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Abbreviations: SNmax, sunspot maxima; Sc55, sunspot 
maxima; VADM, virtual axial dipole moment; G-O, gnevyshev-oh1; 
HCS, heliosphere current sheet; PMC, planetary mass center

Introduction
In earlier papers, we introduced a wavelet-based method for 

analyzing solar activity. To that end we used proxies for the solar 
toroidal and the polar magnetic fields:  viz.  the sunspot numbers  at 
the maxima of successive Schwabe cycles and the geomagnetic 
index  aa  at the minima of these cycles. When these two proxies 
assume simultaneously their ‘Transition values` the Gleissberg cycle 
undergoes sudden increases in amplitude and duration, thus starting 
either a Grand Maximum or a Grand Minimum. In addition to these 
two types of Solar Dynamo Episodes, a third one consisting of a 
succession of weaker quasi-regular oscillations, the Regular Episode, 
is also identified. We also found that the Transition values of the 
proxies of the toroidal and the polar components of the Solar Dynamo 
magnetic field are the signatures of a well-defined Solar Dynamo state 
that we baptized ‘Transition State’. The above approach is further 
developed here with the aim to determine and forecast solar dynamo 
modes of oscillation. The basic material consists of the 7080 years 
long radiocarbon Intcal 98 time series and a 1725 years long Sunspot 
Maxima time series. This last was found from the recently published 
revised system of telescopic sunspot number counting1 extended 
backwards from the year 1704 till 290 by Schove’s Schove2 sunspot 
maxima time series. The latter is for the most part based on naked 
eye observations of sunspot numbers and of auroral frequencies. One 

of the main changes introduced on SNmax (red point on Figure 1) is 
to drop the conventional 0.6 Zürich scale factor that was assumed 
for data prior to the 19th century. Thus the scale of the entire sunspot 
number time series was raised to the level of modern sunspot 
counts. This procedure removed a persisting ambiguity caused by 
the systematically low early sunspot numbers, as compared with all 
modern sunspot counts that were made since the late part of the 19th 
century.

The only prediction of solar activity for considerably more than 
one sunspot cycle in advance is that of Schove2 who predicted values 
for sunspot maxima #19 to #24 (pink open squares in Figure 1). 
His prediction was based on ‘some regularities’ that he found in the 
sunspot maxima time series based on telescopic sunspot observations 
since 1610 and in addition on earlier visual records over the past 
~1400 years and on observations of aurorae. As the Schove2 time 
series is based on the Zürich definition of sunspot numbers, we 
divided them by the factor 0.6 in order to bring their values to the level 
of modern sunspot counting. The same procedure was followed with 
our predictions for sunspot maximum #24.3,4

 (Open circle on Figure 
1). We see in Figure 1 that during the whole time interval for which 
the maximum sunspot numbers per Schwabe cycle, the SNmax data are 
known, the values of sunspot maxima from Sc55 (blue open squares) 
are very near to those inferred from SNmax (red dots), including the six 
that were predicted by Schove2 (Sc55; pink open squares). Also, at the 
end of the Maunder Minimum the Sc55 data overlap well with SNmax. 
Thus, the largest peaks in SNmax have similar values, in contrast to those 
of the traditional version of the sunspot counting system, for which 
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Abstract

We verify that the values and dates of occurrence of sunspot maxima during Schwabe 
sunspot cycles ##19 to 24 as predicted by Derek Justin Schove in 1955 coincide with the 
actually observed ones with a high degree of accuracy. A question arises from this result: 
why is such a deterministic behavior apparent in a system, like the solar dynamo, that is 
in principle stochastic. We find that solar activity related data may be well represented by 
the addition of a constant level and eight modes of oscillation. The repetitive behavior 
and the relationships that appears to exist between these modes, opens the possibility for 
a long-term prediction of solar activity. In that line, we forecast the Gleissberg cycle for 
the forthcoming two centuries and data on sunspot maxima for the next century. Thus, 
we predict the values and dates of occurrence of sunspot maxima ##25 to 35 and find 
that the new Episode of solar activity that started during polar cycle #24, as a follow-up 
of the 20th century Grand Maximum, is of the Regular type and, as the ongoing Hallstatt 
oscillation will pass through zero from negative to positive around the year 2036, it will 
last for the remainder of the present millennium. We also find that modes of oscillations 
are mutually related through a forced non-linear oscillator with a persistent asymmetry. A 
brief discussion of the origin of this behavior on the excitation of solar dynamo motions by 
solar-planetary forces is presented.
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those occurring during the 20th Century Maxima were about twice the 
previous ones. Similarly, the depth of the Maunder Minimum, that 
was in the traditional version twice that of the Dalton one has now, 
in Schove’s time series, a comparable value. This homogeneity in the 
behavior of peaks and valleys is kept in Schove’s time series during 
the last 1725 years, cf. Section 2. By comparing the observed values 
for sunspot maxima (the succession of blue open squares and red 
points in Figure 1) with the values of the envelope (red curve) at their 
respective dates of occurrence we found that each of them differs, 
on the average, by only 4% from that of the envelope (dashed black 
curve in Figure 1). Thus, it appears that once the sunspot maxima 
envelope is being predicted with enough precision, it is possible to 
predict the dates of occurrence of subsequent sunspot maxima with 
an error that is not cumulative. In addition, its values have errors that 
will depend mainly on those in the predicted envelope. This explains 
our successful prediction of sunspot maximum #24 (the open circle 
in Figure 1). We conclude that, in principle, it is possible to predict 
the dates of occurrence and the values of successive sunspot numbers 

from the sunspot maxima envelope once this last is known from 
predictions. On that basis, the two main objectives of the present 
investigation are 

I.	 Finding an appropriate mathematical method for deducing the 
solar dynamo modes of oscillation from the sunspot maxima 
time series and to study the behavior and the mutual relationship 
between them,

II.	 From these properties we predict each of the modes that, 
after having been added to the Transition Level determine the 
envelope. 

In Subsection The transition level, the Gleissberg cycle and 
solar dynamo episodes we apply the dates of Figure 1 to define with 
precision the three kinds of episodes, namely the Grand Minima, the 
Regular Episodes and the Grand Maxima during which solar activity 
evolves.  Finally, in Subsection: The phase diagram and the transition 
point the updated coordinates of the Transition Point are presented.

Figure 1 The red dots represent the succession of maximum sunspot numbers obtained from the revised version of the Zürich sunspot number, SNmax (1705 
to 2014; Clette et al.1; source: WDCSILSO, Royal Astronomical Observatory of Belgium). The violet squares are the sunspot maxima time series determined 
by Schove2 from telescopic observations between 1610 and 1947 and the pink squares are his predictions of the following six successive sunspot maxima 
from his time series that started in 290 (Figure 4). The pink numbers are the Wolf numbers of some of these maxima. The black dashed curve is the ‘Envelope’ 
(definition is given in Subsection 1.1, Table 1) of the sunspot maxima time series, Rmax (Figure 4), composed by the Sc55 and SNmax data as computed by the 
wavelet representation introduced by us.4 The black open circle with the vertical bar is the prediction for sunspot maximum #24 by De Jager et al.3,4 The sunspot 
number 150 is the value of the Transition Rmax level as computed by applying the procedure introduced by Duhau et al.5 to the sunspot maxima time series. 

The transition level, the Gleissberg cycle and solar 
dynamo episodes

By a wavelet-based method we4 found that the sunspot maxima 
envelope (the red curve in Figure 1) can be represented by the 
superposition of a constant that is baptized Transition level, and three 
parts, that we have called Bi-decadal and Semi-secular oscillations 
and the Gleissberg cycle (Figure 2). Here we demonstrate (cf. Section 
4) that the Bi-decadal and the Semi-secular oscillations correspond to 
well defined modes of solar dynamo oscillations. Hence, from now 
on, we will call them ‘modes’. On the other hand, in Subsection 4.3 
we will find that the Bi-decadal mode is the signature of solar activity 
variables of the cyclical inversion of the polar component of the solar 
dynamo magnetic field, a phenomenon that is called `Hale cycle’.7 
From now on we will rename the Bi-decadal mode as Hale mode.

In Figure 2 we observe that the two negative Gleissberg 
oscillations that occurred during the Regular Episode (green curve) 
have noticeably smaller amplitude than the two positive ones. Here 
we find (Subsection 4.2.2) that this feature is related to the fact that 
the solar dynamo system has a persistent asymmetry, such that the 
solar Dynamo modes are oscillating around a constant value that is 
7.2 sunspot numbers above the Transition level. We observe also 
that the Dalton Minimum is due to the synchronicity of a negative 
Gleissberg oscillation of the Regular Type with a strong negative half 
of Semi-secular oscillations (indicated by the blue and pink letters D, 
respectively, on Figure 2). Note that these two halves of oscillations 
have both a duration that is less than a half of the single one that 
leaded to the Maunder Minimum. These explain why there occurred 
eight sunspot maxima below the Transition level during the Maunder 
Minimum and only three during the Dalton Minimum (Figure 1). We 
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observe that at the three Transitions dates the Hale mode (grey curve 
in Figure 2) passes through zero synchronous with the passing by 
the Transition level of the envelope. In the light of the fact that the 

Hale mode is the signature of the Hale cycle (cf. Sub-section 4.3) this 
property is relevant for determining the nature of the Solar Dynamo 
system. 

Figure 2 The three parts in which the envelope of the sunspot maxima time series (dashed black curve in Figure 1) has been decomposed.4 These are the 
Gleissberg cycle (the succession of blue, green and red curve), the Semi-secular (pink curve) and the Bi-decadal (grey curve) oscillations. The black numbers 
along the vertical lines at the bottom are the dates on which the Envelope passed through the 150 sunspot number Transition level (horizontal line in Figure 1) 
and after which the Gleissberg cycle appreciably changes in amplitude and duration, either in synchronicity (red numbers) or a few years later (green numbers) 
so leading to a ‘Phase transition’ from one Solar Dynamo Episode to the next one (the definition is summarized in Sub-section 1.2). The three kinds of Episodes 
that may be observed in the Figure are the Grand Minima, like the Maunder one, (blue curve), the Grand Maxima, like the XX Century one (red curve) and 
the Regular Episodes, like the 1723-1923 one (green curve).5 The D letter marks half of the Gleissberg (blue) and Semi-secular (pink) variations and half of the 
negative oscillations that leaded to the Dalton Minimum (Figure 1). In view of these properties that are found here in the Bi-decadal oscillations (cf. subsection 
4.3) we will from here on refer to them as ‘Hale mode’. 

Summarizing: the toroidal component of the solar dynamo 
magnetic field occasionally undergoes sudden changes of its strength, 
as is seen in its proxy, viz. the sunspot number at maximum Schwabe 
cycle (SNmax; cf. also the successive blue open squares and red dots 
in Figure 1) . In Figure 2 we have illustrated that these changes are 
related to the sudden change in the amplitudes of the Gleissberg 
cycles that occurs after each Transition. As the polar component of 
the dynamo magnetic field is related to the toroidal one through the 
dynamo actions, similar changes occurs in that component too, These 
leads to defining the solar dynamo Transition State as a unique state to 
which the solar dynamo system persistently returns after which a new 
Episode starts5 as is summarized in the next Subsection.

The phase diagram and the transition point 

A proxy for the strength of polar component is the value of the 
geomagnetic index aa at solar Schwabe minimum was introduced 
by Mayaud8 aamin.

9-12 We found De Jager et al.4 that a subsequent 
Episode invariably occurs when the envelopes of the two parameters 
that characterize the two components of the solar magnetic fields, 
viz. SNmax (the red curve on Figure 1) and aamin pass simultaneously 
through the Transition Point. The latter is a fixed point in the phase 
diagram, in which the maximum sunspot numbers (SNmax) are plotted 
against the minimum aa values (aamin). Cf. Figure 3a). Regarding the 
Gleissberg cycle we observe in Figure 3b that only in 1923 this cycle 
passed through the Transition point but in 2006 only the abscissa 
of the Transition point was reached and the Transition ordinate is 
missing. In the first case the dynamo system passed from a Regular to 

a Grand Episode and in the second one the contrary occurs. In actual 
fact, from proxy data from Nagovitsyn13,14 we found that a behavior 
similar to that seen since 1844 in Figure 3B, has recurrently occurred 
since the year 1050 (Figure 6 in Duhau et al.5 Consistent with this 
behavior, we predicted that in 2014, that is a few year later than the 
2006 Transition, a Gleissberg cycle of the Regular type will start.3,4 
This prediction is confirmed from the new data included in the present 
investigation (cf. Sub-section 5.1).

Only the existence of the 1923 and 2006 Phase Transitions may 
be precisely determined from the 162 year long interval included 
in Figure 3. Hence, for determining with precision the date of the 
transition from the Maunder Minimum to the Regular Episode (The 
succession of the green and red curves in Figure 2 & 3) we have to 
take into account that the envelope must add to zero at the dates of 
the three parts into which we have split it after having subtracted the 
transition level. While the three parts pass simultaneously through 
zero during the 1923 transition, that does not happen in 2006, when 
the Hale mode (#1 in Table 1 passed through zero while at the same 
time the Semi-secular (·#2 on Table 1) oscillation and the Gleissberg 
Cycle (definition is given on Table 1) added to zero, Hence, similar 
to the 2006 case, we have selected 1723 as the year in which the 
transition from the Maunder Minimum to the Regular episode 
took place. In previous papers we have based our predictions of 
forthcoming solar activity on the properties of the three parts (Figure 
2) in which we have split the sunspot maximum time series. By now 
it is clear that sunspot maximum #24 is the lowest of the past century. 
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This was already predicted by Schove2 as early as half a century ago, 
by us (open circle in Figure 1) and by several other authors.6 Until 
now we have restricted ourselves to forecasting a sunspot maximum 
for no more than one Schwabe cycle ahead. To be able to predict 
sunspot maxima for a longer period we should know how to forecast 

the character of the Gleissberg cycle because it is the time variation 
of that cycle that is comparable to that of the sunspot maxima time 
variation.4 We will show that such a forecast is possible by splitting 
this cycle in six modes of oscillation and a constant. 

Figure 3 The phase diagram of the envelope (A) and the Gleissberg cycle (B) of the Sunspot numbers at maxima, SNmax (cf. Figure 1 black dashed curve) vs. the 
geomagnetic index at minima , aamin, the latter from Nevanlinna et al.15 and from Lockwood (priv. com 2009), for the periods (in years) 1844-1867 and 1868 to 
2009, respectively. In both panels the numbers along the horizontal and vertical lines are the values of the two transition level components (represented, in the 
case of SNmax by the black horizontal line in Figure 1). Green and red colors refer to the Regular Episode and the Grand Maximum respectively (green and red 
lines in the Gleissberg cycle in Figure 2); the latter starting in 1923. Around 2006 a new episode started that has been described De Jager et al.4,16 and predicted 
by them to be of the Regular type. It is expected that this will last for the remainder of the present millennium, as will be confirmed in this paper. 

Table 1 Data sets, periodicities and solar dynamo modes of oscillations as introduced in this investigation

Primary data sets (time intervals in years) Section Figure

SNmax, Sunspot maxima time series values as obtained from the revised version of telescopic observations of 
sunspot number by Clette et al.1

1 1

Sc55, Sunspot maxima time series obtained by Schove2 from telescopic observation after 1610 and prior to that by 
naked eye observation of sunspots and aurorae (290-1948).

Rmax, found here by extending SNmax from the year 1705 backward till 290 from the Sc55 data (290- 2014) 2 4

Intcall 98 radiocarbon age calibration17 (–5125-1950) 2 5

The periods of the components that, upon addition, define the various modes (as found by assuming in Eq. (3.2) (cf. Sub-
section 3.1) To=2, no=3 and the value of j in the interval mentioned in the table).

 #  Name J  Periods Section Figure

1  Hale  10 to 12  16.5 20.8 26.0 1 2

2  Semi-secular  13 to 16  33.1 41.6 52.5 66.1 1 2

3  Secular  17 to 19  83.3 105.0 132.2 4 14

4  Suess  20 to 22  166.6 209.9 264.5 4 12

5  2-Suess  23 to 25  333.2 419.8 528.9 4 12

6  Eddy  26 to 29  666 840 1058 1332 4 12

7  Hallstatt  30 to 32  1679 2116 2666 4 12

8  2-Hallstatt  33 to 35 3558 4231 5331 4 12

Notions introduced for operative purposes Section Figure

Noise: the addition of wavelet components obtained by introducing J=1 to 9 in Eq. (3.2)

Envelope: The addition of the linear trend to modes ##1 to 8 3 8

Long Trend: the addition of modes ##7 and 8 to the linear trend from which the 150-sunspot Transition level is 
subtracted. 4 13

Gleissberg cycle: The addition of modes ##3 to 8 to the linear trend 1 2
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The Table 1 gives the input data sets that are used or introduced 
in this study and the periods of the Morlet wavelet components that, 
upon addition, determine the eight modes of oscillation that we 
identify from these data. In the last column, we give the numbers 
of the Sections and Figures in which they are mentioned first. Four 
of the eight modes that appear in Table 1 were already identified by 
their signature in the Fourier spectra of solar activity related variables, 
especially cosmogenic isotope data. These are: the Hallstatt, the 
Eddy18 the De Vries19 or Suess20 cycle and the Hale one.21 Also, the 
band of periods that we have split in two sets: the Secular and Semi-
secular ones, is usually called the Gleissberg band. However, we will 
find in this paper that the Gleissberg band has periods that correspond 
to two different modes that we will call the Secular and Semi-secular 
ones. In Section 2 we specify the data that are used in our study. In 
Section 3 we summarize the basic aspects of the mathematical method 
applied by us for analyzing the solar activity variables and we apply 
the results to the development of a procedure for defining the solar 
modes of oscillations from solar activity related variables. In Section 
4 we show that the sunspot maxima time series may be represented 
by the addition of eight modes of oscillation (Table 1) and the 157.2 
sunspot constant. It is based on the regularities and the mutual 
relationships that are presented by the eight modes. We conclude that 
these relationships indicate the existence of a persistent asymmetry in 
the Solar Dynamo System. Following these results we will predict, in 
Section 5, the data for the Gleissberg cycle for the next two centuries 
and the years of sunspot maxima for the next one. These results will 
be summarized in Section 6. 

The data
Telescopic observations of sunspots started in 1610, hence the series 

exists only for slightly more than only 4 centuries. Therefore, these 
data allow one only to determine with precision those modes of which 
the oscillations have a longest average duration that is comparable to 
the Suess time scale (##1 to 4 in Table 1). That situation forced us in 
earlier papers to split the sunspot maxima time series in at most three 
parts, of which two are the Hale and Semi-secular modes, and the third 
is the Gleissberg cycle (Figure 2). This means that in those cases in 
which the research is based solely on the modern SNmax data, it would 
only be possible to forecast a certain sunspot maximum for no more 
than a few years and at most one Schwabe cycle in advance. This is 
so because it is impossible to predict the Gleissberg cycle for a longer 
time interval without knowing the six modes of oscillation of which it 
is composed. We note, in addition that predicting the Gleissberg cycle 
is especially difficult in those circumstances in which a Transition has 
just occurred because in that situation we may meet a strong change 
of its main parameters, especially its amplitude. If the values of the 
abscise and ordinate of the Transition level are indeed constant the 
slope of the linear trend of solar activity variables must go to zero 
when the time series is long enough. As the linear trend is due to the 
contribution of wavelet components with periods that are much longer 
than the duration of the time series itself, we may at this stage wonder 
if, in the case that the time series is long enough, it will be possible 
to represent its time evolution by the sum of a constant and a finite 
number of modes. 

Schove’s Sc55 time series of sunspot maxima overlaps well with 
the revised version of the Zürich sunspot number, SNmax over the more 
than 300 years for which this last is known with precision, including 

Schove’s predicted recent half century (open pink squares in Figure 
1). This indicates that we may safely extend the SNmax series backward 
from 1705 till the year 290 with the aid of the Sc55 series. This situation 
allows us to introduce the time series Rmax (Figure 4), which is the 
1725 years long series of sunspot data that results from this procedure. 
The usual practice22 is to define a Grand Minimum (or Maximum) as 
an episode during which solar activity stays below (or above) some 
low (or high) level during a significant duration. Thus the four Grand 
Minima (from Oort to Maunder) and the Dalton Minimum shown in 
Figure 4 were identified. Regarding the Grand Maxima, initially only 
the Medieval and XX century ones were recorded. For identifying the 
origin of each successive Episode we used the Gleissberg cycle, as is 
shown in Figure 2. This leads to the detection (Figure 16A) of a new 
Grand Maximum, the XV Century one; it occurred during the last 
millennium. We will call it the XV Century Maximum. In Figure 2 we 
observe that the Dalton Minimum is not seen in the Gleissberg cycle. 
Instead, it is a consequence of the synchronicity of half a Gleissberg 
oscillation with a strong semi-secular one, so we classify it as a Short 
Minimum. It consist of a succession of three sunspot maxima that 
are all below the transition level and one of them has a value that 
is smaller than 80 sunspot numbers. Analogously we define a Short 
Maximum (indicates by the red letter S in Figure 4) as a succession of 
three sunspot maxima that are all above the transition level while at 
least one of them is larger than 240. Based on the above we conclude 
that main changes of the qualitative behavior of the solar dynamo 
episodes between the year 290 and present are the following:

I.	 Grand Maxima ( Minima) as well as Short Maxima (Minima) 
started to occur after the year ~1000,

II.	 Prior to ~1000 and after the starting date of the time series, viz. 
the year 290, a long lasting regular episode occurred. 

In Section 4 we will prove that the above change follows the 
change of sign from positive to negative of the Hallstatt oscillation that 
started in 900 (cf. the vertical bar in Figure 4). Evidence that Grand 
Minima occur only when the Hallstatt oscillation has negative values 
was found by Steinhilber et al.23,24 from a study of cosmogenic10 Be 
radionuclide data for the past 9300 years, a period that includes four 
Hallstatt oscillations. We also refer to Figure 10 in Versteegh25 where 
that property can be seen too. De Jager et al.4 have found that the last 
Hallstatt oscillation passed from negative to positive, hence through 
its zero point, virtually at the time of the recent Transition. They thus 
concluded that the Episode that started after the present Transition 
will be of the Regular type and will last for the remainder of the 
present millennium. The dependence of the nature of solar dynamo 
episodes on the sign (positive or negative) of the Hallstatt oscillations 
gives evidence that the shape of the modes of oscillation is related to 
this sign too. This is confirmed ln Section 4 where the eight modes of 
Table 1 are presented.

The slope of the linear trend as computed from the SNmax and 
Rmax time series (in sunspot numbers per century; cf. Figure 1 & 4 
respectively) changes from 1.2 to –0.05. This drastic reduction of two 
order of magnitude of the modulus of the slope of the linear trend, 
while at the same time the length of the time series increases from 
three centuries to about two millennia, indicates that the sunspot 
maxima oscillate around a constant level. In fact, in Section 4 we 
will show that the amplitude of the oscillation of modes ##6 to 8 are 
systematically decreasing with increasing periods. The 2-Hallstatt 
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oscillations as obtained from Rmax have amplitudes whose values are 
barely above the uncertainty of the data (no more than one sunspot 
number). From this we infer that once the eight modes of oscillations 
of Table 1 are accurately determined, the slope of the linear trend will 
becomes negligibly small. Hence, the linear trend will reduce to a 
constant that we will find (cf. Subsection 4.2.2) to be 157.2 sunspot 
numbers. This level differs from that of the transition level by only 
a small constant value, namely 7.2 sunspot numbers. The origin 
and explanation of this small but significant constant is delayed to a 

later investigation. There occurred less than one half of a 2-Halsltatt 
oscillation and less that a full Hallstatt one during the entire Rmax 
time series of Figure 4. So, for determining the relationship between 
shorter period modes and the Hallstatt and 2-Hallstatt modes we turn 
to the cosmogenic isotope data of Figure 5. In the next Section we 
develop the mathematical technique for determining the solar dynamo 
modes of oscillation as seen in their proxies; these being Rmax and the 
Intcal 98 times series presented in Figure 4 & 5, respectively. 

Figure 4 The Rmax time series obtained by backward extension of the revised sunspot number time series of Clette et al.1 (red points). The extension goes back 
to the year 290 by the addition of the open blue squares, i.e. Schove’s2 series. The black horizontal line is the abscissa of the Transition point (sunspot number 
150). The names of the Grand Solar Maxima and Minima that occurred since 290 are given in red and blue characters. The red letter S indicates the occurrence 
of a short maximum (red colors). The green number is the date on which the ongoing Hallstatt oscillation passed through zero from positive to negative values, 
as found here (cf. Figure 12D and Figure13B). 

Figure 5 The INTCAL9814 C cosmogenic isotope data.17 Source: University of Oxford, Radiocarbon Web-Info, at: https://c14.arch.ox.ac.uk/intcal98.14c. This 
calibration series is based on a mix of mid-latitude northern hemisphere records (Germany, Ireland, and those from the states of Washington, Oregon and 
California in the U.S.A.). 
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A signal processing technique for representing 
solar activity variables

Until now solar physicist have been able to forecast the properties 
of sunspot cycle #24 within a few years, approximately only one 
Schwabe cycle, in advance. Many attempts have been made of long-
term forecasting of solar activity based on the most conspicuous 
peaks in the spectra of the related variables, viz. those of about 88, 
200 and 2300 years, the Gleissberg, Suess and Hallstatt ‘cycles’, 
respectively.21 Although they are called ‘cycles’, their physical origin 
has not yet been determined. Moreover, the Fourier periods in their 
spectra change with time.21 For example, the so called Gleissberg 
‘cycle’ covers a wide band with a well detectable double structure: 
one of 50 to 80 years and the other of 90 to 140 years. These are called 
the lower and the upper Gleissberg bands, respectively.26 Of course, 
it is necessary to examine if these two bands are the signatures of the 
same physical phenomenon. That may be far from obvious: merely 
observing the peaks in the spectra does not allow one to determine if 
two period bands in the spectra with neighboring periods are due to 
changes in a unique solar dynamo mode of oscillation, or that they 
are due to two well differentiated physical modes. The only way to 
explain the physics behind the peaks in the spectra is by advancing 
a signal processing technique that can describe its signature in the 
time domain. In our context, such a technique can be described as 
the process of decomposing a signal into a linear combination of 
basic functions. The aim of this decomposition is to properly isolate 
the phenomena that contribute to the behavior of the signal. Several 
properties of the basic functions are required to be able to handle this 
decomposition. 

For instance, usually one function is used as a generator for 
obtaining the other basic functions by applying a combination of 
mathematic operations like translations, modulations, and dilatations. 
This constitutes a reasonable mathematic framework that efficiently 
yields the information needed to re-generate or to synthesize the 
original signal. Furthermore, the generated set of basic functions 
is usually required to constitute what is called an orthogonal base 
of a suitable functional space. This, basically, means that the 
decompositions are stable (meaning that the order of the factors in 
the decomposition does not affect the results), and that the basic 
functions in the decomposition do not overlap or interfere with each 
other. There are many other properties, depending on the technique 
that is applied. In Fourier analysis, the generating function is just 
a harmonic function which provides a representation that has very 
poor localization in time in its decomposition, while the present 
problem is extremely time-localized. Hence, we would not be able 
to obtain compact decomposition with the Fourier technique. Also, 
the underlying - incorrect - assumption is that the original signal is 
periodic, which makes it impossible to decompose it for obtaining 
even a small extrapolation of the original data.

Contrary to what happens with harmonic oscillations, which are 
stationary, the oscillations that compose the sunspot maxima time 
series undergo strong time-dependent changes in amplitude. This 
fact is clear from Figure 2, but it is also obvious in Figure 1,3 & 4. 
On the other hand in wavelet analyses, the generating function is the 
so-called mother wavelet, whose limited spatial support implies that 
the behavior of the function at infinity does not play a role.27 The 
orthogonal basis is generated by translating and scaling the mother 

wavelet, meaning that the decomposition is well time-localized and 
that it has different levels of resolution. Thus, it allows one to isolate the 
underlying physical phenomena in their various levels of resolution. 
To summarize, a signal processing technique based on wavelets opens 
the way for representing in the time domain the variables related to 
nonstationary phenomena, such as those that appear in solar activity.

Summarizing and anticipating: The method for determining 
the solar modes of oscillation that, after addition to the transition 
level, allows one to represent solar activity variables, is developed 
in the next two subsections. In Subsection 3.1 we select the suitable 
mother function and we derive its essential parameters. Based on 
that selection we develop in Subsection 3.2 a method for selecting 
the periods (Table 1) of the wavelet components that, after addition, 
determine the various solar dynamo modes. And in Subsection 3.3 we 
demonstrate that the remarkable time-dependent ‘double structure’ in 
the spectra of the variables related to solar activity are a consequence 
of the time-dependent evolution of the periods and amplitudes of 
the oscillations for each of the solar dynamo modes of oscillation. 
Thereafter, we determine in Subsection 3.4 the dependence of the total 
number of wavelet components on the duration of time series and we 
introduce the concept of ‘edge error’. 

Selection of the mother function

Any signal processing technique is based on a set of functions, 
derived from a unique mother function. The selected mother function 
must be similar to the input fluctuation.28 We describe the essential 
aspects of this ‘similarity’. The occurrence of several conspicuous 
peaks in the Fourier spectra of the sunspot number time series indicates 
the presence of oscillations with well-defined periods. These peaks 
have values that range from years to thousands of years. The wavelets 
that we need for this purpose should be suitable for acting as a mother 
function for which the spectrum.29 consists of one unique symmetrical 
peak, like the succession of peaks that constitute the spectra of the 
sunspot time series. The suitable wavelet that we5 selected for this 
purpose is the Morlet function (𝑡)30,31 
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This leads to the conclusion that (𝑡) is a harmonic function of 
period T that has a Gaussian envelope with a variance .σ The latter 
is related to T by 

                                               

2
T

D
π

σ =                                                        (3.1)

Once that the mother function has been chosen it is necessary 
to determine its basic characteristics by selecting the values of its 
defining parameters. The value of D is chosen equal to 6 in order to 
satisfy the admissibility condition.27 For the set of scales, we may use 
any arbitrary number. It is convenient to write the scales (to which the 
periods are related by Eq. (2.1)) as fractional powers of 2.28 So, we 
may write the set of periods as

0

0
2

j

n

n
T T= , with j = 0, 1,…J, (3.2)

where 
0
,n j and J are integers. J is the total number of components. 

Further

                                          0
2 ,T tδ=                                              (3.3)

where tδ is the distance between two successive data points; it 
must be a constant. Once this parameter is determined, the value of 

0
T is fixed by Eq. (3.3), and hence, only the parameter

0
n  remain to 

be fixed for determining the values nT of the successive periods of 
the components. We have found that a precise representation of solar 
activity variables is obtained when no ≥3 and so we have applied the 
set of components that follows after fixing no=3 for representing 
those time series.6 This procedure allows one to obtain a precise 
representation of solar activity related variables that are at the same 
time the most compact. 

Summarizing, when once the values of tδ are known, the 
parameters that remains to be determined for computing the periods of 
the basic functions from Eqs. (3.1) and (3.2), are 

0
n and J. The latter’s 

value J (see Eq. (3.2)) increases with increasing
0
.n  Hence28 we could, 

at least in principle, introduce a large value for no to warrant the most 
complete picture. However, the spectra of the time series related to 
solar activity contain well defined peaks21 and so we found4 that the 
low value of no=3 suffices for this purpose. In Subsection 3.2 this 
issue will be further discussed in the framework of the application of 
our wavelet-based method to the Rmax time series (Figure 4). The total 
number of components, J, that is needed for accurately representing a 
given time series depends on the length of the time series. This issue 
is discussed in Subsection 3.4. Once the basic functions having been 
selected by fixing the values of To, J and 

0
,n  the signal to be analyzed 

may be represented by summing up the transforms of these functions. 
For brevity, we will call them ‘components’. They are defined as the 
convolution of the signals with each of the basic function.27

Determining solar dynamo modes of oscillations from 
the selected mother function

In this Subsection, we introduce the methods for determining 
the components of the basic function (cf. Subsection 3.1) that, after 

addition, allows one to represent each of the eight solar dynamo 
modes of oscillations listed in Table 1. We also discuss their general 
properties that allow one to describe them as a ‘succession of Wave 
Bursts’. In the previous Subsection, we have selected the Morlet 
wavelet as a suitable mother function for representing solar activity 
variables. The next step is to determine the set of components that, 
when added, lead to a significant signal. With this purpose, we need 
to define the periods and the total number of components that are 
needed for this purpose. An essential aspect is that, for computing 
the various components, the data points must be evenly spaced. As 
the time series of Figure 4 is irregularly spaced we have added annual 
data points by linearly interpolating between successive data points. 
Hence δt =2 yr and so, from Eq. (3.2), To=2 yr. The total number 
of wavelet components, J depends on the value that we assign to no 
in Eq. (4.3). For making our representation more compact we have 
selected a minimum value of this parameter such that it still allows 
for an accurate representation of the time series. We thus fixed no=3.

Once, having selected δt=2 yr and no=3, the periods of the 
components are found from Eq. (3.2). In order that these correctly 
describe the solar dynamo modes of oscillation we must determine 
first the set of components that, after addition, leads to signals that 
have a regular and repetitive behavior. We found that this set follows 
from selecting those components with neighboring periods that are 
in phase during their strongest oscillations, while they gradually lose 
phase as the amplitude of the oscillations decreases. As an example 
of this procedure and of the basic properties of the modes found by 
applying it, we show in Figure 6 the Semi-secular mode (#2 on Table 
1) and its four components as derived from the sunspot number time 
series of Figure 4 in the interval 1483-2014 (top and bottom panel 
in Figure 6, respectively). Figure 6A shows that the amplitudes of 
successive Semi-secular oscillations first increase till they reach 
a maximum value after which they decrease, and that happens in 
such a way that periodically an oscillation with a relative minimum 
amplitude occurs and passes through zero synchronously with the 
passing through zero of a 2-Suess oscillation. This last one is shifted 
ahead by 37 years. This allows one to differentiating unambiguously 
between the three sets of oscillations. In view of its bursting shape we 
baptize them ‘wave bursts’. 

These changes of the average periodicity and of the amplitude of 
the of the oscillation from one wave burst to the next one is seen in 
the spectra as two different peaks. Many attempts have been made21 
of long term forecasting, based on the most conspicuous peaks in 
the spectra of solar activity variables, viz. those of about 88, 200 and 
2400 years, the Gleissberg, Suess and Hallstatt ‘cycles’, respectively. 
Although they are called ‘cycles’, their physical origin has not yet 
been determined. In this connection, we refer to Hoyt et al.30 who 
gave the name ‘cycle mania’ to the practice of labelling ‘cycle’ to any 
peak that appears in the spectra. Moreover, it is known that the Fourier 
periods in their spectra change with time.19 For example, the so called 
Gleissberg ‘cycle’ covers a wide band with a well detectable double 
structure: one of 50 to 80 years and the other of 90 to 140 years. These 
are called the lower and the upper Gleissberg bands, respectively.26 Of 
course, it is necessary to examine if these two bands are the signatures 
of the same mode of oscillation, as in the Semi-secular case or instead, 
if they come from two different modes of oscillation. This objective is 
a topic of the next Sub-section. 
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Figure 6 A) The Semi-secular mode of oscillation in the interval 1483-2014 prior to (blue) and after 1705 (red) and the 2-Suess mode shifted forward by 37 
years. The black numbers, 1 to 3, identify three successive ‘wave bursts’ (definition is given below). B) The four wavelet components that conform the Semi-
secular mode, where those with the longer periods (52.5 and 66.1 year) are differentiated from those with the shorter periods (41.6 and 33.1 year) by their 
pink and violet colors, respectively. The three vertical lines in the two panels mark the dates on which a Semi-secular oscillation, that has the smaller relative 
amplitude as compared with the surrounding ones, changes sign. 

The origin of the double structure in the spectra of 
solar activity variables

Summarizing: in this Subsection, we study the remarkable double 
structure in the power spectra of the sunspot number time series. This 
is done by analyzing the evolution of the wavelet spectra of the two 
successive Semi-secular wave bursts that were lasting from 1483 to 
1858 (numbered 1 and 2 in Figure 5). We find that the two Gleissberg 
bands are the signatures of two different modes. We also find that a 
substantial change of the period from one wave burst to the subsequent 
one occurs not only in the semi-secular band of periods but also within 
the Hale and the secular bands. For computing the wavelet power 
spectra we use here Eq. 8 by Liu et al.33 instead of Eq. (18) of Torrence 
et al.28 that is usually applied, because the spectra computed by this 
last one are distorted or biased in favor of larger periods, a feature 
that leads to the problem of determining the ‘confidence interval’. In 

other words, for a time series comprising two sine waves of the same 
amplitude but of distinct periods, the Torrence and Compo expression 
yields two spectral peaks of different magnitudes, the one with the 
larger period being the strongest. This feature hampers a comparison 
of the peaks over the time range, a problem that is solved by the 
modified expression developed by Liu et al.33 It follows from Eq. (3.1) 
that the number of components increases with increasing value of the 
parameter no. By fixing an extreme value, for which we have chosen 
no=24, the spectra appear as a continuous curve within the resolution 
of Figure 7 (the blue, red and grey curves in that diagram). In relation 
to the above we note that when interpreting the value of the period at 
the peaks of the time series spectra we must consider that, when that 
peak is not strong enough as compared with the two surrounding ones, 
the value of the period at that peak is distorted in the direction of the 
neighboring peak that has the strongest power of the two surrounding 
ones. 

Figure 7 Wavelet spectra for the two successive wave burst numbered 1 and 2 in Figure 6(A) (blue and red curves, respectively), and for the time interval that 
includes the two wave burst (grey). The stars, rhombuses, triangles and squares are at the Hale, Semi-secular, and secular Suess peaks, where the grey dot and 
the open star are at the 2-Suess and Eddy peaks, respectively. The spectra have been computed from equation (8) of Liu et al.33 and normalized to unity at the 
53 sunspot number peak (grey rhombus). 
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Figure 7 shows that an appreciable change of the average period, 
as well as an strong reduction of the maximum amplitude of their 
oscillations occur between the Semi-secular Wave Bursts #2 to #3 
(Figure 6). These changes are seen in their respective spectra (blue 
and red curves in Figure 7) as a reduction of the values of the power 
or the year and of the periods at the corresponding peaks (indicated by 
the blue and red rhombuses in Figure 7). The change in the average 
period at the Semi-secular peaks is also seen in the Hale one (blue 
and red stars). The same does not happen in the spectra that include 
the two successive Semi-Secular wave bursts (grey curve) for which 
only one of the respective pairs are clearly discernable. This is so 
because the weaker ones are masked by the stronger ones, and so their 
signatures appear in the spectrum only as a couple of inflection points. 
Based on only 200 years of available observations, Gleissberg (1944, 
1958)34,35 found a cycle of 88 years in the amplitude variation of 
sunspot numbers. Later-on, two bands of periods, one extending from 
50 to 80 years and the other from 90 to 140 years21 appeared to be 
part of the Gleissberg cycle. However, in Section 4 we will show that 
these two bands (indicated by rhombuses and triangles, respectively, 
in Figure 5) originate from two different modes of oscillation, viz. 
the Semi-secular and the Secular ones (modes # 2 and #3 in Table 
1). Consistently with this finding, we6 have, in previous papers 
included components with periods in the lower Gleissberg band in 
the Semi-secular mode while those from the Upper Gleissberg band 
were included in the Gleissberg cycle. Finally, we emphasize that we 
have discovered a substantial change of the period of the Hale and the 
Semi-secular oscillations from their respective shapes as seen in the 
time domain, which allows one to determine the temporal extension of 
each of the successive wave bursts and hence to compute the spectra 
for the appropriate time span, as shown in Figure 6. Summarizing 
this Sub-section: the substantial changes in maximum amplitude and 
period of the oscillations from one wave burst to the next one, during 
the time of a given solar dynamo mode, prohibits us to forecast the 
period and amplitude of future oscillation just from analyzing them by 
their spectra. But that happens to be one of the common practices36–40 
Instead, we need to clarify the evolution of the periods and amplitudes 
of all of them in the time domain. 

The dependence of the total number of wavelet 
components in the time series and the ‘edge error’

In Subsection 2, we have determined the minimum number of 
wavelet components that, when added, allows one to represent each 
mode. The next step is to determine the total number of components, 
J (cf. Eq. (3.2)) that, after addition to the linear trend, lead to a precise 
representation of the time series that is being analyzed. In the present 
Subsection we study this issue. We find that there is a distortion of the 
single oscillation that occurs at each of the two edges of the time series. 
We baptize this phenomenon ‘edge error’. In order to demonstrate 
the way by which we determine the number of components that, when 
added to the linear trend, allows one to represent the envelope, we 
isolate from the Rmax time series the interval 1664-1863 and compare 
the shape of the modes that are obtained from this 200-year interval, 
that we will call from now on R200, with those found from the whole 
1725 year interval time series, Rmax. The longest modes that are 
discernable from these two time series are the Suess and the Hallstatt 
ones. Hence, in the R200 case, for computing the envelope we must add 
the linear trend to modes ##1 to 4. But for computing the envelope 

from Rmax we must add four additional modes, ##5 to 8 (definitions 
are given in Table 1).

In Figure 8 we compare the four modes that, when added to the 
linear trend, allow one to determine the envelope as found from R200 
with the corresponding signals as computed from Rmax (dashed and full 
curves, respectively in a to d). We observe that there is a discrepancy 
between the values of the curves that represent each of the four modes 
as computed from R200, when compared with the corresponding signal 
as computed from Rmax (dashed and full curves in Figure 8(A–C). It 
appears during a single half oscillation at the two edges of the 200 
years interval. As a consequence, since the periods of the Suess modes 
are of the order of 200 years their values, as computed from R200, 
differ from those computed from Rmax during the whole time interval 
considered. Moreover, the discrepancy is largest in the linear trend 
as much as its slope is reduced by two orders of magnitude (compare 
the full and dashed lines on Figure 8C). On the other hand the values 
of the four modes shown in Figure 8A to 8c are precisely determined 
from Rmax, because the 200 year interval considered is far from the 
two edges of this time series considered in more than half of a Suess 
oscillation and so the four modes in Figure 8 are precisely determined 
from Rmax in the 200 year interval. We call the discrepancy of a given 
mode as computed from R200 as compared with its precise value the 
‘edge error’ , and conclude that for each mode this error extends 
over the two edges of the time series considered during half of their 
respective oscillations. In the next two subsections we introduce the 
methodology by with we will amend the edge error in the eight modes 
of oscillation and predict them by a time interval that depends on the 
particular characteristic of the given modes. 

Defining the long trend for amending the edge errors 
in the Hallstatt and 2-Hallstatt modes

In spite of the strong reduction of the linear trend in Rmax as 
compared with that in the R200 series (dashed and full lines on Figure 
8C), once that the four and the eight modes that constitute each of 
the two time series are added to their respective linear trends, the 
envelopes of these two time series that are thus found (full and dashed 
blue curves on Figure 8D), coincide. This indicates that the linear 
trend of R200 is the signature of modes #5 to #8. In fact, we find that 
the addition of the linear trend and modes # 3 and 4 as computed from 
R200, by one side (dashed curve) and of the linear trend to modes ## 
3 to 8 as computed form Rmax by the other side (full curve) differs 
only in a few spots at the two edges of the 200 year time interval 
(Figure 9). The result shown on Figure 9 indicates that once the two 
largest period modes that may be computed from a time series of a 
given length is added the signal that result after adding to those modes 
the corresponding linear trend differs from the same signal precisely 
determined on only a few spots at the borders of the time interval 
considered, that in the case of Figure 9 is 200 years. Based on this 
property and taking into account that the two largest period modes that 
may be computed from the 1725 years long time are the Hallstatt and 
2-Hallstatt ones we define, for operative purposes, the Long Trend in 
the 1725 year long Rmax as the addition of the linear trend, to which 
the 150 spot transition level has been subtracted, to the Hallstatt and 
2-Hallstatt modes. After assuming that the slope of the linear trend 
become disregardable once the edge error is amended in the Hallstatt 
and2-Hallstat modes, in subsection 4.2.2 we apply the Long Trend to 
amending the edge error in those two modes as computed from Rmax.
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Figure 8 The four modes that may be computed from the 200 year duration R200 time series (A and B), the linear trend (C) and the envelope (D). In D) the 
red curve is the noise, while the full curve and the dots represent the envelope as computed from the 1725 years lasting Rmax data and from the R200, time 
series, respectively. 

Figure 9 The additions to linear trend to the secular and the Suess modes as computed from R200 and that of the linear trend to the secular, Suess, 2-Suess, 
Eddy, Hallstatt and 2-Hallstatt modes as computed from Rmax (full curve). 
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The functions that are applied in correcting the 
edge errors in order to predict the various modes of 
oscillation

For predicting Rmax we must be able to take into account the edge 
errors and to predict each of the eight modes of Table I that, upon 
addition to the linear trend, allow one to determine its envelope. With 
this purpose we introduce the function, F(t): 

         ( ) ( ) ( )( )( )[( ]2 / oF t A t sin T t t tπ ϕ= − +
                        

(4)

               
( ) ( )1,2  oT t T b abs t t= − −                                    

(4.1)

              
( ) ( ) 2

1,2 1 21 / 2  / 2[ ( ) ], ,AA t A exp D Tπ=
                 

 (4.2)

 The suffixes 1 and 2 refer to the values of T, A and TA prior to and 
after to respectively. 

The values of the nine parameters that, once introduced in Eq. 4, 
allow one to simulate a given wave burst are found as follow: 

 to is determined from one of the two data sets:

I.	 Either is it the date on which the strongest oscillation of the 
whole wave burst has passed through zero, in the case that this 
oscillation is nearly symmetric, 

II.	 Or it is the date on which the strongest half oscillation of 
the whole wave burst maximizes. In that case this half of the 
oscillation is very nearly symmetric. 

Once to is determined φ is fixed by the shape of the oscillation to 
which it is included. 

The values of the remaining seven parameters that together with 
to and φ allow one to simulate a given wave burst with the use of 
Eq. (4). These parameters are determined from the following general 
properties that are valid for each of the wave bursts:

I.	 The period T(t) (Eq.4.1) slightly decreases with decreasing 
amplitude, at a constant rate, b . 

II.	 The amplitude, A(t), varies strongly, being well approximated by 
a Gaussian function; cf. Eq. (4.2) where the parameters, TA1,2 are 
both within the range of the periods of the wavelet components 
of the mode to which the wave burst belongs. 

III.	 During each wave burst there are an entire number of half-
oscillations of which the total duration is equal to that of half of 
an oscillation of a mode with longer period, as we have already 
illustrated in the particular case of the Semi-secular wave burst 
(top panel of Figure 6). The exception to this rule is mode #3 for 
which each wave burst lasts, instead, for a full oscillation of a 
longer period mode. 

The procedure by which we apply the above general properties 
for determining the seven parameters in Eq. (4) that together with to 
and φ allows one to simulate a given wave burst is explained below 
by applying that procedure to the Semi-secular wave burst shown 
in Figure 10 ( the succession of blue and red curves). This case is 
the only one for which we know virtually a full wave burst during 
the time interval for which telescopic observations of solar activity 
are available. Note that the duration of the Semi secular wave burst 
(Figure 10A) is equal to the duration of a half a Suess oscillation 
shifted forward by 37 years (Figure 10B). After selecting to=1770, 
φ=0 from the shape of the given wave burst we introduces a iterative 
procedure that consists of two steps: 

I.	 We start by fixing in Eq. (4): A(t ≡A1,2=54.8 , 62.5 and assigning , 
in Eq. (4.1), the initial values b=0 and T1,2=54,56. These last are 
twice the durations of each of the two half oscillations that are 
going on around to. After that, we increase b and change A1,2 and 
T1,2 till the successive oscillations pass through zero as much as 
possible to coincide with the observed ones. We find b=3 year / 
century, A1,2=58, 59. and T1,2=54.8, 59.0

II.	 Assign in Eq. (4.2) the initial value of TA1,2=60, that is the value of 
the largest period among those of the wavelet components of the 
Semi secular mode (cf. Table 1). After that, decrease TA1,2 till the 
simulated values of the successive oscillation coincide as much 
as possible with the observed ones (black curve in Figure 9). We 
find TA1,2=40, 62.

Figure 10 A) A Semi-secular wave burst (#2 In Table 1) (blue and red colored curves prior to and after 1705, respectively, where the red number marks the 
date on which the strongest oscillation of the whole wave burst passes through zero (to in Eq. 4), and the black curve is its simulation by Eq. 4 with b=0.03 year/
century, φ=0, A1,2=54.7, 59.0, T1,2=54, 56 TA1,2=40, 62. B) An isolated half of a 2-Suess oscillation shifted forward by 37 years, where the dashed yellow curve is 
their simulations by a harmonic function ( cf. Eq. 5) with to =1664, φ=3/2𝜋, T=388 and A=16.4. The black vertical lines in the two panels are at the successive 
dates on which the 2-Suess oscillation passes through zero, reach their maximum values, to pass thereafter through zero again. 
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We notice that during these wave burst the dates on which the 
observed and simulated curves pass through zero differ at most by 
one year and, after 1705 when the observations became more precise,1 
the values of the simulated oscillations differ by at most one sunspot 
number from the actual ones. We cannot apply Eq. (4) for simulating 
the ongoing half oscillation of modes #7 and #8 because their 
respective periods are larger than the duration of Rmax. So we have 
simulated them by harmonic functions.

           ( ) ( )      2[ /  ) ,( ] oF t A sin T t tπ ϕ= − +
                    

 (5)

where A and T are the amplitude and period of the harmonic 
function; to is the date on which the given half of oscillation started and 
φ depends on the sign of the considered half oscillation. In Figure 10B 

we exemplify the accuracy by which Eq. (5) allows one to simulate 
the considered half of the oscillation by applying it to one half of 
the 2-Suess function. This is the mode with the largest periodicity 
for which we know half of the oscillation that occurs during the time 
interval for which telescopic observations of sunspots are available. 
We find that the simulated curve (yellow dashed curve) differs from 
the actual one (grey curve) by at most 0.05 sunspot number. This small 
difference between the two curves is indistinguishable in the Figure. In 
the next subsection we present the eight modes of oscillation that are 
derived from Rmax by the methodology introduced in Subsections 3.1 
to 3.3. Thereafter, based on their properties and mutual relationships, 
we select the respective sets of parameters that, once being introduced 
in Eq.( 4) or Eq. (5), allow one to correct their respective edge errors 
and to predict them. The results are summarized in Table 2. 

Table 2 The values of the parameters that, once introduced in F(t) (cf. Eq. 4), allows one to apply them to correct the edge error and to predict a given mode 
together with the time interval, in years, during which each of the sets are applied. Ti , TA and to are given in years, Ao in sunspot numbers and b in years /century 
. In the cases in which only half of an oscillation is predicted the corresponding simulation is made by applying Eq. (5), and then the values of TA and b are not 
necessary. The results are shown in Figure 13 & 14 in Section 4.2

Mode  Parameters of Eq. 4 Interval

T TA A φ to b

2-Hallstatt 4600 ------ 2.5 3𝜋/2 410 ---- 410-2710

Hallstatt 2272 ------ 5 3𝜋/2 900 ---- 900-2036

Eddy 1000 600 12 𝜋 1518 3 410-2710

2-Suess 400 460 16.3 3𝜋/2 1627 3 1722-2210

336 ------ 5 0 2210 --- 2210-2376

Suess 210 330 42.1 0 1512 3 1930-2036

210 ----- 9 ---- 2036 ---- 2036-2236

Secular 114 110 50 𝜋 1857 -3 1990-2046

93 130 30 0 2240 -3 2046-2352

47 76 20 0 1968 3 1968-2050

55 70 40 0

Semi-secular 2150 3 2050-2230

67 70 37 0

27 ------ 7 0 2006 2006-2020

 Hale 22.2 40 19 0

22.2 40 19 0 2070 0 2020-2130

 The properties of the eight modes of oscillation that 
constitute solar activity and their prediction

Summarizing: In this Section we apply the methodology introduced 
in Section 3 for determining the modes of Solar Dynamo oscillations 
as observed in the data of Section 2. Based on the results described 
therein we predict them for an appropriately selected time interval. 
We start in Subsection 4.1 by summarizing the physical nature of the 
Intcal 98, the SNmax data and Schoves’s data. In subsection 4.2, the 
relationships between modes ##5 to 8 as observed from the Intcal 98 
data are determined. In Subsection 4.3 we correct for the respective 
edge errors and predict the eight modes of oscillation from their 
observed shapes. It is also found that once the edge error is determined 

in the linear trend, it appear to be well represented by a constant, 
having the value of sunspot number 157.2. Finally, in Subsection 4.3 
we predict the Hale mode and the Noise from a relationship that we 
found between them. 

On the physical meaning of the data 

Usoskin et al.41 have shown that the cosmogenic isotope 14C data 
are driven by the solar signal on timescales from about 100 years up 
to 1000 years and occasionally even on multi-millennial scales. The 
cosmogenic particle flux is modulated by the solar wind, of which 
the intensity depends on the dipolar component of the polar magnetic 
field and so the Intcal 98 data (Figure 5) are a proxy for the strength of 
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this component, as is aamin. On the other hand SNmax (red point on Fig. 
4) is a proxy for the strength of the toroidal component, while prior to 
1610, Schove’s (1955)2 time series (blue points in Figure 4) is based 
not only on bare eye observations of sunspots but also on aurorae. 
The latter are driven by solar storms. A proxy for these is the Sudden 
Commencement index introduced by Mayaud8 It was found42 that the 
Gleissberg cycle as determined from aamin and from the Mayaud index 
time series are qualitatively the same. 

In Figure 11 we compare the spectra of the Intcal 98 and the Rmax 
time series. Five of the six modes that compose the Gleissberg cycle 
are not only apparent in the Rmax spectrum (red stars) but also in the 
Intcal 98 one (black points). Moreover, the Suess, 2-Suess and Eddy 
peaks have the same periods in the two spectra. The origin of the 

difference between the periods of the 2-Hallstatt and Hallstatt peaks is 
basically due to the different time span covered by each of the involved 
time series, as will be demonstrated in Section 4. So the Intcal98 time 
series allows one to determine with precision the evolution of the 
periodicity of the five modes with the largest periodicity that compose 
the solar activity related time series. We note that the power of the 
spectrum of the Rmax time series decreases fast for periods above the 
Suess one. The same does not happen with the Intcal 98 time series, 
because the relative strength of the modes as computed from Rmax on 
one side and Intcal 98 on the other are not the same. They are strongly 
amplified in Intcal 98, contrary to Rmax. Based on the above results we 
use in the next subsection the Intcal 98 data for a qualitative study of 
the mutual relationship between modes ##5 to 8, while for modes ## 
1to 4 these relationships are found from the Rmax data. 

Figure 11 The spectra of the Intcal 98 (black) and the Rmax (red) time series normalized to unity at the Suess peak, where the black points and red stars mark 
the years of their respective peaks and the numbers of the same colors near these peaks are the values of the corresponding periods.
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Prediction of the eight modes of oscillation that 
constitute solar activity 

Summarizing: In Subsection 4.2.1 we will use the Intcal 98 
time series for determining the relationship between the 2-Hallstatt, 
Hallstatt, Eddy, 2-Suess and Sues modes. Based on these results we 
determine in Subsection 4.2.2 the edge errors in the 2-Hallstatt and 
Hallstatt oscillations and in the linear trend as found from Rmax. In 
Subsection 4.2.3 the Eddy, the 2-Suess, the Suess the Secular, the 
Semi-secular and the Hale modes are determined from the Rmax time 
series. Data on their shapes and mutual relationships allow one to 
predict each of them. As may be expected, in view of the physical 
origin of the applied data, we find that the irregularity in the shapes 
of the modes prior to 1610 increases with decreasing periods of 
the relevant modes. Fortunately, the Eddy and the 2-Suess and 
Suess modes have a regular behavior during the whole 1725 year 
interval covered by the Rmax time series; and the time elapsed since 
telescopic observation of sunspots started, appears to be sufficient 
for determining the shapes of the Suess, Secular, Semi secular and 
Hale modes. Finally from a relationship that we find to exist between 
the Hale mode and the Noise, this last is predicted all this assures an 
accurate prediction of the eight modes of oscillation and the Noise to 
which the earlier defined constant value of 157.2 should be added, for 
a safe prediction of the sunspot maxima envelope. 

The relationship between the 2-Halsltatt, Hallstatt, 
Eddy, 2-Suess and Suess modes 

In Figure 12 we present modes ## 4 to 8 as determined from the 
Intcal 98 time series. Next to the open magnetic flux of the Sun, 

cosmogenic isotope rays are also shielded by the geomagnetic field41 
so, in order to determine to what extend this field has impacted on the 
Intcal 98 time series we have to resort to the observations of the virtual 
axial dipole moment (VADM) of the geomagnetic field (the violet 
curve in Figure 12A) We note that at the starting and ending dates 
of the Intcal 98 time series VADM has the same value which proves 
that the increases of the amplitude of the 2-Hallstatt and Hallstatt 
oscillations (cf. green and brown curves in Figure 12) is a real fact 
during the last seven millennia. We observe that the duration of the 
two full Hallstatt oscillations, of which the starting and ending dates 
are indicated by the vertical green bars in Figure 12B, has decreased 
with time in 240 years. Hence, if this behavior would continue till 
~2220 during the duration of the Hallstatt oscillation that started in 
900, we may predict that the duration of the half Hallstatt oscillation 
that started in 900 will be ~1110 years. On the other hand, each of half 
of the 2-Hallstatt oscillations is successively passing through zero and 
reaches its maximum synchronously with each successive half of a 
Hallstatt oscillation, and so the period of the 2-Hallstatt oscillation 
is equal to twice the Hallstatt period. From the above we conclude 
that the 2-Halsstatt mode is the first subharmonic of the Hallstatt one, 
of which the respective oscillations have periods that decrease with 
increasing amplitude. And so, as the amplitude of both modes has 
steadily increased during the last seven millennia, the periods have 
been steadily decreasing synchronously. 

Consequently the amplitudes of the ongoing 2-Halsltatt and 
Hallstatt oscillations are the strongest of the last seven millennia. The 
fact that that the amplitudes of the successive half Hallstatt oscillations 
as well as of the 2-Hallstatt modes have increased during the last 7 
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millennia indicates that, as it happen with the Semi-secular mode (cf. 
upper panel on Figure 6), these two modes have also a wave-bursting 
nature. The duration of each Eddy wave-burst (black curve in b) is 
related to that of each half of the corresponding 2-Hallstatt oscillation 
(brown curve in b), while the maximum amplitude of each of its 
successive wave-bursts is noticeably stronger when the sign of the 
2-Hallstatt oscillation is negative than when it is positive. A similar 
relationship is found between the shapes of each Suess Wave-burst 
and each half of the Hallstatt oscillation (d), and also between this last 

one, shifted forward by 174 years, and each 2-Suess wave-burst (c). 
We also see that the starting dates, viz. 410 and 900 of the ongoing 
2-Hallstatt and Hallstatt oscillations as determined by the Intcal 98 
data (green and brown b and d), coincide with a high level of precision 
with the starting dates of the ongoing Eddy and Suess wave-packets as 
seen in Rmax (in panels b and d) . This allows one to predict with some 
precision the 2-Halsltatt and Hallstatt ongoing oscillation on one side 
and the Eddy, 2-Suess and Suess modes on the other. These matters 
will be discussed in Subsections 4.2.2 and 4.2.3, respectively. 

Figure 12 The VADM (violet curve) (from Table 1 in Genevey et al43 and the 2-Hallstatt and Hallstatt oscillation (A). The other panels show the relationship 
between the Eddy Wave-burst with each half of 2-Hallstatt oscillations (B) and of the 2-Suess (C) and Suess (D) wave-bursts with each half of successive Hallstatt 
oscillations. The numbers along the vertical bars are the starting dates of the corresponding 2-Halsltatt oscillations (brown numbers in a and b) and of the 
Hallstatt oscillations (green numbers in a and D). This last one has been shifted forward by 174 years (green numbers in C). 
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The Long trend and the prediction of the ongoing 
2-Hallstatt and Hallstatt oscillations

The ongoing 2-Hallstatt and Hallstatt oscillations, as computed 
from the 1725 years long Rmax time series, may be severely distorted by 
the edge error because their periods are longer than the duration of the 
time series itself. To solve that problem we compute the Long trend 
defined as the addition of the 2-Hallstatt and Hallstatt oscillations 
to the linear trend (Table 1). The method by which we simulate the 
Long Trend and predict it is presented below. The results are shown 
in Figure 13. The starting assumption is that once the edge errors on 
the Long Trend are determined, the slope of the linear trend reduces 
to zero. In addition, each single half of the oscillation of a given mode 

is known to be well represented by a harmonic function (Figure 10B). 
As a consequence we may simulate the Long Trend by the addition of 
a constant, C to two harmonic functions. With this purpose we need 
(cf. Eq. 5) to know the values of the parameters φ, to, T and, A (Table 
2) that are essential for the respective ongoing half oscillations. The 
values of φ and to are known from the results shown in Figure12A; 
the respective periods are equal to twice the duration of the Eddy and 
Suess ongoing wave bursts (Figure 14A &14C in subsection 4.2.3) 
and, finally, the amplitudes of the two harmonic function and the 
constant C are found by selecting those that leads to the best fitting of 
the simulated curve to the one obtained from the Rmax time series (full 
and dashed curves in Figure 13, respectively). 

Figure 13 A) The Long and the linear trends and (B) the Hallstatt and 2-Hallstatt oscillations as computed from Rmax, prior to and after having corrected them 
for their respective edge errors (dashed and solid curves, respectively). The latter have been predicted by the procedure outlined above. In (B) the numbers at 
the vertical bars are the dates on which the 2-Hallstatt (brown) and Hallstatt (green) oscillations passed through zero and were predicted to be passing through 
zero again, respectively. 
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Figure 14 The Eddy, the 2-Suess, the Suess, the Secular, the Semi-secular and the Hale modes as determined from Rmax, where the blue, red and black colors 
differentiate between the values of the respective modes of Rmax (Figure 4) before and after 1610, and between those computed either by Eqs. (4) or (5) with 
the parameters of Table 2. The numbers attached to the vertical bars in (A), (C) and (B) are the years in which the half of the ongoing 2-Hallstattt and Hallstatt 
oscillations (the last one shifted forward by 174 years) respectively passed through zero or are predicted to pass through zero again. In panels (D) and (E) 
the 2-Suess Wave-bursts are shifted forward by 130 and 37 years, respectively. In panels (D) to (F) the numbers at the right indicate the ending dates of the 
respective predictions. In panels (B) to (F) the dashed and solid curves of the same colors and these curves from there onward are the corresponding signals 
multiplied by the amplification factor (Table 3). This is done differently, depending on the sign of the succeeding half of the oscillation. 

Note that the edge errors of the Long Trend (blue curve in Figure 
13A) and in half of the ongoing 2-Hallstatt and Hallstatt oscillations 
(brown and green curves in Figure 13B) occur at the two edges of 
the respective signals, covering a time interval of the order of half an 
Eddy oscillation, as it must be according to our analyzes of the edge 
errors presented in Subsection 4.3. As estimated from the Intcal98 
time series the Hallstatt oscillation that started in the year 900 will 
have a duration of 1100 years, a value that differs by only 0.2%. 
From the predicted 1136 year duration as found from the Rmax data. 
As regards the predicted duration of half of the 2-Hallstatt oscillation, 
this being 2300 year, this value allows one to estimate its period to 
be ~4600 years. This value is very near to twice that of the Hallstatt 
oscillation, as it must be because we know from the Intcal98 time 
series that the 2-Hallstatt oscillation is the first sub-harmonic of the 
Hallstatt one. All this give support to the methodology that is applied 
on Subsection 4.2.3 Figure 14 (A,B) for predicting the durations of 
the Suess and Eddy wave bursts that are synchronic with half of the 
ongoing 2-Hallstatt and Hallstatt oscillations.

A prediction of the Eddy, 2-suess, suess, secular, semi-
secular and hale modes 

In Figure 14 we present the six modes that, when added to the 
2-Hallstat and Hallstatt ones (Figure 13B) together with the 157 
sunspot number constant allows for a determination of the sunspot 
maxima envelope. We observe that, with the exception of the 
Hale mode, the duration and maximum amplitude reached by the 

oscillations during each of the successive wave bursts Figure 14(A–
D) is related to each half of an oscillation with a longer period. With 
regard to the Hale mode (Figure 13C) the duration of each successive 
wave burst is related to the duration of each successive half of a Suess 
oscillation, but the maximum amplitude reached for each of them is 
instead related to the amplitude and sign of the Eddy oscillations, 
respectively. Hence, in the above relationships that exist between 
the eight modes there is sufficient information to straightforwardly 
determine the parameters of Eq. (4) (Table 2). This enables one to 
simulate the durations of the Eddy (a), the 2-Suess (b), Suess (c), the 
Secular, (d) and Semi-secular (e) wave bursts. The ongoing Suess 
and 2-Suess wave bursts are expected to end in 2036 and 2210, 
respectively. Hence, to obtain values for these predictions for a longer 
time span we add one and a half oscillation to it. These are represented 
by two harmonic functions with periods and amplitudes that are equal 
to the respective averages as seen in the oscillations that were going 
on during the previous positive phase of the 2-Hallstatt and Hallstatt 
oscillations, respectively. The results are summarized in Table 3. 

The six modes listed in Table 3, are those for which we have 
enough information to enable their determination from the number of 
oscillations during each wave burst as a function of the sign of half 
the oscillation. We found that this number is larger when the sign is 
positive than when it is negative. Hence, the average period of the 
successive oscillations during a given wave burst changes from one 
wave burst to the next, being smaller when this sign is positive that 
when it is negative, as is exemplified in Figure 6 & 7.

https://doi.org/10.15406/paij.2020.04.00201


Solar dynamo modes of oscillations and the long-term prediction of solar activity 51
Copyright:

©2020 Duhau et al.

Citation: Duhau S, Jager C. Solar dynamo modes of oscillations and the long-term prediction of solar activity. Phys Astron Int J. 2020;4(1):34‒58. 
DOI: 10.15406/paij.2020.04.00201

Table 3 The properties on which the predictions of the Eddy, 2-Suess, Suess, Secular and Semi secular wave- bursts are based. Here, the Amplification factor is 
defined as the quotient between the maximum amplitude reached during each wave burst and the amplitude of half the oscillation that determines the number 
of oscillations in each of them. In the Hale case the maximum amplitude reached by the oscillations is not determined by half of the Suess oscillation that 
determines its duration, but by the Eddy oscillation, as indicated to the right side of the respective amplification factors.

Wave burst  Half  of oscillation Number of oscillations Amplification

Negative Positive Negative Positive

 Eddy  2-Hallstatt 2.5 3 3 ----

 2-Suess  Hallstatt 3 3.5 3.4 1.5

 Suess  Hallstatt 5.5 6.5 8.5 3

 Secular  2-Suess 1.75 1.75 3 1

 Semi secular  2-Suess 3 4 3.7 2

 Hale  Suess 4.5 5 1.0 (Eddy) 3.0 ( Eddy)

The properties of the Hale mode 

As summarized by Mursula et al44 an empirical Gnevyshev-Oh1 
(G-O) rule45 demands that sunspot cycles occur in odd-even pairs 
so that the intensity of the odd cycle of a pair exceeds that of the 
preceding even cycle. However, the G-O rule in the Wolf sunspot 
series is only valid since solar cycle #10 and fails for cycle pairs ##4-5 
and ##8-9.45–47 In Figure 15 we have plotted the SNmax Hale mode and 
the addition to it of the Noise full and dashed curves). For predicting 
the Noise (black dashed curve) we have taken into account that its 
value at the date of occurrence of each Sunspot Maximum is at most 
equal to 50% of the value of the Hale oscillations at their successive 

relative maxima and minima. Notoriously, since sunspot maximum 
#10 the dates on which successive Sunspot Maxima occur (points on 
Figure 1) coincide with those (points on Figure 15) on which each 
half of a successive Hale oscillation reaches its maximum amplitude , 
apart from the case of sunspot maximum #9 which is at an inflection 
point. As a result the G-O rule leads to pairs of relative maxima and 
minima of the Hale oscillations occurring in synchronicity of each 
sunspot maximum odd- even pair ; this being a rule that is violated 
by the pairs ##4-5 and ##8-9. This proves that the odd-even rule is 
determined by the shape of the Hale mode, and so this mode is the 
signature of the sunspot maxima time series of the Hale cycle. 

Figure 15 The Hale mode in the interval 1705 to 2014 (the succession of green and red curves as in Figure 2) and its prediction till 2130 (black curve). The 
dashed curves result from the addition of the Noise to the Hale mode. The succession of green, red and black points are at the dates on which each successive 
sunspot maximum occurs. The red and the green numbers at the vertical bars indicate the dates of occurrence of the last two transitions (Figure 2). The violet 
numbers are at the dates on which some of the odd-even sunspot maxima pairs violated the G-O rule prior to sunspot maximum #10 and the green -red and 
red-green pairs indicates those that occurred around the 1923 and 2006 transitions (Figure 2). 
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As stated by Nagovitsyn et al.48 the G-O rule has been found to hold 
not only for statistical indices of solar activity but also in the context 
of the physical parameters of the solar magnetic field: the sunspot 
magnetic flux and the open magnetic flux. We have established that the 
hypothesis of Usoskin et al.49 about the ‘loss’ of one cycle at the end of 
the 18th century allows the Gnevyshev-Ohl rule, which regulates the 
behavior of physical parameters of the solar magnetic field, to have a 
broader context, being valid without any exception during the last 400 
years. Thus, in actual fact, we can talk about the Gnevyshev-Ohl law 
of the long-term dynamics of the solar magnetic field, this being a law 
that holds for both normal and extreme levels of solar activity. Indeed, 
the last 400 years interval contains the earlier described three kind of 
possible Episodes that may be due to the solar dynamo in the course 
of time. Hence we conclude that the G-O rule is due to some intrinsic 
feature on the solar dynamo system. 

To continue the understanding the evolution of the Hale mode in 
Figure 16 we show this mode in aamin and in SNmax as functions of 
time during the interval when aamin is known, (Figure 16A), its phase 
diagram (Figure 16B), and together with it the sunspot maxima in 
the neighborhood of the 1923 Transition (Figure 16C). Similarly to 
what happens with the SNmax mode for which, after sunspot maximum 
#10, each half of Hale oscillation reaches its maximum value in 
synchronicity with each sunspot maximum (the succession of green 

and red points in Figure 15 & 16A) and a similar behavior is followed 
by the Hale mode on aamin. We observe that, when approaching the 
1923 Transition date, the path in the Phase diagram of the Hale 
mode (Figure 17B) changed suddenly its direction, to become nearly 
vertical around this date, This indicates that the appreciable change 
that is seen in the path of the Grand XX century Maximum (red curve) 
as compared with that during the previous Regular Episode (green 
curve) is due to some particular phenomena that is occurring during 
the Hale cycle that separates these two Episodes. It is highly relevant 
that the odd-even rule is fulfilled at the pair #15-16 by SNmax , but 
violated by the aamin one (Figure 16C). This is due to the fact that 
the amplitude of the Hale full oscillation of aamin that was relevant 
around 1923 appears to have no relation to that of SNmax, which has a 
substantial amplitude. From this we infer that there is some component 
of the polar field that is not detected by the Earth’s magnetosphere but 
is strong enough around the 1923 Transition to lead by itself to the 
G-O rule to be fulfilled in the toroidal one. From all the above we 
speculate that the Earth’s magnetosphere is sufficiently far from the 
Sun to ensure that only the dipolar component of the polar field is 
leading to geomagnetic activity. At the same time there must be other 
components of the solar dynamo polar field that are contributing to the 
polar component, such that they are quite relevant for the fulfillment 
of the G-O rule in the polar field. 

Figure 16 A) The SNmax and aamin Hale modes (the succession of green and red curves, and the blue curve, respectively); B) their phase diagram and C) SNmax 
and aamin after having subtracted their respective 9.8 nT and 1500 sunspot numbers. Transition level values (circles and stars, respectively) apply to the interval 
1890-1958, together with the Hale mode of these two variables. In A) the points and stars mark the values of the two signals at the dates of occurrence of the 
successive maximum amplitudes. In the three panels the numbers refer to the odd-even pairs that occurred round the 1923 Transition. 

The above assumption finds support in the observations of 
heliospheric observations at 2.5 solar radii, where spacecraft 
observations during the sunspot minimum #20 (1965-1966) indicate 
that there is a north south asymmetric in the heliospheric magnetic 
field and that the heliosphere current sheet (HCS) is inclined with 
respect to the solar equator. This suggests the existence of a quadrupole 
component on the solar magnetic field.50 Moreover according to 
Mursula et al.44 a multipole expansion of the HCS reveals a strong 
quadrupole term which is oppositely directed to the dipole term, which 
implies that the Sun has a symmetric quadrupole dynamo mode that 
oscillates in phase with the dominant dipole mode. Based on all the 
above we conclude that the evolution of solar activity is affected by 
the development of the relative phase between the dipolar component 

of the polar field with respect to the remaining components of the 
polar field , and also by its relative strength. Heliospheric observations 
of the solar magnetic flux are very relevant for disentangling this 
possible relationship. 

The long term prediction of solar activity

Summarizing: In subsection 5.1 we will study the origin of the 
relationship that exists between the signs of each half of the Hallstatt 
oscillations and the nature of the corresponding solar dynamo episodes 
as well the origin of Short Minima and Maxima. From the results 
thus found we will make a qualitative prediction of solar activity till 
~2200, which is the year in which the Hallstatt cycle is predicted to 
pass from negative to positive values. In subsection 5.2 we predict 
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the date of occurrence and the values of sunspot maxima ##25 to 35. 
Finally, in subsection 5.3 we discuss how the Hallstatt oscillation, to 
which all the other modes are directly or indirectly related, may be 
excited by planetary motions, as was suggested first by Charvátova51 
(for a review and more recent advances of the subject see Scafetta, 
2016).52

A prediction of the nature of solar dynamo Episodes 
till the end of the third Millennium

Long term prediction of solar activity is only possible if the 
properties of solar modes of oscillation continue in the course of time 
and when their behavior during each of their respective Wave-Burst 
is regular. The results of Sections 4.1 and 4.2 (Figure 12 & 14) show 
that such is the case for modes whose periods are at and above the 
Suess one. The same happens with the Secular mode (Figure 14D) for 
data since 1610, this being the date after which Rmax is based solely 
on telescopic observation of sunspots. As Rmax data prior to 1610 are 
mainly based on auroral frequencies and visual observations of large 
sunspots the apparent irregular behavior of the Secular mode is due to 
the discrepancy of the same mode as seen in each of the two variables 
from which Rmax is built up. 0n basis of the above, a long term 
prediction of the Gleissberg mode is, at least in principle, possible. 
However, from the two time series on which our study is based (Figure 
4 & 5), we don’t have enough information on the amplitude of half 
the Hallstatt oscillation that is expected to start in 2036 (cf. full green 

cure on Figure 13B). Consequently, as the behavior of all the modes 
ultimately depends on that of the Hallstatt mode, our prediction of 
the Gleissberg cycle can only be precise till 2036. After that it is only 
qualitative. 

As summarized by Usoskin22 Grand minima tend to appear in 
clusters with roughly 2400 years separation (the Hallstatt cycle, see 
e.g., Damon et al.53 Within the clusters, the Grand minima appear 
with roughly a 210-year quasi-periodicity.19,20 We know (Figure 2) 
that Grand Maxima (or Minima) appear in the Gleissberg cycle as 
a strong and negative (or positive) oscillation with a duration that is 
nearly twice the one that corresponds to that of the Regular Episodes 
( the sequence of blue, green and red curves in Figure 1). The origin 
of this behavior, illustrated in Figure 17, is explained below. From 
the six modes that constitute the Gleissberg cycle, the Suess one 
(red curve in Figure 17B) is the one of which its period, this being 
about two centuries, has a value that is in the range of the duration 
of Grand Minima and Grand Maxima. This indicates that a necessary 
condition for these Episodes to occur is that the Suess oscillation is 
strong enough. We know (Table 3) that the maximum amplitude that 
is reached by the Suess oscillation during each wave burst depends 
on the sign of the Hallstatt oscillation, this being nearly 3 times larger 
when this last one is negative instead of positive. This property is in 
accordance with the fact that Grand Maxima and Grand Minima occur 
only when the sign of the Hallstatt oscillation is negative. 

Figure 17 A) The Gleissberg cycle, where the black and green curves differentiate between the periods prior to and after 2006, respectively. B) The 2-Suess and 
Suess modes (blue and red curves, respectively). In the two panels the green bars are on the dates on which the Hallstatt oscillation successively changed from 
positive to negative values and back again to positive values. The black bars indicate the dates on which two successive strong Suess oscillations pass through 
zero, which happens synchronously with two of the strongest 2-Suess oscillations of the whole period. 
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However, not only the Suess but also the 2-Suess oscillation (blue 
curve in Figure 17B) plays a central role in determining the nature of 
the successive episodes. For instance, in 1620 a Suess and a 2-Suess 
oscillation were passing synchronously from positive to negative 
values, thus leading to the strongest Maxima and Minima of the last 
1725 years. This is contrary to what happened around the year 1842 
(green line) when a Suess oscillation was passing from negative to 
positive values while at the same time a Regular Episode occurred. 
On the other hand the ripples that may be seen in some of the Grand 
Episodes are due to the contribution of the secular modes. From the 
shape of the Gleissberg cycle, as predicted till 2238, we confirm (for a 
review see De Jager and Duhau, 2016) that the Solar Dynamo Episode 
that started after the 2006 Transition will be of the Regular type (green 
curve in Figure 17A). In 2036 the Hallstatt oscillation will change 
sign from negative to positive and so the amplitude of the Suess 

oscillation will be strongly reduced as compared with those prevailing 
prior to that date. As a consequence the Regular Episode that has just 
started will last for the rest of the present millennium. It is noticeable 
that in 2036, the year in which the Hallstatt oscillation is predicted 
to pass through zero, the Gleissberg cycle is expected to be passing 
over the 7.2 sunspot level while undergoing at the same time a short 
full oscillation with amplitude that is of the order of the data error. As 
a next step we determine the origin of Short Minima, like the Dalton 
one, and also of the Short Maxima (indicated by the blue and red S 
respectively in Figure 4 & 18). We find that the necessary conditions 
for the occurrence of these Episodes is the synchronicity of a semi- 
secular oscillation that is strong ‘enough’, with half an oscillation of 
the Gleissberg cycle of the Regular type (green curve) while both are 
negative (or positive) in the case of Short Minima (or Maxima). 

Figure 18 The Semi-secular mode (black curve), the Gleissberg cycle (the succession of blue green, red, and green again that indicates the kinds of Episodes 
as in Figure 2); and the 2-Suess oscillation shifted forward and multiplied by 3.4 and 1.5 (full and dashed pink curves as in Figure 14E). The letter D indicates 
the Dalton Minimum and the red and blue letters S the Short Maximum that preceded to the Dalton Minimum and the Short Minimum that is predicted to 
occur around 2130 (cf. Figure 19 in Subsection 5.2) . The black and green vertical bars are at the date of the last transition and the date on which the Hallstatt 
oscillation is foreseen to be passing from negative to positive.

 Prediction of sunspot maxima ##25 to 35

The addition of the envelope and the Noise as found from SNmax 
(black curve in Figure 18) at each of its peaks , valley or inflection 
points appears to yield a difference from the observed values (the 
sequence of blue, green and red points in Figure 19) by less than 
0.5 sunspot numbers. This is so in all cases; hence these small 
differences are not observable in the Figure. This property allows 
for a straightforward prediction of the dates of occurrence and the 
values of the forthcoming 11 sunspot (Schwabe) maxima. As the 
predicted values of the Gleissberg cycle are quantitatively precise 
only till 2036 while the behaviors of the Semi-secular and the Hale 
modes (Figure 3) are somehow irregular even after 1705, the year in 

which SN max started , we have fairly accurate estimates of the errors 
of our predictions only for sunspot maxima ##25-26. Based on this 
consideration we summarize our prediction as follows: the pair of 
sunspot maxima ##25-26 will occur in 2025±1 and 2036±1 and it 
will have values of 160±8 and 150±8 sunspot numbers, respectively. 
After that, sunspot maxima #27 to #31 will be oscillating around the 
157.2 sunspot level, thus fulfilling the odd-even rule with a variable 
amplitude that will be at most 40 sunspot numbers. Finally, at sunspot 
maximum #31 occurring in 2081±2 a Short Minimum, similar to the 
Dalton one will start , during which the odd-even rule may be violated 
by the ##33-34 Schwabe pair. Also, solar activity will emerge from 
this Short Minimum at sunspot maximum #35 which will occur in 
2130±2.
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Figure 19 Sunspot maxima as fond by adding the 157.2 spot constant to modes ##1 to 8 and the Noise (definitions are given in Table I; black curve) and the 
values of the successive observed (points) and predicted (stars) sunspot maxima. The colors in the interval 1705-2014 are as in Figure 1 and the black numbers 
at the green points indicate the two pairs of sunspot maxima that violate the O-D rule. The black numbers at the vertical bars mark the date of occurrence of 
the last two transitions (Figure 2) and the green one marks the date on which the Hallstatt oscillation is predicted to be passing through zero form negative to 
positive (as in Figure13B and Figure 17A). 

A preliminary discussion of the origin of the behavior 
of solar dynamo modes of oscillation 

In Section 4 we found that, the solar dynamo system contains eight 
modes of oscillation that exhibit well defined and persistent mutual 
relationships. These are on one side the Eddy mode, and the 2-Suess 
and Sues modes on the other. They are related to the Hallstatt modes. 
In turn the Secular and Semi secular modes are related to the 2-Suess 
one and the Hale mode to the Suess and Eddy modes. Finally the 
2-Hallstatt mode is related to the Hallstatt one with a time delay that 
has a value equal to a fourth part of the previous Hallstatt oscillation. 
From all of this we conclude that all the modes of oscillations are 
ultimately related to the Hallstatt one. Charvátova54 found that he 
Jupiter/heliocenter/ barycenter alignment has a periodicity of 2402.2 
which made her advancing the hypothesis that the Hallstatt ‘cycle’ is 
excited in the solar dynamo by inertial solar motions. More precise 
computations were performed by Scafetta et al.52 They included in 
their computations the four Jovian planets: Jupiter, Saturn. Uranus and 
Neptune, and they found that the orbit of the planetary mass center 
(PMC) relative to the Sun is varying. Thus they arrived at virtually the 
same value: a 2318 years periodicity.

 On the other hand the time that is estimated for the four Jovian 
planets to come back to the same position, except for a rotation 
of 30° is 179.8 years,55 (Figure 4) which leads to the conclusion 
that the four satellites return to the same position with a period of 
12 x179.8=2146 years, which is also in the range of the Hallstatt 
periodicity. Notoriously there are 12 Suess oscillations during each 
Hallstatt one (Table 2). So it appear that the each Suess oscillation 
is related to the 179. 8 periodicity of the planetary motions. In turn, 
as summarized by Fairbridge et al.55 the progression of the inertial 
orientation parameter is controlled by the Jupiter Saturn 900 year 
‘Great Inequality’ while the processional rotation parameter is linked 
with the 179 year cycle of the solar inertial motion identified by 
Jose56 On the other hand, Somerville57 found that the Jupiter- Saturn 
inequality reached its maximum value in the year 1560 and the mean 
motion of the two planets approached their true motions, and became 
equal to them in 1790. In that context it is highly noticeable that the 
Eddy mode reached it maximum negative value in 1518 and passed 
through zero in 1748, dates that have both the same time delay of 42 
years, with respect to the progression of the Great Inequality of Jupiter 

and Saturn. These observation do strongly support the hypothesis 
that the Eddy mode is the signature on solar dynamo motions by the 
Jupiter Saturn Great inequality. 

 Some other periodicities has been found in planetary motions 
and the solar orbital motion52 When comparing these periodicities 
with those in solar dynamo modes of oscillations we must take 
into account that when computing the functions associated to solar-
planetary motions , the Sun and planets are assumed to be rigid 
spheres. However, as stated by Fairbridge et al.55 to fully understand 
the interaction between the solar dynamo and planetary forces the 
physical interaction inside the solar body must also be considered. 
This may explain why, as has been stated by Charvoneau58 Given the 
amount of effort having gone into building detailed dynamo models 
of the solar cycle, it is quite sobering to reflect upon the fact that the 
physical mechanism responsible for the regeneration of the poloidal 
component of the solar magnetic field has not yet been identified with 
confidence. 

Summary and conclusion
In previous research we have represented solar activity related 

variables as the addition of two signals that we named bi-decadal and 
semi-secular oscillations modes. To these we added the Gleissberg 
cycle. As this last one undergoes sudden changes in amplitude 
and duration in the course of time this methodology allows one to 
predict with some degree of accuracy one sunspot cycle maximum 
in advance, but no more than that. A new methodology based on 
the Wavelet base functions is introduced (cf. Section 3) that allows 
one to detect meaningful signals from a longer time series related to 
solar activity. By applying it to a 7080 years series of cosmogenic 
isotope data and to a 1725 years sunspot maxima time series, both 
being presented in Section 2, we find (Section 4) that the sunspot 
maxima time series can be represented by the addition of a constant 
value of 157.2 sunspot numbers to eight ‘modes of oscillation’ to 
which we added a curve representing the Noise. The eight modes 
are the Hale one, that we renamed the bi-decadal one in view of 
its properties, the Semi-secular, and six additional modes, viz. the 
Secular, Suess, 2-Suess, Eddy, Hallstatt and 2-Hallstatt, that added 
to a 157.2 spotnumber level allows for an accurate representation of 
the Gleissberg cycle. We find that the so found eight modes have a 
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repetitive behavior and well defined mutual relationships. These latter 
are based on the development of a method for predicting the eight 
modes of oscillation and by evaluating the Noise. By this method we 
were able to predict the Gleissberg cycle for the next two centuries 
and the dates of occurrence as well as the values of sunspot maxima 
##25 to 32 (cf. Section 5). We found that the shapes of all modes, apart 
from that of the Hallstatt one, are directly or indirectly related to the 
shapes of each half of a Hallstatt successive oscillations, as follows:

I.	 The period of each half of a 2- Hallstatt oscillation is equal to that 
of a full Hallstatt one. And, during the last seven millennia the 
amplitudes of their successive oscillations have been increasing 
and at the same time their periods have decreased

II.	 The remaining six modes are constituted by a succession of wave 
bursts of which the duration and maximum amplitude reached 
by their successive oscillations are related to the amplitude and 
sign of each half of the oscillation of a long lasting mode

III.	 The amplification factor, defined as the quotient of the maximum 
amplitude reached during each wave burst and the amplitude of 
half the oscillation that determines its duration, is larger when 
the sign of this last is negative. In contrast to this, its positive 
behavior indicates that there exist a permanent asymmetry in the 
solar dynamo system

IV.	 Properties ##1 to #3 lead to the consequence that Grand Maxima 
and Grand Minima only occurs when the sign of the Hallstatt 
oscillation is negative, while a long lasting Regular episodes 
does occurs when this sign is positive

V.	 Short Maxima and Minima may sporadically occur, depending 
of the relative phase of a Gleissberg oscillation of the Regular 
type and a Semi-secular oscillation that belongs to a wave burst 
that is synchronous with half of a negative 2-Suess oscillation

VI.	 While the periods of successive 2-Hallstatt and Hallstatt 
oscillations decreases with increasing amplitude the contrary 
happen with the remaining six modes

VII.	 The envelope of signals related to solar activity is defined as 
the addition of the 157.2 sunspot counts to the eight modes of 
oscillations. We found that the envelopes of sunspot maxima vs. 
that of geomagnetic index aa at minima recurrently return to the 
‘Transition Point’ (at 9.8 nT, 150.0 sunspot number). After that 
the Gleissberg cycle changes in amplitude and duration

VIII.	 The 157.2 sunspot level around which the sunspot maxima 
envelope oscillates differs from the transition level by a constant 
of 7.2 sunspot numbers

IX.	 The dependence of the Hale mode on SNmax and aamin indicates 
that besides the dipolar component of the polar field, of which 
aamin is a proxy, there is another components of the polar field 
that plays a central role in forcing the odd-even rule.45 This 
is consistent with the strong quadrupole field inferred from 
heliosphere observations.54,44

X.	 The ongoing Hallstatt oscillation is predicted to change sign 
from negative to positive in ~2036 while the pair of sunspot 
maxima ##25-26 is predicted to occur in 2025±1 and 2036±1, 
while having values that will oscillate around the 157.2 sunspot 
level with an amplitude that is equal to the 7.2 constant. This is 
within the data error

XI.	 The Episode that will follows after the most recent Transition (of 
2006), during which the Grand XX Century maximum ended, 

is predicted to be of the Regular Type, and as the Hallstatt 
oscillation is predicted to be passing 20 years later through zero 
from negative to positive, we predict that the current Regular 
Episode will last for the rest of the XXX millennium. Moreover, 
as stated by Weiss and Tobias59 The apparent distinction between 
episodes of strong modulation, and intervening episodes with 
milder modulation and weaker overall activity, hints at the 
solar dynamo following a variety of solutions, with different 
symmetries, over the course of millennia.

Besides allowing thus for the above described long term predictions 
of solar activity, hence by clarifying the origin of the persistent and 
well- defined relationship between the eight modes of oscillations, 
our forecasts have relevance for the knowledge of the nature of the 
solar dynamo system and of its motions. In that framework the main 
questions that arise from the above are:

I.	 Why is such a regular behavior maintained by a system that is 
intrinsically stochastic21 

II.	 What is the origin of the persistent asymmetry in the solar 
dynamo system that is indicated by the behavior of the modes?

III.	 What is the origin of the bursting nature of solar modes of 
oscillation as observed in solar activity variables? 

IV.	 While the periods of the 2-Hallstatt and Hallstatt oscillation 
decrease with increasing amplitude, the contrary happen with 
the Eddy, 2-Suess, Suess, Secular Semi-secular and Hale modes. 
Why is that so? 

V.	 What is the origin of the difference of 7.2 sunspot numbers 
between the 157.2 level around which Sunspot maxima oscillate 
and the 150 sunspot Transition level.

VI.	 Why, as have been stated by Charovoneau58: the physical 
mechanism responsible for the regeneration of the poloidal 
component of the solar magnetic field has not yet been identified 
with confidence. 

As regards question #1, such a regular behavior of the solar 
dynamo modes of oscillations indicates that solar dynamo motions are 
ultimately forced by a fairly well defined deterministic system, as is 
the solar-planetary one, as was suggested first by Jose56 (for a review 
and recent advances on that subject Scafetta52 Some new evidence 
about the existence of this phenomenon is presented in Subsection 
5.3. However, the involved forces appear not to be strong enough to 
produce solar dynamo motions of the observed magnitude.60 On the 
other hand, as has been claimed by Fairbridge et al.55 for an accurate 
estimation of the interaction between the solar dynamo and the solar-
planetary system we must include in the computations all the relevant 
physical interaction, of which the most relevant is the complicated 
system of physical interactions within the Solar body. Only after 
including this interaction and removing some other approximations it 
may be possible to answer questions ##2 to 6. This is a task for later 
investigations.
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