only small 
of the second order with respect to entropy and expansion of the free 
energy is begun with the quadratic term on entropy. Therefore we will 
specify the second equation (33)

 	                                    ,    at             ,   	 (37)

A coefficient is chosen from those considering, that relief of the 
free energy must be continuously changed during transition of the 
critical point. The first Eq. 33 and Eq. 37 can be written as unified 
equation, if we use theta-function

( ) ( )( )
2

2
0 2 c

c c
T

f s f T T T T s b sθ
α

 = − − − +  
 

	 (38)

The curve of the free energy is resulted in Figure 7. From picture 
evidently that with growth of temperature a minimum of the free 
energy is uniformly displaced to the right, reaching in the critical point 
T=Tc=300K of a zero value, and relief of the free energy does not 
change whereupon. With taking in account Eq. 37 evolution equation 
is for the case T>Tc looks like

Figure 7 Dependence of the free energy on the entropy and with use of 

theta-function both Eq. 36 and Eq. 39 can be also written as one equation for 
all temperature interval.

                                                
,		  (39)

                                                                           

. 	 (40)

It is of interest to look, to what Landau – Khalatnikov equation (19) 
transits at formulation of the problem in terms of the configurational 
entropy

2
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s f s
t s

γ
φ

 ∂ ∂ ∂
= −  ∂ ∂ ∂ 
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or with taking in account (32) and explicit expression for the free 
energy (33) and (37)
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f
Ts b s

t
γ

α
∂  = −  ∂  

 at cT T> .   (42)

The first evolution equation in a form (42) absorbs seemingly 
in itself both evolution equations (36) and (39) and thus it can be 
extended in hole temperature interval. Indeed, the multiplier s causes 
the system to tend to the same steady-state as Eq. 39, and multiplier in 
parentheses to the same steady-state for Eq. 36. But it is pure outward 
coincidence, because the multiplier s arose up in this equation as a 
formal transformation of variables with Jacobean ∂s/∂φ in (40), and it 
does not any relation to physics of process. The second Eq. 41, which 
is deprived every sense, testifies about it too, because any negative 
fluctuation of the entropy causes its further decrease to −∞. Therefore 
it is most correct to use Eq. 40 for analysis of evolution of a system 
in terms of the configurational entropy. It does not result by means of 
limiting transition from the classic Landau – Khalatnikov equation 
(19) in terms of OP. Taking into account that the configurational 
entropy is more fundamental quantity as compared to OP, it is 
necessary to give a preference for it. It is possible to suppose that 
an attempt to write down the general evolution equation (19) with 
help of OP at once for a temperature higher and below of critical 
point contains a latent defect, which, though does not influence on 
the asymptotic states of the system, but can distort speed kinetics of 
phase transition. In accordance with (18) and (3) at the absolute zero 
of temperature the configurational entropy is minimal and negative. 
It contradicts to the Nernst theorem, in obedience to which entropy at 
the zero of temperatures must be equal to the zero. For the removal of 
this contradiction it is enough to shift a scale on entropy,

2

2 c
s s

bT
α′ = +  			  (43)

that at zero temperature the configurational entropy is wittingly 
equal zero. Then the free energy is look like

                                                                                                                   (44)

At a zero temperature a zero value of the entropy corresponds to 
a minimum of the free energy, that is, in accordance with the Nernst 
theorem (Figure 8). With growth of the temperature the entropy grows 
evenly and takes the maximal value in the critical point T=Tc=300K. 
Further with growth of the temperature a relief of the free energy does 
not change, the system reaches a maximal structural disorder, and 
entropy remains at the attained maximal value. The negative values 
of configurational entropy are throw-away as unphysical. A minimum 
value of the free energy grows with growth of the temperature, as well 
as in case of Figure 7.
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Evolution equation (40) for this case is looked like

 	                                                                                     (45)

Figure 8 Dependence of the free energy on the entropy with satisfaction of 
Nernst theorem.

It presents a considerable methodological interest to present 
the same theory simultaneously in terms of internal energy and 
configurational entropy. In accordance with (5) and (44) the 
expressions for the internal energy and its derivatives in this case will 
look like this

( ) ( )( )
2

* 2
0 2 c

c c
T

u s f T T T T s b sθ
α
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2 cT
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α
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, 				    (48)

where

( )( )
2 2

*
0 0 2 4c c

c
f f T T T T

bT b
α αθ= + − − + , 		  (49)

where the dash of variable s is dropped. Here Trv is a current value 
of the temperature, which in the equilibrium state coincides with 
T, that, with the temperature of external thermostat. The curves of 
the internal energy and current temperature are resulted in Figure 
9. With the increase of temperature up to critical a minimum of 
the internal energy grows all of time, remaining at a zero value of 
the configurational entropy. Here the curves of current temperature 
coincide between itself for all temperatures (line 1). Their equilibrium 
values at different temperatures however differ between itself and 
equal to the temperature of external thermostat. Compare vertical lines 
in Figure 9, drawn between the abscissas axis and the straight line of 
current temperature in the equilibrium states for temperatures 100, 
200 and 300K. At a zero temperature of thermostat the equilibrium 
value of current temperature is equal to the zero.

At temperatures higher critical ones the minimum of the internal 
energy moves in the negative unphysical area of configurational 
entropy values. The curve of current temperature with growth of 
temperature of thermostat begins to be evenly moved upwards 
along the abscise axis. The equilibrium value of current temperature 

accordingly grows also. Let us evident that the equilibrium value of 
current temperature coincides with the temperature of thermostat. We 
define the equilibrium value of the configurational entropy from an 
obvious condition.

Figure 9 Dependence of the internal energy and its derivatives on the entropy.
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from where follows
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Substituting this value in (47) we get

( )( ) ( )( )rv c c c c cT T T T T T T T T T Tθ θ= − − + − − + ≡  	 (52)

The analogue of the evolution equation (20) in terms of entropy 
then has more natural form

s
f u T
s s

γ∂ ∂ = − ∂ ∂ 
 			   (53)

that, the system is evoluated until a current temperature is accepted 
the temperature of thermostat. For a heterogeneous problem equation 
(31) in terms of configurational entropy it is possible to write down 
in a form

 		                                                  (54)

We put this equation in basis for calculation of fluctuations, 
arising up at passing of critical temperature of the system (Figure 
10). The primary temperature of thermostat got out equal a bit higher 
critical T=300.1K, and goes down slowly. In the vicinity of critical 
temperature, predictably, there are intensive long-living fluctuations. 
It is interest that in the strictly critical point long-living fluctuations 
dies out, and general level of fluctuations go down to the thermal 
background. It is related to that distinction between two types of 
steady-states in a critical point disappears, and they cannot serve 
more by the traps of thermal fluctuations for each other. Therefore 
excrescence of fluctuations takes a place not strictly in a critical point, 
but in some vicinity of it. Thus, in this paper a theory of the second 
order phase transitions is considered from four different positions – in 
terms of free and internal energy in language of order parameter, and 
also in language of configurational entropy. The indicated variants 
cannot simply be taken to each other, and formulation in language of 
configurational entropy seems more preferable. Evolution equation in 
terms of the internal energy in language of configurational entropy has 
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clear physical sense, meaning tendency of current temperature of the 
system to the temperature of external thermostat. The analysis of long-
living fluctuations, arising up in the vicinity of critical temperature 
due to transitions between two types of the states, shows that in the 
strictly critical point the level of fluctuations goes down to the average 
thermal background.

Figure 10 Dependence of the internal energy and its derivatives on the 
entropy.

Conclusion
In this paper a theory of the second order phase transitions is 

considered from four different positions in terms of free and internal 
energy in language of order parameter, and also in language of 
configurational entropy. The indicated variants cannot simply be taken 
to each other, and formulation in language of configurational entropy 
seems more preferable. Evolution equation in terms of the internal 
energy in language of configurational entropy has clear physical 
sense, meaning tendency of current temperature of the system to 
the temperature of external thermostat. The analysis of long-living 
fluctuations, arising up in the vicinity of critical temperature due to 
transitions between two types of the states, shows that in the strictly 
critical point the level of fluctuations goes down to the average 
thermal background. We mark that theory of PT-2, developed here in 
terms of entropy, can enough correctly describe order - disorder phase 
transition at transition of Curie point, for example, in a magnetic. 
Thus heterogeneous terms in the free and internal energy describe 
generation and disappearing of accidental structural fluctuations. 
At the same time, within the framework of this theory it is while 
problematic to describe structural heterogeneity of the second type, 
namely origin of regular antiphase boundaries.22 For solution of this 
problem a complication of the model is required by introduction of 
additional degree of disorder.
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