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Abbreviations: 1D, one-dimensional; 2D, two-dimensional; 
3D, three-dimensional; MOC, metal oxide compounds; HTSC, high-
temperature superconductivity

Introduction
Atoms and molecules with a reduced dimension can arise in large 

external magnetic fields. The magnetic traps were used by Görlitzet 
al1 in order to transfer sodium atoms to lower dimensional states. 
Transitions of sodium atoms in both two-dimensional (2D) and one-
dimensional (1D) state were realized. Super strong magnetic fields 
can occur in the plasma of the Sun and stars. Therefore, in principle, 
one can observe the spectra of two-dimensional atoms and molecules 
in them. As is well known, on the Sun and Sun-like stars, the atoms 
of hydrogen and Helium lead to a small absorption of light. The main 
absorption provides a negative hydrogenion.2 Metal atoms make a small 
contribution to absorption, since their number is tens of thousands of 
times smaller than those of hydrogen atoms. Such a negative ion is 
formed when a second electron is attached to a hydrogen atom. The 
numerical research of anisotropic characteristics of a two-dimensional 
(2D) hydrogen atom induced by a magnetic field was carried out for 
Koval et al.3 Under terrestrial conditions, Н– ions are unstable due to 
their extremely high chemical activity. A complete analog of the H– in 
semiconductor crystals is the D–center with a negative charge, i.e. a 
shallow hydrogen-like donor center that has captured an additional 
electron. The development of nanotechnologies has led to the 
emergence of new materials, such as two-dimensional monoatomic 
layers of various compositions. Graphene is a well-known example 
of a crystal with a two-dimensional hexagonal lattice in which one 
atom forms each vertex. There are other materials with a structure 

close to graphene.4,5 In such materials, it is possible to observe two-
dimensional analogues of D– centers in three-dimensional 

(3D) systems, as well as neutral two-electron states, similar to the 
He atoms. 

Examples of two-dimensional systems are crystal structures that 
have translational symmetry in only two directions. Two-dimensional 
crystals can be located on the surface of bulk crystals, or on the 
surface of liquid solutions. Conductive layers in cuprate metal oxide 
compounds (MOC), in which high-temperature superconductivity 
(HTSC) was observed, can be considered as two-dimensional 
systems. Two-dimensional crystals have a band structure and can be 
both metals and semiconductors or dielectrics. Variational methods 
are used in the problems of quantum physics and chemistry devoted 
to the calculations of the energy spectrum of atomic and molecular 
systems. The energy functional of two-electron systems for 2D H– 
and 2D He was obtained analytically using a Gaussian basis with 
exponentially correlated multipliers. Variational calculations were 
performed by random search methods and Hook-Jeeves method. The 
reasons why the random search method is preferred for optimization 
problems with a large number of parameters are described in review 
article.6 Hook-Jeeves method was used at the final stage to improve 
the accuracy of variational calculations.7

Basic formulas and relations
1.	 Let’s first look at a single-electron 2D atom. In atomic units (at. 

un.) (m=1, e=1, ħ=1), the Hamiltonian of a two dimensional 
atom with one electron has the form:
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Abstract

Singlet and triplet energy states of the two-dimensional (2D) H– and 2D He ions were 
calculated. А multi parameter system of Gaussian orbitals with exponentially correlated 
multipliers is used. An analog of the H– ion is a two-electron shallow D– center in covalent 
semiconductors. The energy of the lowest triplet term of 2D D– center coincides with the 
bottom of the conduction band, which is a numerical illustration of Hill’s theorem of the 
existence the only bound state for the hydrogen anion. The ground state energies and 
variational parameters for test wave functions are obtained. Useful limiting transition to 
the case of complete screening of the Coulomb repulsion Vee has been investigated. In this 
case, the Hamiltonian 2D H– transforms into a two-dimensional hydrogen-like atom with 
two noninteracting electrons. The distribution of electrons by energy levels is carried out 
according to the Pauli principle. In a singlet state, the energy of such atom corresponds to 
the doubled ground state energy, in triplet one it is the sum of the energies of the ground and 
first excited states of the 2D hydrogen atom. The results are compared with the calculations 
performed by other authors. The energies obtained in the work with the use of Gaussian 
orbitals are the lowest in comparison with the results that have already been calculated by 
other authors for Slater type orbitals. This indicates a high accuracy of calculations with 
using Gaussian orbitals. 
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where, Z is the charge of the nucleus, the subscript 1 is introduced 

to denote a single-electron system, Δ1 – is the Laplace operator in a 
two-dimensional system:
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two-dimensional radius-vector is determined by the expressions:

1 1 1x y= +r i j , 
2 2

1 1 1r x y= +

here i, j – are the directing unit vectors in two-dimensional space.

The trial variational function is selected in the form:	
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where ci , a1i are the variational parameters, a1i >0, 1, .i n=

We introduce simplifying notation for the squared wave function 
(WF):
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Normalization integral is:		
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where 1 1 1d dx dyσ =   is the element of the area in two-dimensional 
space.

Integration is performed in infinite limits in Cartesian coordinates:
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For potential energy we get:         
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The energy of the ground state of a single-electron 2D atom has 
the form:
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2.	 Hamiltonian of two-electron 2D atoms has the form

3.	  1 2
2
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where 12 1 2r = −r r

The variational functions of the singlet and triplet states of two-
electron atoms are chosen in the form:
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where P12 is the operator of permutation of electron coordinates, 
S=0 for the singlet state, S=1 for the triplet state; r1, r2 are the radius 
vectors of the first and second electrons, respectively, ci, a1i, a2i, a3i are 
the variational parameters (a1i, a3i >0).

To simplify the calculations, the automatic WF symmetrization 
procedure is introduced. Always choose even n=2n0. For i > n0 we 
assume:

( )031 nii aa −=
, ( )022 nii aa −=

, ( )013 nii aa −=
.

For singlet states, we assume 
0nii cc −= , for triplet states 

0nii cc −−= .

Taking into account the automatic symmetrization of the WF, we 
omit the factor (1+(–1)sP12) and rewrite the two-electron WF in the 
form:
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We introduce simplifying notation for the squared wave function:
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In order to calculate the potential energy, it is convenient to 
introduce the following Fourier components of the two-electron wave 
function:
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where 12 12 1 2( , )r rΨ ≡ Ψ , yx qq jiq +=  is two-dimensional 
vector.

Calculating the Fourier components in the Cartesian coordinate 
system, we obtain:
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To calculate the integral expressions in potential energy, we use 
the relations:
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Calculating the integrals over the wave vector in the polar 
coordinate system, we obtain for the Coulomb part of the energy 
functional of two-electron systems in 2D space:
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The energy of a two-electron system in 2D space is determined by 

the expression:
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Results of variational calculations
Variation calculations were performed by random search methods 

and the Hook-Jeeves method. For a multiparameter system, the 
method of random search is the most accepted, because it does not 
lead to a long-term hang of the program associated with the search for 

a minimum of other methods. However, to increase the accuracy of 
the calculations, we used both methods. Table shows the results of the 
variational calculations of the energies of the negative 2D hydrogen 
ion and 2D helium atom in the singlet and triplet state. The calculated 
energy values are obtained for 30 independent exponents (n0=30) in 
the WF.4 The zero energy of the triplet term illustrates, that in the 
absence of a magnetic field, the 2D ion H– has a single bound state 
that corresponds to the singlet term just like 3D ion H–.11 For the D– 
center, the energy of the exchange interaction, which can be defined 
as the difference between the energies of the singlet and the lowest 
triplet states, is exactly equal to the energy of the ground state. As can 
be seen from Table 1, for the triplet state of 2D H–, the energy of the 
Coulomb repulsion of electrons tends to zero. With a further increase 

https://doi.org/10.15406/paij.2020.04.00207


Calculation of singlet and triplet energy states of the two-dimensional (2D) H– ion and 2D He atom 110
Copyright:

©2020 Kashirina et al.

Citation: Kashirina NI, Kashуrina YO, Korol OA, et al. Calculation of singlet and triplet energy states of the two-dimensional (2D) H– ion and 2D He atom. 
Phys Astron Int J. 2020;4(3):107‒111. DOI: 10.15406/paij.2020.04.00207

in the number of exponents in the WF (4), this assumption can be 
verified numerically.  We can obtain the useful boundary transitions 
from the two-electron system to the 2D H by equating to zero the 
last term in the Hamiltonian (1), corresponding to the interelectron 
repulsion. After performing variational calculations, we obtain for 
the case Vee = 0 (where Vee is the energy of interelectron interaction): 
in the singlet state, the energy H– is equal to twice the energy of a 
two-dimensional hydrogen atom, which in atomic units is -3.999999. 
In the triplet state, the energy calculated by us is equal to -2.222219 

at. un. The value of the energy of the triplet term obtained by us 
corresponds to the exact value of the total energy of the ground (-2.0 
at. un.) and the first excited state (-0.(2) at. un.) of a 2D hydrogen 
atom.2 This example is a numerical illustration of the Pauli principle. 
Thus, electrons with opposite spins occupy the ground state, and when 
the spins are the same, one of the electrons necessarily passes into the 
next orbital with higher energy. For comparison, we present the value 
of the ground state energy of a two-dimensional hydrogen atom E1=-
0.999995, obtained using the one-electron WF (2) for n = 14.

Table 1 Total energy of singlet (S=0) and triplet (S=1) terms E2 (in at. un.) and various contributions to the energy of a 2D H– (Z=1) and 2D He (Z=2) atoms: 
T is kinetic energy, Eexr is the total energy of electron interaction with the nucleus, Vee is the electron repulsion energy, 3D

eeV  is the energy of the interelectron 
repulsion for 3D atoms

S Z E2 E2 [8] E2 [9] E2 [10] T Eext Vee

3D
eeV

0 1 -2.23938 -2.2338 -1.996 -1.96 2.239764 -5.66106 1.181455 0.3146

1 -1.99998 – – – 1.999978 -4.00139 0.001435 0

0 2 -11.8981 -11.8881 -11.6472 -11.56 11.8978 -27.3029 3.507033 0.9487

11.8904[8] -27.2769[8] 3.4985[8]

1 -8.2816 – -8.22 – 8.2718 -17.029 0.4753 –

Discussion
This research presents an example of variational calculation of 

energies for two-electron atomic systems in two dimensions using 
Gaussian functions with correlation factors. The energy functional 
of two-electron 2D systems is presented in an analytical form and 

can be used to calculate both singlet and triplet terms of two-electron 
atoms with an arbitrary nuclear charge Z. The information about the 
spin state of the system is detected by automatically symmetrized WF 
(5). Singh8 proposed WFs that take into account the cusp conditions 
arising due to the Coulombic nature of external potential and electron–
electron interaction, and the screening effects:

                                    
( )2

2 1 2 12 1 2 1 1 2 2 12, , exp( 2 )exp( 2 ) ( , , ) ( , ),D
Nr r r C Zr Zr f a r r f b rΨ = − −

                                                       (6)

where CN – normalization factor, a, b – variational parameters;

          1 1 2 1 2( , , ) cosh( ) cosh( )f a r r ar ar= +
 

                 2 12 12 12( , ) 1 exp( )f b r r br= + −

WF (6) is one of the variants of Slater orbitals with correlation 
factors.

As shown in Ref.8, these function give the lowest energies 
compared to calculations performed by other authors.9,10 

We obtained the lowest values of the singlet state energy using 
Gaussian orbitals in comparison with the authors of Ref.8–10 Energy 
values of triplet terms are not given in Ref.8,10 Therefore, the Table 
shows only the values of the triplet states energy obtained in this 
research and in Ref.9 The advantage of Gaussian functions is related to 
the ability to reduce the finding of the energy functional minimum to 
the variation of analytic functions with many variables. A large number 
of variational parameters in a Gaussian system are not an obstacle for 
accurate results with using modern computers. Due to the existence of 
analogues of atomic systems with two electrons in condensed matter: 
two-electron centers of large radius in two-dimensional crystals ((bi)
excitons, D– centers), the computation methods described in this 
article can be used to calculate the energy spectrum of such systems. 
Gaussian functions with correlation factors have been successfully 

used for calculations the energies of atomic and molecular systems 
interacting with phonons in three-dimensional crystals.13,14

Conclusion
The variational method based on Gaussian functions was used to 

calculate the energies of singlet and triplet states of two-dimensional 
H– and He atoms. The received energies are the lowest in comparison 
with the ones obtained by other authors. The used method can be 
applied to calculate the energy of singlet and triplet states of the two-
dimensional atoms in a magnetic field. In this case, the triplet state of 
H– becomes stable. In magnetic fields, 2D atoms become anisotropic. 
This circumstance can easily be taken into account by the separation 
of components Gaussian WFs in the directions ОХ and OY. In this 
case, the anisotropy parameter should be introduced in the direction 
of the magnetic field in the 2D plane.
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