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Abstract

We verify that the values and dates of occurrence of sunspot maxima during Schwabe
sunspot cycles ##19 to 24 as predicted by Derek Justin Schove in 1955 coincide with the
actually observed ones with a high degree of accuracy. A question arises from this result:
why is such a deterministic behavior apparent in a system, like the solar dynamo, that is
in principle stochastic. We find that solar activity related data may be well represented by
the addition of a constant level and eight modes of oscillation. The repetitive behavior
and the relationships that appears to exist between these modes, opens the possibility for
a long-term prediction of solar activity. In that line, we forecast the Gleissberg cycle for
the forthcoming two centuries and data on sunspot maxima for the next century. Thus,
we predict the values and dates of occurrence of sunspot maxima ##25 to 35 and find
that the new Episode of solar activity that started during polar cycle #24, as a follow-up
of the 20™ century Grand Maximum, is of the Regular type and, as the ongoing Hallstatt
oscillation will pass through zero from negative to positive around the year 2036, it will
last for the remainder of the present millennium. We also find that modes of oscillations
are mutually related through a forced non-linear oscillator with a persistent asymmetry. A
brief discussion of the origin of this behavior on the excitation of solar dynamo motions by
solar-planetary forces is presented.

Keywords: solar activity, sunspot cycles, toroidal and poloidal proxies, transition state,

Volume 4 Issue | - 2020

Silvia Duhau,' Cornelis de Jager?

'Department of Physics, Faculty of Engineering, University of
Buenos Aires, Argentina

Royal Netherlands Institute for Sea Research, Formerly SRON
Laboratory for Space Research, The Netherlands

Correspondence: Silvia Duhau, Department of Physics, Faculty
of Engineering, University of Buenos Aires, Argentina, Av. Paseo
Colén 850, CI063ACY CABA, Argentina,

Email silia.duhau@gmail.com

Received: January 18,2020 | Published: February 25,2020

‘ ") CrossMark

regular episode, grand maximum, grand minimum

Abbreviations: SNmax sunspot maxima; Sc55, sunspot
maxima; VADM, virtual axial dipole moment; G-O, gnevyshev-ohl;
HCS, heliosphere current sheet; PMC, planetary mass center

Introduction

In earlier papers, we introduced a wavelet-based method for
analyzing solar activity. To that end we used proxies for the solar
toroidal and the polar magnetic fields: viz. the sunspot numbers at
the maxima of successive Schwabe cycles and the geomagnetic
index aa at the minima of these cycles. When these two proxies
assume simultaneously their ‘Transition values' the Gleissberg cycle
undergoes sudden increases in amplitude and duration, thus starting
either a Grand Maximum or a Grand Minimum. In addition to these
two types of Solar Dynamo Episodes, a third one consisting of a
succession of weaker quasi-regular oscillations, the Regular Episode,
is also identified. We also found that the Transition values of the
proxies of the toroidal and the polar components of the Solar Dynamo
magnetic field are the signatures of a well-defined Solar Dynamo state
that we baptized ‘Transition State’. The above approach is further
developed here with the aim to determine and forecast solar dynamo
modes of oscillation. The basic material consists of the 7080 years
long radiocarbon Intcal 98 time series and a 1725 years long Sunspot
Maxima time series. This last was found from the recently published
revised system of telescopic sunspot number counting' extended
backwards from the year 1704 till 290 by Schove’s Schove? sunspot
maxima time series. The latter is for the most part based on naked
eye observations of sunspot numbers and of auroral frequencies. One

of the main changes introduced on SNmax (red point on Figure 1) is
to drop the conventional 0.6 Ziirich scale factor that was assumed
for data prior to the 19" century. Thus the scale of the entire sunspot
number time series was raised to the level of modern sunspot
counts. This procedure removed a persisting ambiguity caused by
the systematically low early sunspot numbers, as compared with all
modern sunspot counts that were made since the late part of the 19"
century.

The only prediction of solar activity for considerably more than
one sunspot cycle in advance is that of Schove? who predicted values
for sunspot maxima #19 to #24 (pink open squares in Figure 1).
His prediction was based on ‘some regularities’ that he found in the
sunspot maxima time series based on telescopic sunspot observations
since 1610 and in addition on earlier visual records over the past
~1400 years and on observations of aurorae. As the Schove?® time
series is based on the Ziirich definition of sunspot numbers, we
divided them by the factor 0.6 in order to bring their values to the level
of modern sunspot counting. The same procedure was followed with
our predictions for sunspot maximum #24.34 (Open circle on Figure
1). We see in Figure 1 that during the whole time interval for which
the maximum sunspot numbers per Schwabe cycle, the SN, _data are
known, the values of sunspot maxima from Sc55 (blue open squares)
are very near to those inferred from SN, _(red dots), including the six
that were predicted by Schove? (Sc55; pink open squares). Also, at the
end of the Maunder Minimum the Sc55 data overlap well with SN, .
Thus, the largest peaks in SN, _have similar values, in contrast to those
of the traditional version of the sunspot counting system, for which
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those occurring during the 20" Century Maxima were about twice the
previous ones. Similarly, the depth of the Maunder Minimum, that
was in the traditional version twice that of the Dalton one has now,
in Schove’s time series, a comparable value. This homogeneity in the
behavior of peaks and valleys is kept in Schove’s time series during
the last 1725 years, cf. Section 2. By comparing the observed values
for sunspot maxima (the succession of blue open squares and red
points in Figure 1) with the values of the envelope (red curve) at their
respective dates of occurrence we found that each of them differs,
on the average, by only 4% from that of the envelope (dashed black
curve in Figure 1). Thus, it appears that once the sunspot maxima
envelope is being predicted with enough precision, it is possible to
predict the dates of occurrence of subsequent sunspot maxima with
an error that is not cumulative. In addition, its values have errors that
will depend mainly on those in the predicted envelope. This explains
our successful prediction of sunspot maximum #24 (the open circle
in Figure 1). We conclude that, in principle, it is possible to predict
the dates of occurrence and the values of successive sunspot numbers
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from the sunspot maxima envelope once this last is known from
predictions. On that basis, the two main objectives of the present
investigation are

I. Finding an appropriate mathematical method for deducing the
solar dynamo modes of oscillation from the sunspot maxima
time series and to study the behavior and the mutual relationship
between them,

II. From these properties we predict each of the modes that,
after having been added to the Transition Level determine the

envelope.

In Subsection The transition level, the Gleissberg cycle and
solar dynamo episodes we apply the dates of Figure 1 to define with
precision the three kinds of episodes, namely the Grand Minima, the
Regular Episodes and the Grand Maxima during which solar activity
evolves. Finally, in Subsection: The phase diagram and the transition
point the updated coordinates of the Transition Point are presented.
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Figure | The red dots represent the succession of maximum sunspot numbers obtained from the revised version of the Ziirich sunspot number, SN

. (1705

to 2014; Clette et al.'; source: WDCSILSO, Royal Astronomical Observatory of Belgium).The violet squares are the sunspot maxima time series determined
by Schove? from telescopic observations between 1610 and 1947 and the pink squares are his predictions of the following six successive sunspot maxima
from his time series that started in 290 (Figure 4).The pink numbers are the Wolf numbers of some of these maxima.The black dashed curve is the ‘Envelope’
(definition is given in Subsection I.1,Table I) of the sunspot maxima time series, R _ (Figure 4), composed by the Sc55 and SN data as computed by the
wavelet representation introduced by us.* The black open circle with the vertical bar is the prediction for sunspot maximum #24 by De Jager et al.>*The sunspot

number 150 is the value of the Transition R level as computed by applying the procedure introduced by Duhau et al.* to the sunspot maxima time series.

The transition level, the Gleissberg cycle and solar
dynamo episodes

By a wavelet-based method we* found that the sunspot maxima
envelope (the red curve in Figure 1) can be represented by the
superposition of a constant that is baptized Transition level, and three
parts, that we have called Bi-decadal and Semi-secular oscillations
and the Gleissberg cycle (Figure 2). Here we demonstrate (cf. Section
4) that the Bi-decadal and the Semi-secular oscillations correspond to
well defined modes of solar dynamo oscillations. Hence, from now
on, we will call them ‘modes’. On the other hand, in Subsection 4.3
we will find that the Bi-decadal mode is the signature of solar activity
variables of the cyclical inversion of the polar component of the solar
dynamo magnetic field, a phenomenon that is called ‘Hale cycle’.”
From now on we will rename the Bi-decadal mode as Hale mode.

In Figure 2 we observe that the two negative Gleissberg
oscillations that occurred during the Regular Episode (green curve)
have noticeably smaller amplitude than the two positive ones. Here
we find (Subsection 4.2.2) that this feature is related to the fact that
the solar dynamo system has a persistent asymmetry, such that the
solar Dynamo modes are oscillating around a constant value that is
7.2 sunspot numbers above the Transition level. We observe also
that the Dalton Minimum is due to the synchronicity of a negative
Gleissberg oscillation of the Regular Type with a strong negative half
of Semi-secular oscillations (indicated by the blue and pink letters D,
respectively, on Figure 2). Note that these two halves of oscillations
have both a duration that is less than a half of the single one that
leaded to the Maunder Minimum. These explain why there occurred
eight sunspot maxima below the Transition level during the Maunder
Minimum and only three during the Dalton Minimum (Figure 1). We
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observe that at the three Transitions dates the Hale mode (grey curve
in Figure 2) passes through zero synchronous with the passing by
the Transition level of the envelope. In the light of the fact that the
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Hale mode is the signature of the Hale cycle (cf. Sub-section 4.3) this
property is relevant for determining the nature of the Solar Dynamo
system.
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Figure 2 The three parts in which the envelope of the sunspot maxima time series (dashed black curve in Figure |) has been decomposed.’ These are the
Gleissberg cycle (the succession of blue, green and red curve), the Semi-secular (pink curve) and the Bi-decadal (grey curve) oscillations. The black numbers
along the vertical lines at the bottom are the dates on which the Envelope passed through the 150 sunspot number Transition level (horizontal line in Figure )
and after which the Gleissberg cycle appreciably changes in amplitude and duration, either in synchronicity (red numbers) or a few years later (green numbers)
so leading to a ‘Phase transition’ from one Solar Dynamo Episode to the next one (the definition is summarized in Sub-section 1.2).The three kinds of Episodes
that may be observed in the Figure are the Grand Minima, like the Maunder one, (blue curve), the Grand Maxima, like the XX Century one (red curve) and
the Regular Episodes, like the 1723-1923 one (green curve).® The D letter marks half of the Gleissberg (blue) and Semi-secular (pink) variations and half of the
negative oscillations that leaded to the Dalton Minimum (Figure 1). In view of these properties that are found here in the Bi-decadal oscillations (cf. subsection

4.3) we will from here on refer to them as ‘Hale mode’.

Summarizing: the toroidal component of the solar dynamo
magnetic field occasionally undergoes sudden changes of its strength,
as is seen in its proxy, viz. the sunspot number at maximum Schwabe
cycle (SN, ; cf. also the successive blue open squares and red dots
in Figure 1) . In Figure 2 we have illustrated that these changes are
related to the sudden change in the amplitudes of the Gleissberg
cycles that occurs after each Transition. As the polar component of
the dynamo magnetic field is related to the toroidal one through the
dynamo actions, similar changes occurs in that component too, These
leads to defining the solar dynamo Transition State as a unique state to
which the solar dynamo system persistently returns after which a new
Episode starts’ as is summarized in the next Subsection.

The phase diagram and the transition point

A proxy for the strength of polar component is the value of the
geomagnetic index aa at solar Schwabe minimum was introduced
by Mayaud® aa,, "> We found De Jager et al.! that a subsequent
Episode invariably occurs when the envelopes of the two parameters
that characterize the two components of the solar magnetic fields,
viz. SN, _(the red curve on Figure 1) and aa , pass simultaneously
through the Transition Point. The latter is a fixed point in the phase
diagram, in which the maximum sunspot numbers (SN, ) are plotted
against the minimum aa values (aa, ). Cf. Figure 3a). Regarding the
Gleissberg cycle we observe in Figure 3b that only in 1923 this cycle
passed through the Transition point but in 2006 only the abscissa
of the Transition point was reached and the Transition ordinate is
missing. In the first case the dynamo system passed from a Regular to

a Grand Episode and in the second one the contrary occurs. In actual
fact, from proxy data from Nagovitsyn'>'* we found that a behavior
similar to that seen since 1844 in Figure 3B, has recurrently occurred
since the year 1050 (Figure 6 in Duhau et al.’ Consistent with this
behavior, we predicted that in 2014, that is a few year later than the
2006 Transition, a Gleissberg cycle of the Regular type will start.’*
This prediction is confirmed from the new data included in the present
investigation (cf. Sub-section 5.1).

Only the existence of the 1923 and 2006 Phase Transitions may
be precisely determined from the 162 year long interval included
in Figure 3. Hence, for determining with precision the date of the
transition from the Maunder Minimum to the Regular Episode (The
succession of the green and red curves in Figure 2 & 3) we have to
take into account that the envelope must add to zero at the dates of
the three parts into which we have split it after having subtracted the
transition level. While the three parts pass simultaneously through
zero during the 1923 transition, that does not happen in 2006, when
the Hale mode (#1 in Table 1 passed through zero while at the same
time the Semi-secular (-#2 on Table 1) oscillation and the Gleissberg
Cycle (definition is given on Table 1) added to zero, Hence, similar
to the 2006 case, we have selected 1723 as the year in which the
transition from the Maunder Minimum to the Regular episode
took place. In previous papers we have based our predictions of
forthcoming solar activity on the properties of the three parts (Figure
2) in which we have split the sunspot maximum time series. By now
it is clear that sunspot maximum #24 is the lowest of the past century.
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the character of the Gleissberg cycle because it is the time variation
of that cycle that is comparable to that of the sunspot maxima time
variation.* We will show that such a forecast is possible by splitting
this cycle in six modes of oscillation and a constant.

This was already predicted by Schove? as early as half a century ago,
by us (open circle in Figure 1) and by several other authors.® Until
now we have restricted ourselves to forecasting a sunspot maximum
for no more than one Schwabe cycle ahead. To be able to predict
sunspot maxima for a longer period we should know how to forecast
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Figure 3 The phase diagram of the envelope (A) and the Gleissberg cycle (B) of the Sunspot numbers at maxima, SN (cf. Figure | black dashed curve) vs. the
geomagnetic index at minima ,aa_, , the latter from Nevanlinna et al.'"* and from Lockwood (priv. com 2009), for the periods (in years) 1844-1867 and 1868 to
2009, respectively. In both panels the numbers along the horizontal and vertical lines are the values of the two transition level components (represented, in the
case of SN by the black horizontal line in Figure I). Green and red colors refer to the Regular Episode and the Grand Maximum respectively (green and red
lines in the Gleissberg cycle in Figure 2); the latter starting in 1923.Around 2006 a new episode started that has been described De Jager et al.*'® and predicted
by them to be of the Regular type. It is expected that this will last for the remainder of the present millennium, as will be confirmed in this paper.

Table | Data sets, periodicities and solar dynamo modes of oscillations as introduced in this investigation

Primary data sets (time intervals in years) Section Figure

SN_ , Sunspot maxima time series values as obtained from the revised version of telescopic observations of

| |
sunspot number by Clette et al.!

Sc55, Sunspot maxima time series obtained by Schove? from telescopic observation after 1610 and prior to that by

naked eye observation of sunspots and aurorae (290-1948).

R ., found here by extending SNmax from the year 1705 backward till 290 from the Sc55 data (290- 2014) 2 4
Intcall 98 radiocarbon age calibration'” (=5125-1950) 2 5

The periods of the components that, upon addition, define the various modes (as found by assuming in Eq. (3.2) (cf. Sub-
section 3.1) To=2, no=3 and the value of j in the interval mentioned in the table).

# Name J Periods Section Figure
| Hale 10to 12 16.520.8 26.0 | 2

2 Semi-secular 13to 16 33.1 41.6 52.5 66.1 | 2

3 Secular 17 to 19 83.3 105.0 1322 4 14

4 Suess 20 to 22 166.6 209.9 264.5 4 12

5 2-Suess 23 to 25 333.2419.8 5289 4 12

6 Eddy 26 to 29 666 840 1058 1332 4 12

7 Hallstatt 30to 32 1679 2116 2666 4 12

8 2-Hallstatt 33to 35 3558 4231 5331 4 12
Notions introduced for operative purposes Section Figure
Noise: the addition of wavelet components obtained by introducing J=1 to 9 in Eq. (3.2)

Envelope: The addition of the linear trend to modes ##| to 8 3 8

Long Trend: the addition of modes ##7 and 8 to the linear trend from which the |50-sunspot Transition level is 4 13
subtracted.

Gleissberg cycle:The addition of modes ##3 to 8 to the linear trend | 2
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The Table 1 gives the input data sets that are used or introduced
in this study and the periods of the Morlet wavelet components that,
upon addition, determine the eight modes of oscillation that we
identify from these data. In the last column, we give the numbers
of the Sections and Figures in which they are mentioned first. Four
of the eight modes that appear in Table 1 were already identified by
their signature in the Fourier spectra of solar activity related variables,
especially cosmogenic isotope data. These are: the Hallstatt, the
Eddy' the De Vries" or Suess® cycle and the Hale one.?' Also, the
band of periods that we have split in two sets: the Secular and Semi-
secular ones, is usually called the Gleissberg band. However, we will
find in this paper that the Gleissberg band has periods that correspond
to two different modes that we will call the Secular and Semi-secular
ones. In Section 2 we specify the data that are used in our study. In
Section 3 we summarize the basic aspects of the mathematical method
applied by us for analyzing the solar activity variables and we apply
the results to the development of a procedure for defining the solar
modes of oscillations from solar activity related variables In Section
4 we show that the sunspot maxima time series may be represented
by the addition of eight modes of oscillation (Table 1) and the 157.2
sunspot constant. It is based on the regularities and the mutual
relationships that are presented by the eight modes. We conclude that
these relationships indicate the existence of a persistent asymmetry in
the Solar Dynamo System. Following these results we will predict, in
Section 5, the data for the Gleissberg cycle for the next two centuries
and the years of sunspot maxima for the next one. These results will
be summarized in Section 6.

The data

Telescopic observations of sunspots started in 1610, hence the series
exists only for slightly more than only 4 centuries. Therefore, these
data allow one only to determine with precision those modes of which
the oscillations have a longest average duration that is comparable to
the Suess time scale (##1 to 4 in Table 1). That situation forced us in
earlier papers to split the sunspot maxima time series in at most three
parts, of which two are the Hale and Semi-secular modes, and the third
is the Gleissberg cycle (Figure 2). This means that in those cases in
which the research is based solely on the modern SN, data, it would
only be possible to forecast a certain sunspot maximum for no more
than a few years and at most one Schwabe cycle in advance. This is
so because it is impossible to predict the Gleissberg cycle for a longer
time interval without knowing the six modes of oscillation of which it
is composed. We note, in addition that predicting the Gleissberg cycle
is especially difficult in those circumstances in which a Transition has
just occurred because in that situation we may meet a strong change
of its main parameters, especially its amplitude. If the values of the
abscise and ordinate of the Transition level are indeed constant the
slope of the linear trend of solar activity variables must go to zero
when the time series is long enough. As the linear trend is due to the
contribution of wavelet components with periods that are much longer
than the duration of the time series itself, we may at this stage wonder
if, in the case that the time series is long enough, it will be possible
to represent its time evolution by the sum of a constant and a finite
number of modes.

Schove’s Sc55 time series of sunspot maxima overlaps well with
the revised version of the Ziirich sunspot number, SN, _over the more
than 300 years for which this last is known with precision, including
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Schove’s predicted recent half century (open pink squares in Figure
1). This indicates that we may safely extend the SN, _series backward
from 1705 till the year 290 with the aid of the Sc55 series. This situation
allows us to introduce the time series R _ (Figure 4), which is the
1725 years long series of sunspot data that results from this procedure.
The usual practice? is to define a Grand Minimum (or Maximum) as
an episode during which solar activity stays below (or above) some
low (or high) level during a significant duration. Thus the four Grand
Minima (from Oort to Maunder) and the Dalton Minimum shown in
Figure 4 were identified. Regarding the Grand Maxima, initially only
the Medieval and XX century ones were recorded. For identifying the
origin of each successive Episode we used the Gleissberg cycle, as is
shown in Figure 2. This leads to the detection (Figure 16A) of a new
Grand Maximum, the XV Century one; it occurred during the last
millennium. We will call it the XV Century Maximum. In Figure 2 we
observe that the Dalton Minimum is not seen in the Gleissberg cycle.
Instead, it is a consequence of the synchronicity of half a Gleissberg
oscillation with a strong semi-secular one, so we classify it as a Short
Minimum. It consist of a succession of three sunspot maxima that
are all below the transition level and one of them has a value that
is smaller than 80 sunspot numbers. Analogously we define a Short
Maximum (indicates by the red letter S in Figure 4) as a succession of
three sunspot maxima that are all above the transition level while at
least one of them is larger than 240. Based on the above we conclude
that main changes of the qualitative behavior of the solar dynamo
episodes between the year 290 and present are the following:

[. Grand Maxima ( Minima) as well as Short Maxima (Minima)
started to occur after the year ~1000,

II.  Prior to ~1000 and after the starting date of the time series, viz.
the year 290, a long lasting regular episode occurred.

In Section 4 we will prove that the above change follows the
change of sign from positive to negative of the Hallstatt oscillation that
started in 900 (¢f- the vertical bar in Figure 4). Evidence that Grand
Minima occur only when the Hallstatt oscillation has negative values
was found by Steinhilber et al.>*** from a study of cosmogenic!’ Be
radionuclide data for the past 9300 years, a period that includes four
Hallstatt oscillations. We also refer to Figure 10 in Versteegh®® where
that property can be seen too. De Jager et al.* have found that the last
Hallstatt oscillation passed from negative to positive, hence through
its zero point, virtually at the time of the recent Transition. They thus
concluded that the Episode that started after the present Transition
will be of the Regular type and will last for the remainder of the
present millennium. The dependence of the nature of solar dynamo
episodes on the sign (positive or negative) of the Hallstatt oscillations
gives evidence that the shape of the modes of oscillation is related to
this sign too. This is confirmed In Section 4 where the eight modes of
Table 1 are presented.

The slope of the linear trend as computed from the SN and
R, time series (in sunspot numbers per century; cf. Figure 1 & 4
respectively) changes from 1.2 to —0.05. This drastic reduction of two
order of magnitude of the modulus of the slope of the linear trend,
while at the same time the length of the time series increases from
three centuries to about two millennia, indicates that the sunspot
maxima oscillate around a constant level. In fact, in Section 4 we
will show that the amplitude of the oscillation of modes ##6 to 8 are

systematically decreasing with increasing periods. The 2-Hallstatt
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oscillations as obtained from R have amplitudes whose values are
barely above the uncertainty of the data (no more than one sunspot
number). From this we infer that once the eight modes of oscillations
of Table 1 are accurately determined, the slope of the linear trend will
becomes negligibly small. Hence, the linear trend will reduce to a
constant that we will find (¢f. Subsection 4.2.2) to be 157.2 sunspot
numbers. This level differs from that of the transition level by only
a small constant value, namely 7.2 sunspot numbers. The origin
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later investigation. There occurred less than one half of a 2-Halsltatt
oscillation and less that a full Hallstatt one during the entire R
time series of Figure 4. So, for determining the relationship between
shorter period modes and the Hallstatt and 2-Hallstatt modes we turn
to the cosmogenic isotope data of Figure 5. In the next Section we
develop the mathematical technique for determining the solar dynamo
modes of oscillation as seen in their proxies; these being R and the

Intcal 98 times series presented in Figure 4 & 5, respectively.

and explanation of this small but significant constant is delayed to a
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Figure 4 The R time series obtained by backward extension of the revised sunspot number time series of Clette et al.' (red points).The extension goes back
to the year 290 by the addition of the open blue squares, i.e. Schove’s? series. The black horizontal line is the abscissa of the Transition point (sunspot number
150). The names of the Grand Solar Maxima and Minima that occurred since 290 are given in red and blue characters.The red letter S indicates the occurrence
of a short maximum (red colors).The green number is the date on which the ongoing Hallstatt oscillation passed through zero from positive to negative values,
as found here (cf. Figure 12D and Figurel 3B).
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Figure 5 The INTCAL98'* C cosmogenic isotope data.'” Source: University of Oxford, Radiocarbon Web-Info, at: https://c|4.arch.ox.ac.uk/intcal98.14c. This
calibration series is based on a mix of mid-latitude northern hemisphere records (Germany, Ireland, and those from the states of Washington, Oregon and
California in the US.A)).
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A ssignal processing technique for representing
solar activity variables

Until now solar physicist have been able to forecast the properties
of sunspot cycle #24 within a few years, approximately only one
Schwabe cycle, in advance. Many attempts have been made of long-
term forecasting of solar activity based on the most conspicuous
peaks in the spectra of the related variables, viz. those of about 88,
200 and 2300 years, the Gleissberg, Suess and Hallstatt ‘cycles’,
respectively.?! Although they are called ‘cycles’, their physical origin
has not yet been determined. Moreover, the Fourier periods in their
spectra change with time.”! For example, the so called Gleissberg
‘cycle’ covers a wide band with a well detectable double structure:
one of 50 to 80 years and the other of 90 to 140 years. These are called
the lower and the upper Gleissberg bands, respectively.?® Of course,
it is necessary to examine if these two bands are the signatures of the
same physical phenomenon. That may be far from obvious: merely
observing the peaks in the spectra does not allow one to determine if
two period bands in the spectra with neighboring periods are due to
changes in a unique solar dynamo mode of oscillation, or that they
are due to two well differentiated physical modes. The only way to
explain the physics behind the peaks in the spectra is by advancing
a signal processing technique that can describe its signature in the
time domain. In our context, such a technique can be described as
the process of decomposing a signal into a linear combination of
basic functions. The aim of this decomposition is to properly isolate
the phenomena that contribute to the behavior of the signal. Several
properties of the basic functions are required to be able to handle this
decomposition.

For instance, usually one function is used as a generator for
obtaining the other basic functions by applying a combination of
mathematic operations like translations, modulations, and dilatations.
This constitutes a reasonable mathematic framework that efficiently
yields the information needed to re-generate or to synthesize the
original signal. Furthermore, the generated set of basic functions
is usually required to constitute what is called an orthogonal base
of a suitable functional space. This, basically, means that the
decompositions are stable (meaning that the order of the factors in
the decomposition does not affect the results), and that the basic
functions in the decomposition do not overlap or interfere with each
other. There are many other properties, depending on the technique
that is applied. In Fourier analysis, the generating function is just
a harmonic function which provides a representation that has very
poor localization in time in its decomposition, while the present
problem is extremely time-localized. Hence, we would not be able
to obtain compact decomposition with the Fourier technique. Also,
the underlying - incorrect - assumption is that the original signal is
periodic, which makes it impossible to decompose it for obtaining
even a small extrapolation of the original data.

Contrary to what happens with harmonic oscillations, which are
stationary, the oscillations that compose the sunspot maxima time
series undergo strong time-dependent changes in amplitude. This
fact is clear from Figure 2, but it is also obvious in Figure 1,3 & 4.
On the other hand in wavelet analyses, the generating function is the
so-called mother wavelet, whose limited spatial support implies that
the behavior of the function at infinity does not play a role.”” The
orthogonal basis is generated by translating and scaling the mother
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wavelet, meaning that the decomposition is well time-localized and
that it has different levels of resolution. Thus, it allows one to isolate the
underlying physical phenomena in their various levels of resolution.
To summarize, a signal processing technique based on wavelets opens
the way for representing in the time domain the variables related to
nonstationary phenomena, such as those that appear in solar activity.

Summarizing and anticipating: The method for determining
the solar modes of oscillation that, after addition to the transition
level, allows one to represent solar activity variables, is developed
in the next two subsections. In Subsection 3.1 we select the suitable
mother function and we derive its essential parameters. Based on
that selection we develop in Subsection 3.2 a method for selecting
the periods (Table 1) of the wavelet components that, after addition,
determine the various solar dynamo modes. And in Subsection 3.3 we
demonstrate that the remarkable time-dependent ‘double structure’ in
the spectra of the variables related to solar activity are a consequence
of the time-dependent evolution of the periods and amplitudes of
the oscillations for each of the solar dynamo modes of oscillation.
Thereafter, we determine in Subsection 3.4 the dependence of the total
number of wavelet components on the duration of time series and we
introduce the concept of ‘edge error’.

Selection of the mother function

Any signal processing technique is based on a set of functions,
derived from a unique mother function. The selected mother function
must be similar to the input fluctuation.?® We describe the essential
aspects of this ‘similarity’. The occurrence of several conspicuous
peaks in the Fourier spectra of the sunspot number time series indicates
the presence of oscillations with well-defined periods. These peaks
have values that range from years to thousands of years. The wavelets
that we need for this purpose should be suitable for acting as a mother
function for which the spectrum.? consists of one unique symmetrical
peak, like the succession of peaks that constitute the spectra of the
sunspot time series. The suitable wavelet that we® selected for this
purpose is the Morlet function (¢t)**3!

2
M(t) = L eiDTei
! 2

(M

72_4

where C and D are constants and 7= #/s. Here ¢ is the time variable
and s the wavelet scale.

We define T as:

T="" 2)

2z
Hence, T = —t(Z.l)
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Therefore, 7 relates to T by eq. (2.1), and hence we may write eq.
(1) as:
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This leads to the conclusion that (t) is a harmonic function of
period T that has a Gaussian envelope with a variance o. The latter
is related to T by

27

o="5T 3.1)

Once that the mother function has been chosen it is necessary
to determine its basic characteristics by selecting the values of its
defining parameters. The value of D is chosen equal to 6 in order to
satisfy the admissibility condition.?” For the set of scales, we may use
any arbitrary number. It is convenient to write the scales (to which the
periods are related by Eq. (2.1)) as fractional powers of 2.2 So, we
may write the set of periods as

J

T = Toz”f’ ,withj=0,1,...J, (3.2)

where n_,jandJ are integers. J is the total number of components.
Further

T =26, 3.3)

where ot is the distance between two successive data points; it
must be a constant. Once this parameter is determined, the value of
7;) is fixed by Eq. (3.3), and hence, only the parameter n remain to

be fixed for determining the values T of the successive periods of
the components. We have found that a precise representation of solar
activity variables is obtained when n >3 and so we have applied the
set of components that follows after fixing n =3 for representing
those time series.® This procedure allows one to obtain a precise

representation of solar activity related variables that are at the same
time the most compact.

Summarizing, when once the values of ofare known, the
parameters that remains to be determined for computing the periods of
the basic functions from Egs. (3.1) and (3.2), are n and J. The latter’s
value J (see Eq. (3.2)) increases with increasing n. Hence?® we could,
at least in principle, introduce a large value for n, to warrant the most

complete picture. However, the spectra of the time series related to
solar activity contain well defined peaks®' and so we found* that the
low value of n =3 suffices for this purpose. In Subsection 3.2 this

issue will be further discussed in the framework of the application of
our wavelet-based method to the R _time series (Figure 4). The total
number of components, J, that is needed for accurately representing a
given time series depends on the length of the time series. This issue
is discussed in Subsection 3.4. Once the basic functions having been
selected by fixing the values of 7, J and n the signal to be analyzed
may be represented by summing up the transforms of these functions.
For brevity, we will call them ‘components’. They are defined as the
convolution of the signals with each of the basic function.?’

Determining solar dynamo modes of oscillations from
the selected mother function

In this Subsection, we introduce the methods for determining
the components of the basic function (cf. Subsection 3.1) that, after
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addition, allows one to represent each of the eight solar dynamo
modes of oscillations listed in Table 1. We also discuss their general
properties that allow one to describe them as a ‘succession of Wave
Bursts’. In the previous Subsection, we have selected the Morlet
wavelet as a suitable mother function for representing solar activity
variables. The next step is to determine the set of components that,
when added, lead to a significant signal. With this purpose, we need
to define the periods and the total number of components that are
needed for this purpose. An essential aspect is that, for computing
the various components, the data points must be evenly spaced. As
the time series of Figure 4 is irregularly spaced we have added annual
data points by linearly interpolating between successive data points.
Hence 6t =2 yr and so, from Eq. (3.2), 7=2 yr. The total number
of wavelet components, J depends on the value that we assign to n,
in Eq. (4.3). For making our representation more compact we have
selected a minimum value of this parameter such that it still allows
for an accurate representation of the time series. We thus fixed n =3.

Once, having selected dt=2 yr and n =3, the periods of the
components are found from Eq. (3.2). In order that these correctly
describe the solar dynamo modes of oscillation we must determine
first the set of components that, after addition, leads to signals that
have a regular and repetitive behavior. We found that this set follows
from selecting those components with neighboring periods that are
in phase during their strongest oscillations, while they gradually lose
phase as the amplitude of the oscillations decreases. As an example
of this procedure and of the basic properties of the modes found by
applying it, we show in Figure 6 the Semi-secular mode (#2 on Table
1) and its four components as derived from the sunspot number time
series of Figure 4 in the interval 1483-2014 (top and bottom panel
in Figure 6, respectively). Figure 6A shows that the amplitudes of
successive Semi-secular oscillations first increase till they reach
a maximum value after which they decrease, and that happens in
such a way that periodically an oscillation with a relative minimum
amplitude occurs and passes through zero synchronously with the
passing through zero of a 2-Suess oscillation. This last one is shifted
ahead by 37 years. This allows one to differentiating unambiguously
between the three sets of oscillations. In view of its bursting shape we
baptize them ‘wave bursts’.

These changes of the average periodicity and of the amplitude of
the of the oscillation from one wave burst to the next one is seen in
the spectra as two different peaks. Many attempts have been made?!
of long term forecasting, based on the most conspicuous peaks in
the spectra of solar activity variables, viz. those of about 88, 200 and
2400 years, the Gleissberg, Suess and Hallstatt ‘cycles’, respectively.
Although they are called ‘cycles’, their physical origin has not yet
been determined. In this connection, we refer to Hoyt et al.*® who
gave the name ‘cycle mania’ to the practice of labelling ‘cycle’ to any
peak that appears in the spectra. Moreover, it is known that the Fourier
periods in their spectra change with time."” For example, the so called
Gleissberg ‘cycle’ covers a wide band with a well detectable double
structure: one of 50 to 80 years and the other of 90 to 140 years. These
are called the lower and the upper Gleissberg bands, respectively.?® Of
course, it is necessary to examine if these two bands are the signatures
of the same mode of oscillation, as in the Semi-secular case or instead,
if they come from two different modes of oscillation. This objective is
a topic of the next Sub-section.
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Figure 6 A) The Semi-secular mode of oscillation in the interval 1483-2014 prior to (blue) and after 1705 (red) and the 2-Suess mode shifted forward by 37
years. The black numbers, | to 3, identify three successive ‘wave bursts’ (definition is given below). B) The four wavelet components that conform the Semi-
secular mode, where those with the longer periods (52.5 and 66.1 year) are differentiated from those with the shorter periods (41.6 and 33.1 year) by their
pink and violet colors, respectively. The three vertical lines in the two panels mark the dates on which a Semi-secular oscillation, that has the smaller relative

amplitude as compared with the surrounding ones, changes sign.

The origin of the double structure in the spectra of
solar activity variables

Summarizing: in this Subsection, we study the remarkable double
structure in the power spectra of the sunspot number time series. This
is done by analyzing the evolution of the wavelet spectra of the two
successive Semi-secular wave bursts that were lasting from 1483 to
1858 (numbered 1 and 2 in Figure 5). We find that the two Gleissberg
bands are the signatures of two different modes. We also find that a
substantial change of the period from one wave burst to the subsequent
one occurs not only in the semi-secular band of periods but also within
the Hale and the secular bands. For computing the wavelet power
spectra we use here Eq. 8 by Liu et al.? instead of Eq. (18) of Torrence
et al.?® that is usually applied, because the spectra computed by this
last one are distorted or biased in favor of larger periods, a feature
that leads to the problem of determining the ‘confidence interval’. In

other words, for a time series comprising two sine waves of the same
amplitude but of distinct periods, the Torrence and Compo expression
yields two spectral peaks of different magnitudes, the one with the
larger period being the strongest. This feature hampers a comparison
of the peaks over the time range, a problem that is solved by the
modified expression developed by Liu et al.** It follows from Eq. (3.1)
that the number of components increases with increasing value of the
parameter n. By fixing an extreme value, for which we have chosen
n =24, the spectra appear as a continuous curve within the resolution
of Figure 7 (the blue, red and grey curves in that diagram). In relation
to the above we note that when interpreting the value of the period at
the peaks of the time series spectra we must consider that, when that
peak is not strong enough as compared with the two surrounding ones,
the value of the period at that peak is distorted in the direction of the
neighboring peak that has the strongest power of the two surrounding
ones.
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Figure 7 Wavelet spectra for the two successive wave burst numbered | and 2 in Figure 6(A) (blue and red curves, respectively), and for the time interval that
includes the two wave burst (grey). The stars, rhombuses, triangles and squares are at the Hale, Semi-secular, and secular Suess peaks, where the grey dot and
the open star are at the 2-Suess and Eddy peaks, respectively. The spectra have been computed from equation (8) of Liu et al.** and normalized to unity at the

53 sunspot number peak (grey rhombus).
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Figure 7 shows that an appreciable change of the average period,
as well as an strong reduction of the maximum amplitude of their
oscillations occur between the Semi-secular Wave Bursts #2 to #3
(Figure 6). These changes are seen in their respective spectra (blue
and red curves in Figure 7) as a reduction of the values of the power
or the year and of the periods at the corresponding peaks (indicated by
the blue and red rhombuses in Figure 7). The change in the average
period at the Semi-secular peaks is also seen in the Hale one (blue
and red stars). The same does not happen in the spectra that include
the two successive Semi-Secular wave bursts (grey curve) for which
only one of the respective pairs are clearly discernable. This is so
because the weaker ones are masked by the stronger ones, and so their
signatures appear in the spectrum only as a couple of inflection points.
Based on only 200 years of available observations, Gleissberg (1944,
1958)*% found a cycle of 88 years in the amplitude variation of
sunspot numbers. Later-on, two bands of periods, one extending from
50 to 80 years and the other from 90 to 140 years®*' appeared to be
part of the Gleissberg cycle. However, in Section 4 we will show that
these two bands (indicated by rhombuses and triangles, respectively,
in Figure 5) originate from two different modes of oscillation, viz.
the Semi-secular and the Secular ones (modes # 2 and #3 in Table
1). Consistently with this finding, we® have, in previous papers
included components with periods in the lower Gleissberg band in
the Semi-secular mode while those from the Upper Gleissberg band
were included in the Gleissberg cycle. Finally, we emphasize that we
have discovered a substantial change of the period of the Hale and the
Semi-secular oscillations from their respective shapes as seen in the
time domain, which allows one to determine the temporal extension of
each of the successive wave bursts and hence to compute the spectra
for the appropriate time span, as shown in Figure 6. Summarizing
this Sub-section: the substantial changes in maximum amplitude and
period of the oscillations from one wave burst to the next one, during
the time of a given solar dynamo mode, prohibits us to forecast the
period and amplitude of future oscillation just from analyzing them by
their spectra. But that happens to be one of the common practices**
Instead, we need to clarify the evolution of the periods and amplitudes
of all of them in the time domain.

The dependence of the total number of wavelet
components in the time series and the ‘edge error’

In Subsection 2, we have determined the minimum number of
wavelet components that, when added, allows one to represent each
mode. The next step is to determine the total number of components,
J (cf. Eq. (3.2)) that, after addition to the linear trend, lead to a precise
representation of the time series that is being analyzed. In the present
Subsection we study this issue. We find that there is a distortion of the
single oscillation that occurs at each of the two edges of the time series.
We baptize this phenomenon ‘edge error’. In order to demonstrate
the way by which we determine the number of components that, when
added to the linear trend, allows one to represent the envelope, we
isolate from the R, _time series the interval 1664-1863 and compare
the shape of the modes that are obtained from this 200-year interval,
that we will call from now on R,,, with those found from the whole
1725 year interval time series, R _ . The longest modes that are
discernable from these two time series are the Suess and the Hallstatt
ones. Hence, in the R, case, for computing the envelope we must add
the linear trend to modes ##1 to 4. But for computing the envelope
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from R we must add four additional modes, ##5 to 8 (definitions
are given in Table 1).

In Figure 8 we compare the four modes that, when added to the
linear trend, allow one to determine the envelope as found from R,
with the corresponding signals as computed from R _(dashed and full
curves, respectively in a to d). We observe that there is a discrepancy
between the values of the curves that represent each of the four modes
as computed from R, when compared with the corresponding signal
as computed from R (dashed and full curves in Figure 8(A-C). It
appears during a single half oscillation at the two edges of the 200
years interval. As a consequence, since the periods of the Suess modes
are of the order of 200 years their values, as computed from R, ,
differ from those computed from R _during the whole time interval
considered. Moreover, the discrepancy is largest in the linear trend
as much as its slope is reduced by two orders of magnitude (compare
the full and dashed lines on Figure 8C). On the other hand the values
of the four modes shown in Figure 8A to 8c are precisely determined
from R, because the 200 year interval considered is far from the
two edges of this time series considered in more than half of a Suess
oscillation and so the four modes in Figure 8 are precisely determined
from R in the 200 year interval. We call the discrepancy of a given
mode as computed from R,,, @ compared with its precise value the
‘edge error’, and conclude that for each mode this error extends
over the two edges of the time series considered during half of their
respective oscillations. In the next two subsections we introduce the
methodology by with we will amend the edge error in the eight modes
of oscillation and predict them by a time interval that depends on the
particular characteristic of the given modes.

Defining the long trend for amending the edge errors
in the Hallstatt and 2-Hallstatt modes

In spite of the strong reduction of the linear trend in R as
compared with that in the R, series (dashed and full lines on Figure
8C), once that the four and the eight modes that constitute each of
the two time series are added to their respective linear trends, the
envelopes of these two time series that are thus found (full and dashed
blue curves on Figure 8D), coincide. This indicates that the linear
trend of R, is the signature of modes #5 to #8. In fact, we find that
the addition of the linear trend and modes # 3 and 4 as computed from
R,,, by one side (dashed curve) and of the linear trend to modes ##
3 to 8 as computed form R, by the other side (full curve) differs
only in a few spots at the two edges of the 200 year time interval
(Figure 9). The result shown on Figure 9 indicates that once the two
largest period modes that may be computed from a time series of a
given length is added the signal that result after adding to those modes
the corresponding linear trend differs from the same signal precisely
determined on only a few spots at the borders of the time interval
considered, that in the case of Figure 9 is 200 years. Based on this
property and taking into account that the two largest period modes that
may be computed from the 1725 years long time are the Hallstatt and
2-Hallstatt ones we define, for operative purposes, the Long Trend in
the 1725 year long R __as the addition of the linear trend, to which
the 150 spot transition level has been subtracted, to the Hallstatt and
2-Hallstatt modes. After assuming that the slope of the linear trend
become disregardable once the edge error is amended in the Hallstatt
and2-Hallstat modes, in subsection 4.2.2 we apply the Long Trend to
amending the edge error in those two modes as computed from R .

X
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Figure 8 The four modes that may be computed from the 200 year duration R200 time series (A and B), the linear trend (C) and the envelope (D). In D) the

red curve is the noise, while the full curve and the dots represent the envelope as computed from the 1725 years lasting Rmax data and from the R200, time
series, respectively.

1650 1700 1750 1800 1850
go=T T 1. 1T [ rr 11 r 111 [ 1T T T ] Tao

1650 1700 1750 1800 1850
Year

Figure 9 The additions to linear trend to the secular and the Suess modes as computed from R,/ and that of the linear trend to the secular, Suess, 2-Suess,
Eddy, Hallstatt and 2-Hallstatt modes as computed from R__ (full curve).
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The functions that are applied in correcting the
edge errors in order to predict the various modes of
oscillation

For predicting R _we must be able to take into account the edge
errors and to predict each of the eight modes of Table I that, upon
addition to the linear trend, allow one to determine its envelope. With

this purpose we introduce the function, F(2):

F(1)= a(e)sini@z /(7 (1) (e ~1,)) + 91 )
(1) =7, ~b [abs(r-1,)] @.1)
A(r) = 4,epl(1/2) (D227, )], (4.2)

The suffixes 1 and 2 refer to the values of 7, 4 and T, prior to and
after 7 respectively.

The values of the nine parameters that, once introduced in Eq. 4,
allow one to simulate a given wave burst are found as follow:

¢ is determined from one of the two data sets:

I.  Either is it the date on which the strongest oscillation of the
whole wave burst has passed through zero, in the case that this
oscillation is nearly symmetric,

II. Or it is the date on which the strongest half oscillation of

the whole wave burst maximizes. In that case this half of the
oscillation is very nearly symmetric.

Once ¢ is determined ¢ is fixed by the shape of the oscillation to
which it is included.

The values of the remaining seven parameters that together with
t and ¢ allow one to simulate a given wave burst with the use of
Eq. (4). These parameters are determined from the following general
properties that are valid for each of the wave bursts:
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II.  The amplitude, A(?), varies strongly, being well approximated by
a Gaussian function; ¢f. Eq. (4.2) where the parameters, 7, ,are
both within the range of the periods of the wavelet components
of the mode to which the wave burst belongs.

III.  During each wave burst there are an entire number of half-

oscillations of which the total duration is equal to that of half of
an oscillation of a mode with longer period, as we have already
illustrated in the particular case of the Semi-secular wave burst
(top panel of Figure 6). The exception to this rule is mode #3 for
which each wave burst lasts, instead, for a full oscillation of a
longer period mode.

The procedure by which we apply the above general properties
for determining the seven parameters in Eq. (4) that together with ¢,
and ¢ allows one to simulate a given wave burst is explained below
by applying that procedure to the Semi-secular wave burst shown
in Figure 10 ( the succession of blue and red curves). This case is
the only one for which we know virtually a full wave burst during
the time interval for which telescopic observations of solar activity
are available. Note that the duration of the Semi secular wave burst
(Figure 10A) is equal to the duration of a half a Suess oscillation
shifted forward by 37 years (Figure 10B). After selecting ¢ =1770,
=0 from the shape of the given wave burst we introduces a iterative
procedure that consists of two steps:

L We start by fixing in Eq. (4): 4(1 =4, ,=54.8, 62.5 and assigning ,
in Eq. (4.1), the initial values 5=0 and T, ,=54,56. These last are
twice the durations of each of the two half oscillations that are
going on around ¢ . After that, we increase b and change 4, ,and
T ,till the successive oscillations pass through zero as much as
possible to coincide with the observed ones. We find b=3 year /

century, A]}ZZSS, 59.and T, ,=54.8, 59.0

Assign in Eq. (4.2) the initial value of 7, 60, that is the value of
the largest period among those of the wavelet components of the
Semi secular mode (¢f- Table 1). After that, decrease 7, till the
simulated values of the successive oscillation coincide as much

as possible with the observed ones (black curve in Figure 9). We

1L

I.  The Period T(t) (Eq.4.1) slightly decreases with decreasing find T =40, 62.
amplitude, at a constant rate, b . 41,2
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Figure 10 A) A Semi-secular wave burst (#2 In Table 1) (blue and red colored curves prior to and after 1705, respectively, where the red number marks the
date on which the strongest oscillation of the whole wave burst passes through zero (t_ in Eq.4),and the black curve is its simulation by Eq. 4 with b=0.03 year/

century, (p=0,A|v2=54.7, 59.0,T|J=54, 56T

Al2

: =40, 62. B) An isolated half of a 2-
their simulations by a harmonic function ( cf. Eq. 5) with to =1664, p=3/2r,T=

Suess oscillation shifted forward by 37 years, where the dashed yellow curve is
388 and A=16.4.The black vertical lines in the two panels are at the successive

dates on which the 2-Suess oscillation passes through zero, reach their maximum values, to pass thereafter through zero again.
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We notice that during these wave burst the dates on which the
observed and simulated curves pass through zero differ at most by
one year and, after 1705 when the observations became more precise,’
the values of the simulated oscillations differ by at most one sunspot
number from the actual ones. We cannot apply Eq. (4) for simulating
the ongoing half oscillation of modes #7 and #8 because their
respective periods are larger than the duration of R, . So we have
simulated them by harmonic functions.

F (1) = asinf(22/T)(1-1,)+ 0], (5)

where 4 and 7 are the amplitude and period of the harmonic
function; #_is the date on which the given half of oscillation started and
¢ depends on the sign of the considered half oscillation. In Figure 10B
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we exemplify the accuracy by which Eq. (5) allows one to simulate
the considered half of the oscillation by applying it to one half of
the 2-Suess function. This is the mode with the largest periodicity
for which we know half of the oscillation that occurs during the time
interval for which telescopic observations of sunspots are available.
We find that the simulated curve (yellow dashed curve) differs from
the actual one (grey curve) by at most 0.05 sunspot number. This small
difference between the two curves is indistinguishable in the Figure. In
the next subsection we present the eight modes of oscillation that are
derived from R, by the methodology introduced in Subsections 3.1
to 3.3. Thereafter, based on their properties and mutual relationships,
we select the respective sets of parameters that, once being introduced
in Eq.( 4) or Eq. (5), allow one to correct their respective edge errors
and to predict them. The results are summarized in Table 2.

Table 2 The values of the parameters that, once introduced in F(t) (cf. Eq. 4), allows one to apply them to correct the edge error and to predict a given mode
together with the time interval, in years, during which each of the sets are applied.T,,T, and t_are given in years,A_in sunspot numbers and b in years /century
.In the cases in which only half of an oscillation is predicted the corresponding simulation is made by applying Eq. (5), and then the values of T, and b are not

necessary. The results are shown in Figure 13 & 14 in Section 4.2

Mode Parameters of Eq. 4 Interval
T TA A ] to b
2-Hallstatt 4600  ------ 2.5 3m/2 410 ---- 410-2710
Hallstatt 2272 e 5 3m/2 900 ---- 900-2036
Eddy 1000 600 12 T 1518 3 410-2710
2-Suess 400 460 16.3 3m/2 1627 3 1722-2210
336 - 5 0 2210 --- 2210-2376
Suess 210 330 42.1 0 1512 3 1930-2036
210 - 9 2036 - 2036-2236
Secular 114 110 50 T 1857 -3 1990-2046
93 130 30 0 2240 -3 2046-2352
47 76 20 0 1968 3 1968-2050
55 70 40 0
Semi-secular 2150 3 2050-2230
67 70 37 0
27 e 7 0 2006 2006-2020
Hale 222 40 19 0
222 40 19 0 2070 0 2020-2130

The properties of the eight modes of oscillation that
constitute solar activity and their prediction

Summarizing: In this Section we apply the methodology introduced
in Section 3 for determining the modes of Solar Dynamo oscillations
as observed in the data of Section 2. Based on the results described
therein we predict them for an appropriately selected time interval.
We start in Subsection 4.1 by summarizing the physical nature of the
Intcal 98, the SN data and Schoves’s data. In subsection 4.2, the
relationships between modes ##5 to 8 as observed from the Intcal 98
data are determined. In Subsection 4.3 we correct for the respective
edge errors and predict the eight modes of oscillation from their
observed shapes. It is also found that once the edge error is determined

in the linear trend, it appear to be well represented by a constant,
having the value of sunspot number 157.2. Finally, in Subsection 4.3
we predict the Hale mode and the Noise from a relationship that we
found between them.

On the physical meaning of the data

Usoskin et al.*! have shown that the cosmogenic isotope '“C data
are driven by the solar signal on timescales from about 100 years up
to 1000 years and occasionally even on multi-millennial scales. The
cosmogenic particle flux is modulated by the solar wind, of which
the intensity depends on the dipolar component of the polar magnetic
field and so the Intcal 98 data (Figure 5) are a proxy for the strength of
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this component, as is aa, , . On the other hand SN, _(red point on Fig.
4) is a proxy for the strength of the toroidal component, while prior to
1610, Schove’s (1955)* time series (blue points in Figure 4) is based
not only on bare eye observations of sunspots but also on aurorae.
The latter are driven by solar storms. A proxy for these is the Sudden
Commencement index introduced by Mayaud?® It was found* that the
Gleissberg cycle as determined from aa,, and from the Mayaud index
time series are qualitatively the same.

In Figure 11 we compare the spectra of the Intcal 98 and the R
time series. Five of the six modes that compose the Gleissberg cycle
are not only apparent in the R _spectrum (red stars) but also in the
Intcal 98 one (black points). Moreover, the Suess, 2-Suess and Eddy
peaks have the same periods in the two spectra. The origin of the
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difference between the periods of the 2-Hallstatt and Hallstatt peaks is
basically due to the different time span covered by each of the involved
time series, as will be demonstrated in Section 4. So the Intcal98 time
series allows one to determine with precision the evolution of the
periodicity of the five modes with the largest periodicity that compose
the solar activity related time series. We note that the power of the
spectrum of the R, _time series decreases fast for periods above the
Suess one. The same does not happen with the Intcal 98 time series,
because the relative strength of the modes as computed from R, on
one side and Intcal 98 on the other are not the same. They are strongly
amplified in Intcal 98, contrary to R . Based on the above results we
use in the next subsection the Intcal 98 data for a qualitative study of
the mutual relationship between modes ##5 to 8, while for modes ##
1to 4 these relationships are found from the R _data.

10 100 1000 10000
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Figure 11 The spectra of the Intcal 98 (black) and the R _ (red) time series normalized to unity at the Suess peak, where the black points and red stars mark
the years of their respective peaks and the numbers of the same colors near these peaks are the values of the corresponding periods.

Prediction of the eight modes of oscillation that
constitute solar activity

Summarizing: In Subsection 4.2.1 we will use the Intcal 98
time series for determining the relationship between the 2-Hallstatt,
Hallstatt, Eddy, 2-Suess and Sues modes. Based on these results we
determine in Subsection 4.2.2 the edge errors in the 2-Hallstatt and
Hallstatt oscillations and in the linear trend as found from R__ . In
Subsection 4.2.3 the Eddy, the 2-Suess, the Suess the Secular, the
Semi-secular and the Hale modes are determined from the R time
series. Data on their shapes and mutual relationships allow one to
predict each of them. As may be expected, in view of the physical
origin of the applied data, we find that the irregularity in the shapes
of the modes prior to 1610 increases with decreasing periods of
the relevant modes. Fortunately, the Eddy and the 2-Suess and
Suess modes have a regular behavior during the whole 1725 year
interval covered by the R time series; and the time elapsed since
telescopic observation of sunspots started, appears to be sufficient
for determining the shapes of the Suess, Secular, Semi secular and
Hale modes. Finally from a relationship that we find to exist between
the Hale mode and the Noise, this last is predicted all this assures an
accurate prediction of the eight modes of oscillation and the Noise to
which the earlier defined constant value of 157.2 should be added, for
a safe prediction of the sunspot maxima envelope.

The relationship between the 2-Halsltatt, Hallstatt,
Eddy, 2-Suess and Suess modes

In Figure 12 we present modes ## 4 to 8 as determined from the
Intcal 98 time series. Next to the open magnetic flux of the Sun,

cosmogenic isotope rays are also shielded by the geomagnetic field*!
s0, in order to determine to what extend this field has impacted on the
Intcal 98 time series we have to resort to the observations of the virtual
axial dipole moment (VADM) of the geomagnetic field (the violet
curve in Figure 12A) We note that at the starting and ending dates
of the Intcal 98 time series VADM has the same value which proves
that the increases of the amplitude of the 2-Hallstatt and Hallstatt
oscillations (cf. green and brown curves in Figure 12) is a real fact
during the last seven millennia. We observe that the duration of the
two full Hallstatt oscillations, of which the starting and ending dates
are indicated by the vertical green bars in Figure 12B, has decreased
with time in 240 years. Hence, if this behavior would continue till
~2220 during the duration of the Hallstatt oscillation that started in
900, we may predict that the duration of the half Hallstatt oscillation
that started in 900 will be ~1110 years. On the other hand, each of half
of the 2-Hallstatt oscillations is successively passing through zero and
reaches its maximum synchronously with each successive half of a
Hallstatt oscillation, and so the period of the 2-Hallstatt oscillation
is equal to twice the Hallstatt period. From the above we conclude
that the 2-Halsstatt mode is the first subharmonic of the Hallstatt one,
of which the respective oscillations have periods that decrease with
increasing amplitude. And so, as the amplitude of both modes has
steadily increased during the last seven millennia, the periods have
been steadily decreasing synchronously.

Consequently the amplitudes of the ongoing 2-Halsltatt and
Hallstatt oscillations are the strongest of the last seven millennia. The
fact that that the amplitudes of the successive half Hallstatt oscillations
as well as of the 2-Hallstatt modes have increased during the last 7
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millennia indicates that, as it happen with the Semi-secular mode (cf.
upper panel on Figure 6), these two modes have also a wave-bursting
nature. The duration of each Eddy wave-burst (black curve in b) is
related to that of each half of the corresponding 2-Hallstatt oscillation
(brown curve in b), while the maximum amplitude of each of its
successive wave-bursts is noticeably stronger when the sign of the
2-Hallstatt oscillation is negative than when it is positive. A similar
relationship is found between the shapes of each Suess Wave-burst
and each half of the Hallstatt oscillation (d), and also between this last

- -4 40 - 340 -24040
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one, shifted forward by 174 years, and each 2-Suess wave-burst (c).
We also see that the starting dates, viz. 410 and 900 of the ongoing
2-Hallstatt and Hallstatt oscillations as determined by the Intcal 98
data (green and brown b and d), coincide with a high level of precision
with the starting dates of the ongoing Eddy and Suess wave-packets as
seenin R (in panels b and d) . This allows one to predict with some
precision the 2-Halsltatt and Hallstatt ongoing oscillation on one side
and the Eddy, 2-Suess and Suess modes on the other. These matters
will be discussed in Subsections 4.2.2 and 4.2.3, respectively.
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Figure 12 The VADM (violet curve) (from Table | in Genevey et al*® and the 2-Hallstatt and Hallstatt oscillation (A). The other panels show the relationship
between the Eddy Wave-burst with each half of 2-Hallstatt oscillations (B) and of the 2-Suess (C) and Suess (D) wave-bursts with each half of successive Hallstatt
oscillations. The numbers along the vertical bars are the starting dates of the corresponding 2-Halsltatt oscillations (brown numbers in a and b) and of the
Hallstatt oscillations (green numbers in a and D).This last one has been shifted forward by 174 years (green numbers in C).
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The Long trend and the prediction of the ongoing
2-Hallstatt and Hallstatt oscillations

The ongoing 2-Hallstatt and Hallstatt oscillations, as computed
from the 1725 years long R time series, may be severely distorted by
the edge error because their periods are longer than the duration of the
time series itself. To solve that problem we compute the Long trend
defined as the addition of the 2-Hallstatt and Hallstatt oscillations
to the linear trend (Table 1). The method by which we simulate the
Long Trend and predict it is presented below. The results are shown
in Figure 13. The starting assumption is that once the edge errors on
the Long Trend are determined, the slope of the linear trend reduces
to zero. In addition, each single half of the oscillation of a given mode
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is known to be well represented by a harmonic function (Figure 10B).
As a consequence we may simulate the Long Trend by the addition of
a constant, C to two harmonic functions. With this purpose we need
(cf. Eq. 5) to know the values of the parameters ¢, ¢, T and, 4 (Table
2) that are essential for the respective ongoing half oscillations. The
values of ¢ and ¢, are known from the results shown in Figurel12A;
the respective periods are equal to twice the duration of the Eddy and
Suess ongoing wave bursts (Figure 14A &14C in subsection 4.2.3)
and, finally, the amplitudes of the two harmonic function and the
constant C are found by selecting those that leads to the best fitting of
the simulated curve to the one obtained from the R time series (full
and dashed curves in Figure 13, respectively).
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Figure 13 A) The Long and the linear trends and (B) the Hallstatt and 2-Hallstatt oscillations as computed from R

, prior to and after having corrected them

for their respective edge errors (dashed and solid curves, respectively). The latter have been predicted by the procedure outlined above. In (B) the numbers at
the vertical bars are the dates on which the 2-Hallstatt (brown) and Hallstatt (green) oscillations passed through zero and were predicted to be passing through

zero again, respectively.
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Figure 14 The Eddy, the 2-Suess, the Suess, the Secular, the Semi-secular and the Hale modes as determined from Rmax, where the blue, red and black colors
differentiate between the values of the respective modes of R (Figure 4) before and after 1610, and between those computed either by Egs. (4) or (5) with
the parameters of Table 2. The numbers attached to the vertical bars in (A), (C) and (B) are the years in which the half of the ongoing 2-Hallstattt and Hallstatt
oscillations (the last one shifted forward by 174 years) respectively passed through zero or are predicted to pass through zero again. In panels (D) and (E)
the 2-Suess Wave-bursts are shifted forward by 130 and 37 years, respectively. In panels (D) to (F) the numbers at the right indicate the ending dates of the
respective predictions. In panels (B) to (F) the dashed and solid curves of the same colors and these curves from there onward are the corresponding signals
multiplied by the amplification factor (Table 3).This is done differently, depending on the sign of the succeeding half of the oscillation.

Note that the edge errors of the Long Trend (blue curve in Figure
13A) and in half of the ongoing 2-Hallstatt and Hallstatt oscillations
(brown and green curves in Figure 13B) occur at the two edges of
the respective signals, covering a time interval of the order of half an
Eddy oscillation, as it must be according to our analyzes of the edge
errors presented in Subsection 4.3. As estimated from the Intcal98
time series the Hallstatt oscillation that started in the year 900 will
have a duration of 1100 years, a value that differs by only 0.2%.
From the predicted 1136 year duration as found from the R data.
As regards the predicted duration of half of the 2-Hallstatt oscillation,
this being 2300 year, this value allows one to estimate its period to
be ~4600 years. This value is very near to twice that of the Hallstatt
oscillation, as it must be because we know from the Intcal98 time
series that the 2-Hallstatt oscillation is the first sub-harmonic of the
Hallstatt one. All this give support to the methodology that is applied
on Subsection 4.2.3 Figure 14 (A,B) for predicting the durations of
the Suess and Eddy wave bursts that are synchronic with half of the
ongoing 2-Hallstatt and Hallstatt oscillations.

A prediction of the Eddy, 2-suess, suess, secular, semi-
secular and hale modes

In Figure 14 we present the six modes that, when added to the
2-Hallstat and Hallstatt ones (Figure 13B) together with the 157
sunspot number constant allows for a determination of the sunspot
maxima envelope. We observe that, with the exception of the
Hale mode, the duration and maximum amplitude reached by the

oscillations during each of the successive wave bursts Figure 14(A—
D) is related to each half of an oscillation with a longer period. With
regard to the Hale mode (Figure 13C) the duration of each successive
wave burst is related to the duration of each successive half of a Suess
oscillation, but the maximum amplitude reached for each of them is
instead related to the amplitude and sign of the Eddy oscillations,
respectively. Hence, in the above relationships that exist between
the eight modes there is sufficient information to straightforwardly
determine the parameters of Eq. (4) (Table 2). This enables one to
simulate the durations of the Eddy (a), the 2-Suess (b), Suess (c), the
Secular, (d) and Semi-secular (e) wave bursts. The ongoing Suess
and 2-Suess wave bursts are expected to end in 2036 and 2210,
respectively. Hence, to obtain values for these predictions for a longer
time span we add one and a half oscillation to it. These are represented
by two harmonic functions with periods and amplitudes that are equal
to the respective averages as seen in the oscillations that were going
on during the previous positive phase of the 2-Hallstatt and Hallstatt
oscillations, respectively. The results are summarized in Table 3.

The six modes listed in Table 3, are those for which we have
enough information to enable their determination from the number of
oscillations during each wave burst as a function of the sign of half
the oscillation. We found that this number is larger when the sign is
positive than when it is negative. Hence, the average period of the
successive oscillations during a given wave burst changes from one
wave burst to the next, being smaller when this sign is positive that
when it is negative, as is exemplified in Figure 6 & 7.
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Table 3 The properties on which the predictions of the Eddy, 2-Suess, Suess, Secular and Semi secular wave- bursts are based. Here, the Amplification factor is
defined as the quotient between the maximum amplitude reached during each wave burst and the amplitude of half the oscillation that determines the number
of oscillations in each of them. In the Hale case the maximum amplitude reached by the oscillations is not determined by half of the Suess oscillation that
determines its duration, but by the Eddy oscillation, as indicated to the right side of the respective amplification factors.

Wave burst Half of oscillation

Number of oscillations

Amplification

Negative Positive Negative Positive
Eddy 2-Hallstatt 25 3 3 -
2-Suess Hallstatt 3 35 34 1.5
Suess Hallstatt 55 6.5 8.5 3
Secular 2-Suess 1.75 1.75 3 |
Semi secular 2-Suess 3 4 37 2
Hale Suess 4.5 5 1.0 (Eddy) 3.0 ( Eddy)

The properties of the Hale mode

As summarized by Mursula et al* an empirical Gnevyshev-Ohl
(G-0) rule* demands that sunspot cycles occur in odd-even pairs
so that the intensity of the odd cycle of a pair exceeds that of the
preceding even cycle. However, the G-O rule in the Wolf sunspot
series is only valid since solar cycle #10 and fails for cycle pairs ##4-5
and ##8-9.%*7 In Figure 15 we have plotted the SN, Hale mode and
the addition to it of the Noise full and dashed curves). For predicting
the Noise (black dashed curve) we have taken into account that its
value at the date of occurrence of each Sunspot Maximum is at most
equal to 50% of the value of the Hale oscillations at their successive

relative maxima and minima. Notoriously, since sunspot maximum
#10 the dates on which successive Sunspot Maxima occur (points on
Figure 1) coincide with those (points on Figure 15) on which each
half of a successive Hale oscillation reaches its maximum amplitude ,
apart from the case of sunspot maximum #9 which is at an inflection
point. As a result the G-O rule leads to pairs of relative maxima and
minima of the Hale oscillations occurring in synchronicity of each
sunspot maximum odd- even pair ; this being a rule that is violated
by the pairs ##4-5 and ##8-9. This proves that the odd-even rule is
determined by the shape of the Hale mode, and so this mode is the
signature of the sunspot maxima time series of the Hale cycle.
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Figure 15 The Hale mode in the interval 1705 to 2014 (the succession of green and red curves as in Figure 2) and its prediction till 2130 (black curve).The
dashed curves result from the addition of the Noise to the Hale mode.The succession of green, red and black points are at the dates on which each successive
sunspot maximum occurs.The red and the green numbers at the vertical bars indicate the dates of occurrence of the last two transitions (Figure 2).The violet
numbers are at the dates on which some of the odd-even sunspot maxima pairs violated the G-O rule prior to sunspot maximum #10 and the green -red and
red-green pairs indicates those that occurred around the 1923 and 2006 transitions (Figure 2).

Citation: Duhau §, Jager C. Solar dynamo modes of oscillations and the long-term prediction of solar activity. Phys Astron Int J. 2020;4(1):34-58.

DOI: 10.15406/paij.2020.04.00201|


https://doi.org/10.15406/paij.2020.04.00201

Solar dynamo modes of oscillations and the long-term prediction of solar activity

As stated by Nagovitsyn et al.*® the G-O rule has been found to hold
not only for statistical indices of solar activity but also in the context
of the physical parameters of the solar magnetic field: the sunspot
magnetic flux and the open magnetic flux. We have established that the
hypothesis of Usoskin et al.* about the ‘loss’ of one cycle at the end of
the 18th century allows the Gnevyshev-Ohl rule, which regulates the
behavior of physical parameters of the solar magnetic field, to have a
broader context, being valid without any exception during the last 400
years. Thus, in actual fact, we can talk about the Gnevyshev-Ohl law
of the long-term dynamics of the solar magnetic field, this being a law
that holds for both normal and extreme levels of solar activity. Indeed,
the last 400 years interval contains the earlier described three kind of
possible Episodes that may be due to the solar dynamo in the course
of time. Hence we conclude that the G-O rule is due to some intrinsic
feature on the solar dynamo system.

To continue the understanding the evolution of the Hale mode in
Figure 16 we show this mode in aa,, and in SN as functions of
time during the interval when aa, is known, (Figure 16A), its phase
diagram (Figure 16B), and together with it the sunspot maxima in
the neighborhood of the 1923 Transition (Figure 16C). Similarly to
what happens with the SN mode for which, after sunspot maximum
#10, each half of Hale oscillation reaches its maximum value in
synchronicity with each sunspot maximum (the succession of green
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Figure 16 A) The SN and aa_, Hale modes (the succession of green and red curves, and the blue curve, respectively); B) their phase diagram and C) SN
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and red points in Figure 15 & 16A) and a similar behavior is followed
by the Hale mode on aa,,. We observe that, when approaching the
1923 Transition date, the path in the Phase diagram of the Hale
mode (Figure 17B) changed suddenly its direction, to become nearly
vertical around this date, This indicates that the appreciable change
that is seen in the path of the Grand XX century Maximum (red curve)
as compared with that during the previous Regular Episode (green
curve) is due to some particular phenomena that is occurring during
the Hale cycle that separates these two Episodes. It is highly relevant
that the odd-even rule is fulfilled at the pair #15-16 by SN, but
violated by the aa,, one (Figure 16C). This is due to the fact that
the amplitude of the Hale full oscillation of aa , that was relevant
around 1923 appears to have no relation to that of SN, , which has a
substantial amplitude. From this we infer that there is some component
of the polar field that is not detected by the Earth’s magnetosphere but
is strong enough around the 1923 Transition to lead by itself to the
G-O rule to be fulfilled in the toroidal one. From all the above we
speculate that the Earth’s magnetosphere is sufficiently far from the
Sun to ensure that only the dipolar component of the polar field is
leading to geomagnetic activity. At the same time there must be other
components of the solar dynamo polar field that are contributing to the
polar component, such that they are quite relevant for the fulfillment
of the G-O rule in the polar field.
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and aa_ after having subtracted their respective 9.8 nT and 1500 sunspot numbers. Transition level values (circles and stars, respectively) apply to the interval
1890-1958, together with the Hale mode of these two variables. In A) the points and stars mark the values of the two signals at the dates of occurrence of the
successive maximum amplitudes. In the three panels the numbers refer to the odd-even pairs that occurred round the 1923 Transition.

The above assumption finds support in the observations of
heliospheric observations at 2.5 solar radii, where spacecraft
observations during the sunspot minimum #20 (1965-1966) indicate
that there is a north south asymmetric in the heliospheric magnetic
field and that the heliosphere current sheet (HCS) is inclined with
respect to the solar equator. This suggests the existence of a quadrupole
component on the solar magnetic field.* Moreover according to
Mursula et al.*# a multipole expansion of the HCS reveals a strong
quadrupole term which is oppositely directed to the dipole term, which
implies that the Sun has a symmetric quadrupole dynamo mode that
oscillates in phase with the dominant dipole mode. Based on all the
above we conclude that the evolution of solar activity is affected by
the development of the relative phase between the dipolar component

of the polar field with respect to the remaining components of the
polar field , and also by its relative strength. Heliospheric observations
of the solar magnetic flux are very relevant for disentangling this
possible relationship.

The long term prediction of solar activity

Summarizing: In subsection 5.1 we will study the origin of the
relationship that exists between the signs of each half of the Hallstatt
oscillations and the nature of the corresponding solar dynamo episodes
as well the origin of Short Minima and Maxima. From the results
thus found we will make a qualitative prediction of solar activity till
~2200, which is the year in which the Hallstatt cycle is predicted to
pass from negative to positive values. In subsection 5.2 we predict
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the date of occurrence and the values of sunspot maxima ##25 to 35.
Finally, in subsection 5.3 we discuss how the Hallstatt oscillation, to
which all the other modes are directly or indirectly related, may be
excited by planetary motions, as was suggested first by Charvatova®!
(for a review and more recent advances of the subject see Scafetta,
2016).%

A prediction of the nature of solar dynamo Episodes
till the end of the third Millennium

Long term prediction of solar activity is only possible if the
properties of solar modes of oscillation continue in the course of time
and when their behavior during each of their respective Wave-Burst
is regular. The results of Sections 4.1 and 4.2 (Figure 12 & 14) show
that such is the case for modes whose periods are at and above the
Suess one. The same happens with the Secular mode (Figure 14D) for
data since 1610, this being the date after which R is based solely
on telescopic observation of sunspots. As R, _data prior to 1610 are
mainly based on auroral frequencies and visual observations of large
sunspots the apparent irregular behavior of the Secular mode is due to
the discrepancy of the same mode as seen in each of the two variables
from which R is built up. On basis of the above, a long term
prediction of the Gleissberg mode is, at least in principle, possible.
However, from the two time series on which our study is based (Figure
4 & 5), we don’t have enough information on the amplitude of half
the Hallstatt oscillation that is expected to start in 2036 (cf. full green
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cure on Figure 13B). Consequently, as the behavior of all the modes
ultimately depends on that of the Hallstatt mode, our prediction of
the Gleissberg cycle can only be precise till 2036. After that it is only
qualitative.

As summarized by Usoskin®* Grand minima tend to appear in
clusters with roughly 2400 years separation (the Hallstatt cycle, see
e.g., Damon et al.®® Within the clusters, the Grand minima appear
with roughly a 210-year quasi-periodicity.'>?® We know (Figure 2)
that Grand Maxima (or Minima) appear in the Gleissberg cycle as
a strong and negative (or positive) oscillation with a duration that is
nearly twice the one that corresponds to that of the Regular Episodes
( the sequence of blue, green and red curves in Figure 1). The origin
of this behavior, illustrated in Figure 17, is explained below. From
the six modes that constitute the Gleissberg cycle, the Suess one
(red curve in Figure 17B) is the one of which its period, this being
about two centuries, has a value that is in the range of the duration
of Grand Minima and Grand Maxima. This indicates that a necessary
condition for these Episodes to occur is that the Suess oscillation is
strong enough. We know (Table 3) that the maximum amplitude that
is reached by the Suess oscillation during each wave burst depends
on the sign of the Hallstatt oscillation, this being nearly 3 times larger
when this last one is negative instead of positive. This property is in
accordance with the fact that Grand Maxima and Grand Minima occur
only when the sign of the Hallstatt oscillation is negative.
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Figure 17 A) The Gleissberg cycle, where the black and green curves differentiate between the periods prior to and after 2006, respectively. B) The 2-Suess and
Suess modes (blue and red curves, respectively). In the two panels the green bars are on the dates on which the Hallstatt oscillation successively changed from
positive to negative values and back again to positive values. The black bars indicate the dates on which two successive strong Suess oscillations pass through
zero, which happens synchronously with two of the strongest 2-Suess oscillations of the whole period.
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However, not only the Suess but also the 2-Suess oscillation (blue
curve in Figure 17B) plays a central role in determining the nature of
the successive episodes. For instance, in 1620 a Suess and a 2-Suess
oscillation were passing synchronously from positive to negative
values, thus leading to the strongest Maxima and Minima of the last
1725 years. This is contrary to what happened around the year 1842
(green line) when a Suess oscillation was passing from negative to
positive values while at the same time a Regular Episode occurred.
On the other hand the ripples that may be seen in some of the Grand
Episodes are due to the contribution of the secular modes. From the
shape of the Gleissberg cycle, as predicted till 2238, we confirm (for a
review see De Jager and Duhau, 2016) that the Solar Dynamo Episode
that started after the 2006 Transition will be of the Regular type (green
curve in Figure 17A). In 2036 the Hallstatt oscillation will change
sign from negative to positive and so the amplitude of the Suess
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oscillation will be strongly reduced as compared with those prevailing
prior to that date. As a consequence the Regular Episode that has just
started will last for the rest of the present millennium. It is noticeable
that in 2036, the year in which the Hallstatt oscillation is predicted
to pass through zero, the Gleissberg cycle is expected to be passing
over the 7.2 sunspot level while undergoing at the same time a short
full oscillation with amplitude that is of the order of the data error. As
a next step we determine the origin of Short Minima, like the Dalton
one, and also of the Short Maxima (indicated by the blue and red S
respectively in Figure 4 & 18). We find that the necessary conditions
for the occurrence of these Episodes is the synchronicity of a semi-
secular oscillation that is strong ‘enough’, with half an oscillation of
the Gleissberg cycle of the Regular type (green curve) while both are
negative (or positive) in the case of Short Minima (or Maxima).
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Figure 18 The Semi-secular mode (black curve), the Gleissberg cycle (the succession of blue green, red, and green again that indicates the kinds of Episodes
as in Figure 2); and the 2-Suess oscillation shifted forward and multiplied by 3.4 and I.5 (full and dashed pink curves as in Figure [4E).The letter D indicates
the Dalton Minimum and the red and blue letters S the Short Maximum that preceded to the Dalton Minimum and the Short Minimum that is predicted to
occur around 2130 (cf. Figure |9 in Subsection 5.2) .The black and green vertical bars are at the date of the last transition and the date on which the Hallstatt

oscillation is foreseen to be passing from negative to positive.

Prediction of sunspot maxima ##25 to 35

The addition of the envelope and the Noise as found from SN,
(black curve in Figure 18) at each of its peaks , valley or inflection
points appears to yield a difference from the observed values (the
sequence of blue, green and red points in Figure 19) by less than
0.5 sunspot numbers. This is so in all cases; hence these small
differences are not observable in the Figure. This property allows
for a straightforward prediction of the dates of occurrence and the
values of the forthcoming 11 sunspot (Schwabe) maxima. As the
predicted values of the Gleissberg cycle are quantitatively precise
only till 2036 while the behaviors of the Semi-secular and the Hale

modes (Figure 3) are somehow irregular even after 1705, the year in

which SN started , we have fairly accurate estimates of the errors
of our predictions only for sunspot maxima ##25-26. Based on this
consideration we summarize our prediction as follows: the pair of
sunspot maxima ##25-26 will occur in 2025+1 and 2036+1 and it
will have values of 160+8 and 15048 sunspot numbers, respectively.
After that, sunspot maxima #27 to #31 will be oscillating around the
157.2 sunspot level, thus fulfilling the odd-even rule with a variable
amplitude that will be at most 40 sunspot numbers. Finally, at sunspot
maximum #31 occurring in 208142 a Short Minimum, similar to the
Dalton one will start , during which the odd-even rule may be violated
by the ##33-34 Schwabe pair. Also, solar activity will emerge from
this Short Minimum at sunspot maximum #35 which will occur in
2130+2.
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Figure 19 Sunspot maxima as fond by adding the 157.2 spot constant to modes ##| to 8 and the Noise (definitions are given in Table I; black curve) and the
values of the successive observed (points) and predicted (stars) sunspot maxima.The colors in the interval 1705-2014 are as in Figure | and the black numbers
at the green points indicate the two pairs of sunspot maxima that violate the O-D rule.The black numbers at the vertical bars mark the date of occurrence of
the last two transitions (Figure 2) and the green one marks the date on which the Hallstatt oscillation is predicted to be passing through zero form negative to

positive (as in Figurel3B and Figure 17A).

A preliminary discussion of the origin of the behavior
of solar dynamo modes of oscillation

In Section 4 we found that, the solar dynamo system contains eight
modes of oscillation that exhibit well defined and persistent mutual
relationships. These are on one side the Eddy mode, and the 2-Suess
and Sues modes on the other. They are related to the Hallstatt modes.
In turn the Secular and Semi secular modes are related to the 2-Suess
one and the Hale mode to the Suess and Eddy modes. Finally the
2-Hallstatt mode is related to the Hallstatt one with a time delay that
has a value equal to a fourth part of the previous Hallstatt oscillation.
From all of this we conclude that all the modes of oscillations are
ultimately related to the Hallstatt one. Charvatova™ found that he
Jupiter/heliocenter/ barycenter alignment has a periodicity of 2402.2
which made her advancing the hypothesis that the Hallstatt ‘cycle’ is
excited in the solar dynamo by inertial solar motions. More precise
computations were performed by Scafetta et al.®> They included in
their computations the four Jovian planets: Jupiter, Saturn. Uranus and
Neptune, and they found that the orbit of the planetary mass center
(PMC) relative to the Sun is varying. Thus they arrived at virtually the
same value: a 2318 years periodicity.

On the other hand the time that is estimated for the four Jovian
planets to come back to the same position, except for a rotation
of 30° is 179.8 years, (Figure 4) which leads to the conclusion
that the four satellites return to the same position with a period of
12 x179.8=2146 years, which is also in the range of the Hallstatt
periodicity. Notoriously there are 12 Suess oscillations during each
Hallstatt one (Table 2). So it appear that the each Suess oscillation
is related to the 179. 8 periodicity of the planetary motions. In turn,
as summarized by Fairbridge et al.® the progression of the inertial
orientation parameter is controlled by the Jupiter Saturn 900 year
‘Great Inequality’ while the processional rotation parameter is linked
with the 179 year cycle of the solar inertial motion identified by
Jose*® On the other hand, Somerville’” found that the Jupiter- Saturn
inequality reached its maximum value in the year 1560 and the mean
motion of the two planets approached their true motions, and became
equal to them in 1790. In that context it is highly noticeable that the
Eddy mode reached it maximum negative value in 1518 and passed
through zero in 1748, dates that have both the same time delay of 42
years, with respect to the progression of the Great Inequality of Jupiter

and Saturn. These observation do strongly support the hypothesis
that the Eddy mode is the signature on solar dynamo motions by the
Jupiter Saturn Great inequality.

Some other periodicities has been found in planetary motions
and the solar orbital motion®> When comparing these periodicities
with those in solar dynamo modes of oscillations we must take
into account that when computing the functions associated to solar-
planetary motions , the Sun and planets are assumed to be rigid
spheres. However, as stated by Fairbridge et al.* to fully understand
the interaction between the solar dynamo and planetary forces the
physical interaction inside the solar body must also be considered.
This may explain why, as has been stated by Charvoneau®® Given the
amount of effort having gone into building detailed dynamo models
of the solar cycle, it is quite sobering to reflect upon the fact that the
physical mechanism responsible for the regeneration of the poloidal
component of the solar magnetic field has not yet been identified with
confidence.

Summary and conclusion

In previous research we have represented solar activity related
variables as the addition of two signals that we named bi-decadal and
semi-secular oscillations modes. To these we added the Gleissberg
cycle. As this last one undergoes sudden changes in amplitude
and duration in the course of time this methodology allows one to
predict with some degree of accuracy one sunspot cycle maximum
in advance, but no more than that. A new methodology based on
the Wavelet base functions is introduced (cf. Section 3) that allows
one to detect meaningful signals from a longer time series related to
solar activity. By applying it to a 7080 years series of cosmogenic
isotope data and to a 1725 years sunspot maxima time series, both
being presented in Section 2, we find (Section 4) that the sunspot
maxima time series can be represented by the addition of a constant
value of 157.2 sunspot numbers to eight ‘modes of oscillation’ to
which we added a curve representing the Noise. The eight modes
are the Hale one, that we renamed the bi-decadal one in view of
its properties, the Semi-secular, and six additional modes, viz. the
Secular, Suess, 2-Suess, Eddy, Hallstatt and 2-Hallstatt, that added
to a 157.2 spotnumber level allows for an accurate representation of
the Gleissberg cycle. We find that the so found eight modes have a
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repetitive behavior and well defined mutual relationships. These latter
are based on the development of a method for predicting the eight
modes of oscillation and by evaluating the Noise. By this method we
were able to predict the Gleissberg cycle for the next two centuries
and the dates of occurrence as well as the values of sunspot maxima
##25 to 32 (cf. Section 5). We found that the shapes of all modes, apart
from that of the Hallstatt one, are directly or indirectly related to the
shapes of each half of a Hallstatt successive oscillations, as follows:

I.  The period of each half of a 2- Hallstatt oscillation is equal to that
of a full Hallstatt one. And, during the last seven millennia the
amplitudes of their successive oscillations have been increasing
and at the same time their periods have decreased

II.  The remaining six modes are constituted by a succession of wave
bursts of which the duration and maximum amplitude reached
by their successive oscillations are related to the amplitude and
sign of each half of the oscillation of a long lasting mode

III.  The amplification factor, defined as the quotient of the maximum
amplitude reached during each wave burst and the amplitude of
half the oscillation that determines its duration, is larger when
the sign of this last is negative. In contrast to this, its positive
behavior indicates that there exist a permanent asymmetry in the
solar dynamo system

IV. Properties ##1 to #3 lead to the consequence that Grand Maxima
and Grand Minima only occurs when the sign of the Hallstatt
oscillation is negative, while a long lasting Regular episodes
does occurs when this sign is positive

V. Short Maxima and Minima may sporadically occur, depending
of the relative phase of a Gleissberg oscillation of the Regular
type and a Semi-secular oscillation that belongs to a wave burst
that is synchronous with half of a negative 2-Suess oscillation

VI. While the periods of successive 2-Hallstatt and Hallstatt
oscillations decreases with increasing amplitude the contrary
happen with the remaining six modes

VII. The envelope of signals related to solar activity is defined as
the addition of the 157.2 sunspot counts to the eight modes of
oscillations. We found that the envelopes of sunspot maxima vs.
that of geomagnetic index aa at minima recurrently return to the
‘Transition Point’ (at 9.8 nT, 150.0 sunspot number). After that

the Gleissberg cycle changes in amplitude and duration

VIII. The 157.2 sunspot level around which the sunspot maxima
envelope oscillates differs from the transition level by a constant

of 7.2 sunspot numbers

IX. The dependence of the Hale mode on SN, and aa,, indicates
that besides the dipolar component of the polar field, of which
aa,, is a proxy, there is another components of the polar field
that plays a central role in forcing the odd-even rule.* This
is consistent with the strong quadrupole field inferred from

heliosphere observations.>#

X. The ongoing Hallstatt oscillation is predicted to change sign
from negative to positive in ~2036 while the pair of sunspot
maxima ##25-26 is predicted to occur in 2025+1 and 2036+£1,
while having values that will oscillate around the 157.2 sunspot
level with an amplitude that is equal to the 7.2 constant. This is
within the data error

XI. The Episode that will follows after the most recent Transition (of
2006), during which the Grand XX Century maximum ended,
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is predicted to be of the Regular Type, and as the Hallstatt
oscillation is predicted to be passing 20 years later through zero
from negative to positive, we predict that the current Regular
Episode will last for the rest of the XXX millennium. Moreover,
as stated by Weiss and Tobias* The apparent distinction between
episodes of strong modulation, and intervening episodes with
milder modulation and weaker overall activity, hints at the
solar dynamo following a variety of solutions, with different
symmetries, over the course of millennia.

Besides allowing thus for the above described long term predictions
of solar activity, hence by clarifying the origin of the persistent and
well- defined relationship between the eight modes of oscillations,
our forecasts have relevance for the knowledge of the nature of the
solar dynamo system and of its motions. In that framework the main
questions that arise from the above are:

1. Why is such a regular behavior maintained by a system that is
intrinsically stochastic?!

II. What is the origin of the persistent asymmetry in the solar
dynamo system that is indicated by the behavior of the modes?

III.  What is the origin of the bursting nature of solar modes of
oscillation as observed in solar activity variables?

IV.  While the periods of the 2-Hallstatt and Hallstatt oscillation
decrease with increasing amplitude, the contrary happen with
the Eddy, 2-Suess, Suess, Secular Semi-secular and Hale modes.
Why is that so?

V. What is the origin of the difference of 7.2 sunspot numbers
between the 157.2 level around which Sunspot maxima oscillate
and the 150 sunspot Transition level.

VI. Why, as have been stated by Charovoneau: the physical
mechanism responsible for the regeneration of the poloidal
component of the solar magnetic field has not yet been identified
with confidence.

As regards question #1, such a regular behavior of the solar
dynamo modes of oscillations indicates that solar dynamo motions are
ultimately forced by a fairly well defined deterministic system, as is
the solar-planetary one, as was suggested first by Jose*® (for a review
and recent advances on that subject Scafetta®> Some new evidence
about the existence of this phenomenon is presented in Subsection
5.3. However, the involved forces appear not to be strong enough to
produce solar dynamo motions of the observed magnitude.®® On the
other hand, as has been claimed by Fairbridge et al.® for an accurate
estimation of the interaction between the solar dynamo and the solar-
planetary system we must include in the computations all the relevant
physical interaction, of which the most relevant is the complicated
system of physical interactions within the Solar body. Only after
including this interaction and removing some other approximations it
may be possible to answer questions ##2 to 6. This is a task for later
investigations.
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