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The numerical solution of the navier-stokes
equations in nuclear shock wave propagation

Abstract

In this paper, we will consider Navier-Stokes problem and it’s interpretation by hyperbolic
waves, focusing on wave propagation. We will begin with solution for linear waves, then
present problem for non-linear waves. Later we will derive for numerical solution using
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Nomenclature

Discretization — method which involves dividing to small pieces in
order to solve

Shock waves — abrupt jumps in density, velocity and pressure

Hyperbolic wave — wave mathematically formulated through
hyperbolic partial differential equations is called hyperbolic wave

Newton’s second law is F = ma. It says Force (F) on an objects equal
to mass (m) multiplied by acceleration (a)

Diffusing viscous term — describes the physical transfer quantity
through a small area with normal velocity per some time.

Viscous flow — Viscosity describes fluids resistance to deformation
caused by stress (can be shear stress or tensile stress). Equivalent
term for metals would be thickness

Shear stress is given by a formula F/A, where F is force and A is cross
sectional area of material with area parallel to the applied force vector.
It is applied to fluids which move along solid boundary.

Tensile stress— In fluid tensile stress describes the internal force
applied on a given particle, caused by neighboring particle.

Introduction

Problem setting and description

Navier-Stokes equations are designed in order to simulate
the flow of various fluids in numerous disciplines across physics
(electromagnetism, acoustics, elasticity). Navier- Stokes equations
were formed by combining Newton’s second law and fluid motion.
Also assumption of stress being the sum of diffusing viscous term and
pressure term was taken to describe viscous flow. Without Navier-
Stokes equations working with weather model, ocean currents, water
flow in a pipe, air flow around a wing would be extremely hard. Also
these equations are widely used in designing airplanes and cars,
studying blood flow, designing power stations, analysing pollution
and so on.

History of the Navier-Stokes equations dates back to 1822.
Claude-Louis Navier mentioned in his memoir the equations for

homogeneous incompressible fluids with regards to molecular
arguments. Later, in 1829 Poisson derived equations for compressible
fluids. Consequentially, George Gabriel Stokes formulated the Navier-
Stokes equations in his paper (1847) as we know it today.

Up to this day there is no proof for existence and uniqueness
of Navier-Stokes equations’ solution in three dimensional space.
Moreover, it is considered one of the seven most important unsolved
problems currently. Clay Mathematical Institute offers a significant
prize of one million dollars to the person who will prove this or bring
a counter-example. Although a number of advancements have been
made in this sphere, yet it remains mainly a “dark forest” for the
researches. As you will see in this paper, there is a perfectly working
solution for both one dimensional case and two dimensional case.

This paper illustrates Navier-Stokes hyperbolic wave equations,
its solutions in one dimensional case, and extending that solution for
two dimensional cases. The solution for one dimensional case is rather
simple, in contrast the two-dimensional case requires more work. In
following paper we focused on solution by using partial differential
equations. Explicit finite difference approximation was used for that
purpose. In the end we bring wave propagation examples, with both
two dimensional and three dimensional figures.

Theoretical background
Hyperbolic Waves

In our paper we are interested in hydrodynamic equations which
are similar with signal-propagation equations. That specific kind of
equations are called hyperbolic equations. Also hyperbolic equations
have much broader use, and can be met elsewhere, we will concentrate
on them used in hydrodynamics only. The simplest hyperbolic
equations are given by the following equation

ptt=c0v’ (0)

Where ¢is a function ¢ (x, t), cO is constant velocity, and

vV’ =V £X 2289 15 (2.2) we will derive thei = 0°'i Following
formula, representing hyperbolic waves in one dimensional case.

<Dt+co.(ox =0 (1)
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(1) is the common equation for linear waves. Here ¢ (x, t) is a
function which describes time depending shifting of the function ¢
along x which has a velocity c0. That is it describes the propagation
of the wave.

Let’s understand difference between linear waves and non-linear.
In linear waves the velocity at any point is the same. That is, the total
velocity of the flow is not effected from internal particle velocities
(which we will see are the case in non-linear). So if we look at Figure
1, we’ll see that the wave repeats itself and it propagates without
any change at any moment in time. If we would pick any point and
examine it during time, the overall velocity in that point will always
be the same. For example, imagine that you are in the middle of the
ocean. Waves are born and start their propagation. From that point
waves are linear as they acquire some height and just propagate
without changing their shape.

x

o 2 -1 'E .3 1-?-
= ||I | |I ‘ f||‘ ‘. \ ‘
I | (i
08 I| I (| ||| | ‘ ‘I J|,|H ‘
I|||| |||H|I"|| ‘l
||H

| \.w-!ll'
% ||'\ || |
a L

1

04t

D2

tirme
[=]
=

o2t

o4f | |

Figure | Non-linear wave propagating.

What about nonlinear waves, we will rarely observe too similar
curvatures at two different moments. Particles in one position have
higher velocity than in others, thus during the time we reach a point
when some particle x, reaches particle y, which was in front before,
then passes it. We will have then a picture of crushing wave. For
instance, imagine you are on the beach. You see the waves coming,
then crushing on the sand. Such waves are not linear, as they change
their shape over time. In Figure 2 you can see nonlinear wave. As in
computers for crushing wave one x would require three y values, it
is not display, instead such image is resulted the last one also can be
represented as
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o _ @ (1+A t, x)-(1,x) N @ (1+A t, x)-0(1,x) ®
0 x—0 t t
and
29 o (t.x+Ax)-p(1,x) - @ (t,x+Ax)-¢(1,x) 3
0 x x—0 X N X
the last one also can be represented as

dp o (t.x+Ax)-g(t,x—x)  @(t,x+Ax)-¢(1,x—x)
07 = ~ Q)
X x50 2x 2x

Thus, to not be biased to the right or left, we write it in following
way
(p(t,x+Ax)—(p(t,x—x)

Ax)— _
o (p(t,x+ x) (p(t,x x) .

x—0 2x 2x ©
plugging this into (5) we get
o(t+Atx)-p(t,x o(t,x+Ax)—p(t,x—x
O e

physical meaning of this equation is the propagation of non-linear
wave, however in some parts the amount of error can cause grainy
(non- smooth) surface in the graph. As can be seen from Figure 3 the
wave propagating over time starts to destabilize due to computational-
error accumulation.

Figure 2 Non-linear wave with grainy surface after some time.

Numerical solution
Numerical background and step by step algorithms

For 1D case no special calculating method must be introduced as it
is solved analytically by using, solution that is presented in 2.2.

o(x)= f(x—co. t)

However, when we get to solve the PDE for the non-linear wave
propagation, there is a methodology to be presented. As we already
presented in figure & description 2.3 when having a hyperbolic PDE
of type

t+Atx)-(t,x .
m—(p( )(p( )—é’hm
t x—0

1) (t,x+Ax)—(p(t,x—x) B
2x B

x—0
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Figure 3 Linear wave propagation.

we can approximate it by neglecting the limit and taking a small At
and Ax. As we do we get the approximation
@ (t+Atx)-p(1,x) c p(t.x+Ax)-p(t,x-x)
t 2x -

After getting this equation lets divide our coordinate system into an
n by m grid where where the difference between each to xi neighbors
is Ax and ti neighbors At.

Now having this grid we can rewrite the equation we got in the
following form

_é, (p(taxiﬂ)_q)(t? xi—l)
2 x

From here, given the initial condition (row ¢ (0,x)), we want to
find the values of each row to reconstruct the wave at each point of
time. That is we need to find @(ti+1,x). Lets get it from the equation
above.

=0

w(ti+1,x)—(/)(t, X)
t

4 (ti+1 5x) 4 (ti+1 ’x)
2x

¢(ti+1’x) =t'§ +§0(t>x)

n+l (o] Q o
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Here is the numerical solution for the The PDE that we intended
to solve. As one can notice this scheme can have a problem at the
boundaries. Numerous methods have been developed to approximate
and solve that problems. The famous schemes are Lax-Wander of,
leap-frog ect. ect.

Numerical solution of navier-stokes for linear waves

The numerical solution in the this case involves just using the
analytical solution and simulating time in order to get the wave
propagation. One just needs to assign ¢ (x) = f(x-c,-¢)and
correctly simulate the propagation of wave with the constant speed
0. For this simulation one can use the horizontal translation of the
function by cOt. As one can see from Figure 4 the wave propagates
with constant speed. The periodic for of the wave is the obvious
assertion for the abovementioned words. Also no uncouthness or error
cumulating is theoretically possible in this case, due to the fact that the
solution for the equation is derived analytically.
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Figure 4 Non-linear wave at two different time instances.

Numerical solution of navier-stokes for non-linear
waves

In this section we will speak about main aim of this paper, the
solution of two dimensional that is non-linear waves. As was
mentioned in the previous chapter we will derive solution by PDEs.
First let’s understand what we have and what we want to get. We have
the function at the initial moment (t=0), and we want to be able to
trace how it would behave during some given period. Also we have
function ¢ which describes the velocity change for the individual
particle at the given time moment.

(7) shows relation we had derived. For our purpose we will have
to approximate the initial function at each next stage by result of
the previous step. To make it more clear let’s examine Figure 5. In
the given example we have propagation of function sin(x2) at two
moments. Also we are looking at the range [0,47].As we see the
waves are similar however they slightly differ at the endpoints.
The reason for alternative propagation is mainly because of ¢ . In
the figure it is defined by x+t, which forces the wave to change its
shape. The change in the wave is seen much better in Figure 6 which
demonstrates the wave in 16 different time moments. Two different
view are presented to show the difference in
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Figure 5 A, B Non-linear wave at many time instances & Point construction of the function at next time moment.

time

Figure 6 Propagation of the linear wave constructed by function oneD.

Results

For one dimensional case our results are very stable. First let’s
examine function sinx with constant speed 1 on [0,4x], given t=10.
Figure 7 is the plot by using OneD function. As we see our wave
propagates without any error. Figure 7 A is the plot using function
tpl, as we see even for linear waves there exist an error caused by
approximation of border points. Figure 7B again there is no error
in propagation. tp2 is used. Figure 8A,B this figures illustrates the
propagation of wave constructed by tp3 in different time moments
in 2D and Figure 9A,B illustrates the propagation of wave using tp4.
Error accumulation is obvious. There is no need for further exploration
of linear wave case, thus we will move on to two dimensional case.

Conclusion

From Figures illustrated in Section 4.2 can be concluded that
even though some times the numeric solution for partial derivative
equations can give a correct result, it is not always describing a
physical phenomena. As Waves simply cannot behave in nature as
for example in figure 4.2 Few Things can be noticed. First there are
cases when error occurs, but later it is self fixed and the continuation
is normal.( For instance Figure 4.2Describing ex with { = x). Another
thing that can be noticed is that Waves are inclined to the right, which
is mainly caused by our method, double use of the same point). There
are ways which can make this solution more realistic. That is making
small At and/or Ax. However it will result in slower calculation.

Citation: Uttam DV.The numerical solution of the navier-stokes equations in nuclear shock wave propagation. Phys Astron Int J. 2019;3(6):260-265.

DOI: 10.15406/paij.2019.03.00192


https://doi.org/10.15406/paij.2019.03.00192

Copyright:
The numerical solution of the navier-stokes equations in nuclear shock wave propagation ©2019 Uttam 64

There are known ways for stable Calculations. One of such methods  the Method of Integration along Characteristics as Adaptive Mesh
is presented by Suren Khachatryan in the paper “Modification of  Approach in Solution of Hyperbolic and Parabolic PDEs ".

0.02

0.01
>
4 i
-1 - .1
0.02
.g.. o 0.015 0 E
1 > 001 ¥
0.005
2 =2
f T T T T T T 07 T T I T T T
0 2 4 6 8 10 12 0 2 4 6 8 10 12
x X

Figure 9 A,B illustrates the propagation of wave using tp4. Error accumulation is obvious.
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