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Four variants of the Landau theory of second order
phase transitions in terms of the order parameter
and configurational entropy

Abstract

This paper presents the Landau theory of second order phase transitions in terms of the
configurational entropy using the connection between this entropy and the order parameter.
It is offered a variant of theory, in which the Nernst theorem is obeyed. Within the
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Introduction

The Landau theory of second order phase transitions (PT-2) was
offered in the middles of previous century,? but interest to it does
not weaken to the present, for example, in phase fields theories.> !
By more late researches in the theory of PT-2 very important one-
valued connection was set up between the order parameter (OP) and
the configurational entropy.'? Such connection allows choosing as an
independent variable one of them. PT-2 was based traditionally on the
use of OP, but a variant will be first considered here, in basis of which
as an independent variable configurational entropy is fixed.

Connection between the free and internal energy

Let’s set the free energy functional F{gp(x)} for the non-equilibrium
state of the system with given OP ¢(x) in a form typical for PT-2'?

Flp(x)}=F, +%f{c(v¢)2 +ag’ +%b¢4 —2¢h}dV , (D

Free energy is here presented, actually, as expansion of a functional
F{p(x)} in a series over the small ¢(x) and its spatial derivatives.
The first term in square brackets is energy of the heterogeneous
distribution, A(x) is the external field. The type of dependence on the
spatial derivate ¢(x) is dictated by considering of a homogeneous and
isotropic system. In obedience to ideology of PT-2 the free energy
depends on a temperature, however its dependence on a temperature
is concentrated only in a coefficient a, which besides changes a sign in
a critical point. It is considered that other coefficients do not depend
on a temperature at all.

For a homogeneous case

7(¢)=1; +%a¢2+%b¢4—¢h : 5

Here and below the extensive thermodynamic variables are
designated by large characters F, S et cetera, and their densities are
designated by small characters f, s et cetera. A derivative of the free
energy on the temperature differs from entropy by a sign only. As the
coefficient a depends on temperature only, than differentiating (2), we
get!?

ar a o
=———=——¢" <0, 3
Se =T 2T¢ 3)

where s is configurational entropy density, 7 is a critical
temperature, the constant o does not depend on a temperature, and is
determined by a relation

T-T
a——-—=, 4
T 4

c

a=

where T is the absolute temperature (thermostat). Actually, s, is not
total entropy, but its configurational part only, as pure thermal effects
in PT-2 are not explicitly considered. In addition, the relation (3) is not
general, but a model. However within the framework of this model a
one-valued connection between OP and the configurational entropy is
established. It means that it is possible to choose one of these variables
as an independent thermodynamic variable and to outline a theory of
PT-2, for example, not in terms of OP, but in terms of configurational
entropy. Besides, it prompts the idea for application of similar model
relations in more wide area (not only for PT-2), including modeling
of severe plastic deformation processes. We mark that a similar
situation arises up in the theory of vacancies. There Boltzmann
offers a formula, uniquely relating the configurational entropy and
the vacancy concentration that also allows choosing one of them as
an independent variable." It is possible to conclude from it, that all
three variables, configurational entropy, defect concentration and
order parameter, in a different form characterize the same structural
reality of solid, its defectiveness. In the case of phase transitions the
defectiveness obviously can be related to the spontaneous origin of
embryos of a new phase. Within the framework of this model relation
it is possible to pass in accordance with expression

F,=U-TS, )

from the configurational free energy to the internal energy and vice
versa. Here, to underline configurational nature of free energy and
entropy, they are supplied a lower index c.
Differentiating (5) we get useful relations
SC:—ai:—a—U—Sc-i—T% (6)
or or oT

from which follows

a—U=TaSC =0 (7
or or
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by virtue of that the derivative of configurational entropy on
temperature is the second derivative of the free energy on temperature,
but the last depends linearly on the temperature. It is follows from
there that both the configurational entropy and the internal energy do
not explicitly depend on temperature. Using Eqgs. (2) and (5) we find
an explicit expression for the internal energy (for a homogeneous case
and without the account of the external field)

u($)=fy -~y +bf° ®)

where already all coefficients do not depend on a temperature
at all. It is possible to consider by virtue of generality of result that
namely expression (8) is base model relation of theory of PT-2, and
temperature dependence of the coefficient a (4) and the free energy
(1), (2) is simple consequence of this fact. Indeed, let us consider that
simple base relation for internal energy (8), in which all of coefficients
do not depend on a temperature, is initially given. In this case oU/0T
= 0, and according to (7) 8S /0T = 0 too. Then configurational entropy
can be also presented as a series expansion on OP, limited here
quadratic approaching only

s, :%cgﬁz +... 9)

Substituting it in Eq. (5) and taking into account Eq. (8) we get
1 1 1
f(¢):f0—5a¢2—ECT¢2+Zb¢4... (10)

We define coefficient ¢ from a condition that in the critical point 7
= T atotal coefficient at ¢, must be a zero

an

_a
21,

Collecting all formulas, we get (2). We mark that in area of small ¢
in (8) the first term prevails, and the internal energy has a maximum.
Therefore for the nonequilibrium states with a zero value OP (7>T)
the internal energy has a maximum too (curve 1, Figure 1), while the
free energy has, as it must be, a minimum (curve 3). At large OP, the
second term prevails, and the internal energy has already minimums
in non-zero extreme points, determined from a conditions

u, f (a.u.)

Figure | Internal (1) and free (1-3) energies: | —at T = 0K;2 — at T = 200K;
3 —at T =400K. It is here accepted & = I,b = I, T_= 300K.

Ou
y:a—¢:¢(—a+b¢2):0 (12)
and equal
o 12
Py =i(;] (13)
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Here p is the “chemical potential” as surplus energy, being on unit
of OP. In area of zero OP the internal energy is convex; it is concave
in area of non-zero values of OP (13). Inflection points, dividing these
areas, are deduced from a condition

8214 2
— =—a+3bp", 14
oF ¢ (14)
that gives a value
o \2
=+ — 15
o=s(2) 5

(it is dotted vertical line in Figurel). Now we compare positions
of extremums of the internal and free energy. For the last they are
determined from a condition

a _ 2\ _
a—¢_¢(a+b¢ )=0 (16)
and non-zero roots are equal
1/2 12
a 1.-T
P ——[—g) = ,4( T J (17)

From where we notice that at a zero temperature non-zero roots of
the free and internal energy coincide (their graphs coincide fully, see
curve 1 in Figure 1)

[

12

¢#=max(¢F)=i(Zj #0 (18)

With growth of temperature non-zero roots of the free energy diminish
(curve 2) and in a critical point goes to zero (curve 3). Here they meet
with identically zero roots. Higher than critical point expression (17)
is lost meaning, and there are only roots of equations (16) identically
equal to the zero. If the system is in the non-equilibrium state, it tends
to the equilibrium state in accordance with the Landau- Khalatnikov
equation (see arrows along to the curve 2, Figure 2).

o¢ of

5 (19)

0.1 2 / -

-0.1F

u, f(a.u.)
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¢

Figure 2 Internal (1) and free (2) energies at T = 200K,Arrows pointer specify
direction of the system evolution along relief of the free and internal energy.

where f'is the free energy density, y, is a kinetic coefficient. But
tending of the system to the equilibrium state it is possible to express
and in terms of the internal energy. We must take into account thus
that in the equilibrium state the tangent to the graph of the free energy
has a zero inclination by definition, while tangent to the graph of the
internal energy has a non-zero inclination. Then evolution equation in
terms of the internal energy must look like.
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where u is the internal energy density, y is a new kinetic
coefficient, Uy, 18 “chemical potential” in the equilibrium state. Sign
a “plus” gets out, if in the equilibrium state the internal energy is
convex, sign “minus” if concave (Figure 3). Tending of the system to
the equilibrium state in this case is shown by arrows along relief of the
internal energy in Figure 2 & 3. Both in terms of the free energy and in
terms of the internal energy, the system tends to the same steady-state
(Figure 2). It follows from that in a steady-state a condition of equality
to zero of right parts of evolution Egs. (19) and (20) is satisfied at the
same agreed solutions (13) and (17). Eq. (20) can be directly deduced
from Eq. (19). For this purpose it is enough to substitute (5) in (19)
with taking in account (3)

(20)

o¢ ou os ou T

P _ M S, 21
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Figure 3 Internal energy and its derivatives. Vertical line conducted through
minimums of free energy (eq,, eq,).

We consider that deviation from the equilibrium state is small, and
value of the second term in (21) is little differing from equilibrium.
Then, taking the equilibrium value OP from (17), we get

o¢ Ou
— =y, —- 22
ot 7/ (6¢ lueq] ( )
Where
1/2 _
_e T L-T 23)

ﬂe‘] b3/2 TC T

Expression for ey it is possible to get also, substituting (17) in (12).
The curve of its dependence on a temperature is resulted in Figure
4, from which is obvious, that My always less zero, that however is
obvious and from the curve U’ in Figure 3. In addition, from Figure
4 it is obvious that most sharply Hy, changes at approaching to the
critical point. Eq. (22) coincides with Eq. (20), if to consider that
kinetic coefficients are connected with a relation

Yu =V Sign (u") (24)

The validity of choice of signs in Eq. (20) it is possible to check
with help of Figure 3, where the curves of the internal energy and
its first two derivatives on OP are resulted only. For illustration the
equilibrium states are chosen on the left and on the right of inflection
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point in area of convex and concavity of the internal energy. If the
system is in the non-equilibrium state ¢ >0, (dotted line on the right
of eql in Figure 3), then

ou (auj
o4\ og qu’

and returning force is directed toward diminishing of OP, and the
sign in Eq. (20) must be positive. In area of concavity at condition
?>9,, inequality is just opposite

ou [614 ]
J— > J— .
op \0¢ o2

and sign in Eq. (20) must be chosen negative. Thus, following
connection between the configurational entropy and OP (3), it was
succeeded to set connection between the free and internal energy,
and to find the alternative form of evolution equations in terms of the
internal energy (20). In an order to use evolution equation (20) it is
needed to know an equilibrium value of “chemical potential”. For its
finding again all the same it is necessary to use a minimum of the free
energy (16), in which it is possible to calculate all of descriptions the
internal energy and its derivatives.

(25)

(26)
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Figure 4 Dependence of the “chemical potential” on the temperature.

Fluctuation formulation of problem in terms
of internal energy

For a heterogeneous problem a functional of the internal energy by
analogy with (1) and with taking in account (8) looks like

Ulg(x)}=F, +% | [c(wﬁ)2 ~ag’ +%b¢4 —2¢h}dV .(27)

Evolution equation of type (20) is in this case

O0¢ ou
—4y | 2 , 28
or in an explicit form
¢ _ 3
P =y, (—cA¢—a¢+b¢ —h—,ueq) . (29)

Equation contains algebraic part (sources and sinks) and differential
one. If to ignore algebraic part at a negative coefficient ¢<0 the
equation is diffusive type. In such form it can describe the processes
of spreading (diffusion) of OP, resulting in its more homogeneous
distribution and, consequently, it is favorable for resorption of possible
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fluctuations. Vice versa, at a positive sign ¢>0 this equation can
describe the processes of strengthening of fluctuations or avalanche-
type transition to the new phase. Chemical potential of OP unlike (12)
is now determined through a functional derivative
ou 3

7 55 cAp—ap+bg” —h

and it depends on gradient part. At the same time, its equilibrium
value peq must not depend on gradient part, because the equilibrium
state is supposed the homogeneous distribution by definition. Therefore
an equilibrium value is determined on those formulas (23) as for a
homogeneous problem. The evolution equation (29), following from
functional of the internal energy (27), as well as evolution equations,
followings from functional of free energy (1)'? can describe relaxation
(suppression) of the heterogeneous field of fluctuations. But they do
not contain an active constituent, describing the generation of thermal
fluctuations (noise). For modeling of this we add an accidental source
of OP to right part (29)

a@—f:iyu(—mqﬁ—amw —h—p,)+n(9)

Thus, if the system is initially in the equilibrium state and
a temperature strongly differs from critical one, expression in
parentheses in Eq. 31 equals zero for all volume of the system. The
origin of thermal fluctuations of OP due to the last term transfers
locally the system into separate areas in a non-equilibrium state. Now
for these areas expression in parentheses becomes different from zero,
and the reaction of the system is directed on suppression of arising
up fluctuations. Note that suppression them goes in all of volume
due to algebraic part of the evolution equation (rapid process), and
additionally due to gradient part on the boundaries of areas (slow
process).

(30)

€))

At the same time, fluctuations are arisen in other places. The
processes of their generation and suppression, which will dynamically
counterbalance each other, go in parallel. Actually, thermal fluctuations
displace slightly the true equilibrium state of the system, and it will
take nature of stationary-state. These processes in vicinity of a critical
point, when two (zero and non-zero) steady-states are close to each
other, will go quite othergates. Thermal fluctuation can transfer part
of volume of the system from one stable state in another stable state.
In this case, the volume (rapid) suppression of fluctuation is absent,
and there is only slow suppression it on the boundaries of area and
the boundary of an area will be gradually reduced. As this process is
slow by virtue of dimension factor, long-living fluctuations are arisen.
As the process of generation of fluctuations continues with same
intensity, and the process of their suppression is strongly slowed,
the total number of fluctuations increases, what is observed at PT-
2. It is of interest to probe numerically the transition of the system
through a critical point on some model example. In view of calculable
resource limiting of serial computers we consider the 2D variant of
problem. Parameters for calculations the same, as higher (Figure
1), a coefficient at a gradient term is chosen equal ¢=0.5. All of area
with zero OP consists of 100x100 squares of unit sizes. For testing
of problem a heterogeneity is entered in the left overhead corner of
model with coordinates 25+40 on a horizontal line and on a vertical
line (Figure 5). OP in this area gets out equal 0.1.

The evolution of heterogeneity goes in an expected manner.
The area of heterogeneity diffuses, broadening in size. Amplitude
diminishes here, both due to diffusion and due to relaxation in a
volume. The evolution is slowed in the course of time, and the system
tends to pass fully to the equilibrium state. For modeling of accidental
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fluctuations the function of sources n(p) in (31) chooses in a form
of white noise with amplitude 0.1, setting accidentally in every cell.
The example of the system evolution is resulted in Figure 6. We
see that fluctuations in the initial state have branching fractal-like
structure, (the first frame in Figure 6). On later stages of evolution
they are localized hearth-like areas (the second frame in Figure 6),
which becomes less and less in number, and they diminish in size
(the third frame in Figure 6). Finally, they disappear practically from
the visible field (the last frame in Figure 6).the chosen relationship
between intensity of production of fluctuations and their annihilation,
the last prevails. At other parameters other situation is possible. The
variant of the second order phase transition reported in this section
is comfortable for generalization in the nonequilibrium evolution
thermodynamics approaches for description of defect evolution
under severe external mechanical load,”*!"" regularities in stick-
slip phenomenon in lubricant of different nature'®*?' and so on.
Unfortunately, a transition through the critical point 7, did not give
the effect of growing of fluctuations; therefore investigation of this
case will be executed in the next section, in which the theory of PT-2
is presented in terms of the configurational entropy.

Figure 5 Evolution of 2D system with heterogeneity through the equal
intervals of time.

Figure 6 Evolution of 2D system with heterogeneity through the equal
intervals of time.

Problem of PT-2in terms of the configurational
entropy

Relation (3) shows a potential possibility for formulation of
theory of phase transitions without resorting to the concept of order
parameter, but being based directly on (configurational) entropy. It is
here necessary to rewrite the base relation (3) in a form

bom 2
o

Because of that, a sign of expression under a root is minus, entropy
can be either a negative value that corresponds partial or complete
ordering or identical zero that corresponds the complete disordering.
The free energy (2) in absence of an external field must be written
down in a form

(32)

2
fi=fy-2 —(T—Z;)s+b(£] el r<r fi=fyrsr -G
o

In this formulation, however, the free energy cannot be presented
by unified expression for all of temperature interval, but it is presented
as a locally determined function. It is related to that fact that the
configurational entropy peaks at the temperature of 7=7, and at
further growth of temperature it remains at this (zero) value. The
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equilibrium values are determined from a condition

T, —(r_r)+zb(5]2s oat7<T. Loou >, (4
Os ¢ a Os
From where
1 2
sl=2—b(T—TL,)[%] at T<T,,s,=0at T>T,. (35)

At T>T the system is in a state of indifferent equilibrium. Any
constant s formally satisfies the condition, however, from considering
of continuity of the free energy and its first derivatives it follows
to choose the second equilibrium value as zero. In principle, it is
necessary to write separately Landau — Khalatnikov-like evolution
equations for every temperature interval. For the interval 7<7 the
type of equation is quite obvious

2
o T
a—jzzy] [—(T—Tc)+2b((;] s]

For the interval 7>T situation is more difficult. Here the system
is in the equilibrium state with a maximal chaos. Deviation from this
equilibrium state can be only by fluctuation toward diminishing of
chaos and appearance of partial ordering. This effect can be only small
of the second order with respect to entropy and expansion of the free
energy is begun with the quadratic term on entropy. Therefore we will
specify the second equation (33)

(36)

at , (37)

2,
1()= 1o +2b£TC) ¢ T

A coefficient is chében from those considering, that relief of the
free energy must be continuously changed during transition of the
critical point. The first Eq. 33 and Eq. 37 can be written as unified
equation, if we use theta-function

7\

f(s):fofﬁ(TL.7T)(T77’L,)s+2b(§j s (38)

The curve of the free energy is resulted in Figure 7. From picture
evidently that with growth of temperature a minimum of the free
energy is uniformly displaced to the right, reaching in the critical point
T=T=300K of a zero value, and relief of the free energy does not

change whereupon. With taking in account Eq. 37 evolution equation
is for the case 7>T looks like

Figure 7 Dependence of the free energy on the entropy and with use of

i 300: 400K

/4

4 3z 0 2 4
s (a.u.)

theta-function both Eq. 36 and Eq. 39 can be also written as one equation for
all temperature interval.
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2
@——y g=—47/1b[£} s, (39)
a

ot 'os

(40)

2 [_a(rc —T)(T—TC)+2b[§j2 SJ :

It is of interest to look, to what Landau — Khalatnikov equation (19)
transits at formulation of the problem in terms of the configurational
entropy

a__ yfasy
o Tas\og)
or with taking in account (32) and explicit expression for the free

energy (33) and (37)
&, %s[r—n—zb(%]zs] at T<T, ,%:—%b{%] ssat T>T,. (42)

(41)

The first evolution equation in a form (42) absorbs seemingly
in itself both evolution equations (36) and (39) and thus it can be
extended in hole temperature interval. Indeed, the multiplier s causes
the system to tend to the same steady-state as Eq. 39, and multiplier in
parentheses to the same steady-state for Eq. 36. But it is pure outward
coincidence, because the multiplier s arose up in this equation as a
formal transformation of variables with Jacobean 0s/0p in (40), and it
does not any relation to physics of process. The second Eq. 41, which
is deprived every sense, testifies about it too, because any negative
fluctuation of the entropy causes its further decrease to —oo. Therefore
it is most correct to use Eq. 40 for analysis of evolution of a system
in terms of the configurational entropy. It does not result by means of
limiting transition from the classic Landau — Khalatnikov equation
(19) in terms of OP. Taking into account that the configurational
entropy is more fundamental quantity as compared to OP, it is
necessary to give a preference for it. It is possible to suppose that
an attempt to write down the general evolution equation (19) with
help of OP at once for a temperature higher and below of critical
point contains a latent defect, which, though does not influence on
the asymptotic states of the system, but can distort speed kinetics of
phase transition. In accordance with (18) and (3) at the absolute zero
of temperature the configurational entropy is minimal and negative.
It contradicts to the Nernst theorem, in obedience to which entropy at
the zero of temperatures must be equal to the zero. For the removal of
this contradiction it is enough to shift a scale on entropy,

2

s'=s4+——
2bT,

that at zero temperature the configurational entropy is wittingly
equal zero. Then the free energy is look like

(43)

2 2 2
F(6) = fyt T ~T) (T L)+ =00 =) (=) =1+ 28 12| 52 (44)

At a zero temperature a zero value of the entropy corresponds to
a minimum of the free energy, that is, in accordance with the Nernst
theorem (Figure 8). With growth of the temperature the entropy grows
evenly and takes the maximal value in the critical point 7=7=300K.
Further with growth of the temperature a relief of the free energy does
not change, the system reaches a maximal structural disorder, and
entropy remains at the attained maximal value. The negative values
of configurational entropy are throw-away as unphysical. A minimum
value of the free energy grows with growth of the temperature, as well
as in case of Figure 7.
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Evolution equation (40) for this case is looked like

& |1 -6(T, —T)(T—T)+2b[T“st (45)
ot 1] %e c c a

Zﬁ:' /]
" 4' 200K >/ / ]
(].2‘ o0 /%/ |

5
e 0K
0 < A
| A
0.2 | il
L
S R
0.4
0 1 ’ 2 ’ 3 ’ 4

s (:;.u.)

Figure 8 Dependence of the free energy on the entropy with satisfaction of
Nernst theorem.

It presents a considerable methodological interest to present
the same theory simultaneously in terms of internal energy and
configurational entropy. In accordance with (5) and (44) the
expressions for the internal energy and its derivatives in this case will
look like this

2

u(s)=fo*—0(T—n)(T—n)s+2b[£] (46)
[04
T 2

=) =-or-n)r-r)r (L
[04

2
u(s) zb[ij , 48)
[04
where
* 0!2 az
Jy = fy+ 50T -T)(T =T )+ 5. (49)

where the dash of variable s is dropped. Here T is a current value
of the temperature, which in the equilibrium state coincides with
T, that, with the temperature of external thermostat. The curves of
the internal energy and current temperature are resulted in Figure
9. With the increase of temperature up to critical a minimum of
the internal energy grows all of time, remaining at a zero value of
the configurational entropy. Here the curves of current temperature
coincide between itself for all temperatures (line 1). Their equilibrium
values at different temperatures however differ between itself and
equal to the temperature of external thermostat. Compare vertical lines
in Figure 9, drawn between the abscissas axis and the straight line of
current temperature in the equilibrium states for temperatures 100,
200 and 300K. At a zero temperature of thermostat the equilibrium
value of current temperature is equal to the zero.

At temperatures higher critical ones the minimum of the internal
energy moves in the negative unphysical area of configurational
entropy values. The curve of current temperature with growth of
temperature of thermostat begins to be evenly moved upwards
along the abscise axis. The equilibrium value of current temperature
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accordingly grows also. Let us evident that the equilibrium value of
current temperature coincides with the temperature of thermostat. We
define the equilibrium value of the configurational entropy from an

obvious condition.
w7y

/

— 4
4
s
7L 7~
é? 200K l

A
; Z
—-_-'_'-—//I
__-—-/
0.5} """

0 ' 1 2 * - * 4
s (a.u.)

u, u(a.u.)

Figure 9 Dependence of the internal energy and its derivatives on the entropy.

3 T\
a{:-e(z;-r)(r-z;)-uzb(;c} 5=0, (50)
from where follows

s :1(“]2[9@ ~T)(T-T,)+T,] (51)
4" 5p T c ¢ ¢

Substituting this value in (47) we get
T,=0(T-T.)(T-T,)+0(T,-T)(T-T,)+T,=T (52)

The analogue of the evolution equation (20) in terms of entropy
then has more natural form

(@)
Os Os

that, the system is evoluated until a current temperature is accepted
the temperature of thermostat. For a heterogeneous problem equation
(31) in terms of configurational entropy it is possible to write down
in a form

2
%:7@ [cAs+2b£§J s}+n(s)

We put this equation in basis for calculation of fluctuations,
arising up at passing of critical temperature of the system (Figure
10). The primary temperature of thermostat got out equal a bit higher
critical 7=300.1K, and goes down slowly. In the vicinity of critical
temperature, predictably, there are intensive long-living fluctuations.
It is interest that in the strictly critical point long-living fluctuations
dies out, and general level of fluctuations go down to the thermal
background. It is related to that distinction between two types of
steady-states in a critical point disappears, and they cannot serve
more by the traps of thermal fluctuations for each other. Therefore
excrescence of fluctuations takes a place not strictly in a critical point,
but in some vicinity of it. Thus, in this paper a theory of the second
order phase transitions is considered from four different positions — in
terms of free and internal energy in language of order parameter, and
also in language of configurational entropy. The indicated variants
cannot simply be taken to each other, and formulation in language of
configurational entropy seems more preferable. Evolution equation in
terms of the internal energy in language of configurational entropy has

(53)

(54)
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clear physical sense, meaning tendency of current temperature of the
system to the temperature of external thermostat. The analysis of long-
living fluctuations, arising up in the vicinity of critical temperature
due to transitions between two types of the states, shows that in the
strictly critical point the level of fluctuations goes down to the average
thermal background.
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Figure 10 Dependence of the internal energy and its derivatives on the
entropy.

Conclusion

In this paper a theory of the second order phase transitions is
considered from four different positions in terms of free and internal
energy in language of order parameter, and also in language of
configurational entropy. The indicated variants cannot simply be taken
to each other, and formulation in language of configurational entropy
seems more preferable. Evolution equation in terms of the internal
energy in language of configurational entropy has clear physical
sense, meaning tendency of current temperature of the system to
the temperature of external thermostat. The analysis of long-living
fluctuations, arising up in the vicinity of critical temperature due to
transitions between two types of the states, shows that in the strictly
critical point the level of fluctuations goes down to the average
thermal background. We mark that theory of PT-2, developed here in
terms of entropy, can enough correctly describe order - disorder phase
transition at transition of Curie point, for example, in a magnetic.
Thus heterogeneous terms in the free and internal energy describe
generation and disappearing of accidental structural fluctuations.
At the same time, within the framework of this theory it is while
problematic to describe structural heterogeneity of the second type,
namely origin of regular antiphase boundaries.?? For solution of this
problem a complication of the model is required by introduction of
additional degree of disorder.
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