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Nomenclature
Discretization – method which involves dividing to small pieces in 
order to solve 

Shock waves – abrupt jumps in density, velocity and pressure

Hyperbolic wave – wave mathematically formulated through 
hyperbolic partial differential equations is called hyperbolic wave

Newton’s second law is F = ma. It says Force (F) on an objects equal 
to mass (m) multiplied by acceleration (a)

Diffusing viscous term – describes the physical transfer quantity 
through a small area with normal velocity per some time.

Viscous flow – Viscosity describes fluids resistance to deformation 
caused by stress (can be shear stress or tensile stress).  Equivalent 
term for metals would be thickness

Shear stress is given by a formula F/A, where F is force and A is cross 
sectional area of material with area parallel to the applied force vector.  
It is applied to fluids which move along solid boundary.

Tensile stress– In fluid tensile stress describes the internal force 
applied on a given particle, caused by neighboring particle.

Introduction
Problem setting and description

Navier-Stokes equations are designed in order to simulate 
the flow of various fluids in numerous disciplines across physics 
(electromagnetism, acoustics, elasticity). Navier- Stokes equations 
were formed by combining Newton’s second law and fluid motion. 
Also assumption of stress being the sum of diffusing viscous term and 
pressure term was taken to describe viscous flow. Without Navier-
Stokes equations working with weather model, ocean currents, water 
flow in a pipe, air flow around a wing would be extremely hard. Also 
these equations are widely used in designing airplanes and cars, 
studying blood flow, designing power stations, analysing pollution 
and so on.

History of the Navier-Stokes equations dates back to 1822. 
Claude-Louis Navier mentioned in his memoir the equations for 

homogeneous incompressible fluids with regards to molecular 
arguments. Later, in 1829 Poisson derived equations for compressible 
fluids. Consequentially, George Gabriel Stokes formulated the Navier-
Stokes equations in his paper (1847) as we know it today.

Up to this day there is no proof for existence and uniqueness 
of Navier-Stokes equations’ solution in three dimensional space. 
Moreover, it is considered one of the seven most important unsolved 
problems currently. Clay Mathematical Institute offers a significant 
prize of one million dollars to the person who will prove this or bring 
a counter-example. Although a number of advancements have been 
made in this sphere, yet it remains mainly a “dark forest” for the 
researches. As you will see in this paper, there is a perfectly working 
solution for both one dimensional case and two dimensional case.

This paper illustrates Navier-Stokes hyperbolic wave equations, 
its solutions in one dimensional case, and extending that solution for 
two dimensional cases. The solution for one dimensional case is rather 
simple, in contrast the two-dimensional case requires more work. In 
following paper we focused on solution by using partial differential 
equations. Explicit finite difference approximation was used for that 
purpose. In the end we bring wave propagation examples, with both 
two dimensional and three dimensional figures.

Theoretical background
Hyperbolic Waves

In our paper we are interested in hydrodynamic equations which 
are similar with signal-propagation equations. That specific kind of 
equations are called hyperbolic equations. Also hyperbolic equations 
have much broader use, and can be met elsewhere, we will concentrate 
on them used in hydrodynamics only. The simplest hyperbolic 
equations are given by the following equation

		              ( )2 2tt 0   0cϕ = ∇

Where ϕ is a function ϕ (x, t), c0 is constant velocity, and 
2 n  2  f  f= 2.∂∑∇ = ∇  In (2.2) we will derive the 0 xi i∂=  Following 

formula, representing hyperbolic waves in one dimensional case.

			   0
 t+c . 0

x
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(1)
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PDE`s. We can conclude that although the numeric solution for partial derivative equations 
can give a correct result, it is not always describing a physical phenomenon
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(1) is the common equation for linear waves. Here ϕ (x, t) is a 
function which describes time depending shifting of the function φ 
along x which has a velocity c0. That is it describes the propagation 
of the wave.

Let’s understand difference between linear waves and non-linear. 
In linear waves the velocity at any point is the same. That is, the total 
velocity of the flow is not effected from internal particle velocities 
(which we will see are the case in non-linear). So if we look at Figure 
1, we’ll see that the wave repeats itself and it propagates without 
any change at any moment in time. If we would pick any point and 
examine it during time, the overall velocity in that point will always 
be the same. For example, imagine that you are in the middle of the 
ocean. Waves are born and start their propagation. From that point 
waves are linear as they acquire some height and just propagate 
without changing their shape. 

Figure 1 Non-linear wave propagating.

What about nonlinear waves, we will rarely observe too similar 
curvatures at two different moments. Particles in one position have 
higher velocity than in others, thus during the time we reach a point 
when some particle x, reaches particle y, which was in front before, 
then passes it. We will have then a picture of crushing wave. For 
instance, imagine you are on the beach. You see the waves coming, 
then crushing on the sand. Such waves are not linear, as they change 
their shape over time. In Figure 2 you can see nonlinear wave. As in 
computers for crushing wave one x would require three y values, it 
is not display, instead such image is resulted the last one also can be 
represented as

( ) ( ) ( ) ( )  t, x ,    t, x ,  
lim

  t x 0

t t x t t x
t t

ϕ ϕ ϕ ϕϕ +∆ − +∆ −∂
= ≈

∂ →         
(2)

and
( ) ( ) ( ) ( ) ,  ,   , ,  

lim
  x x 0

t x x t x t x x t x
x x

ϕ ϕ ϕ ϕϕ +∆ − +∆ −∂
= ≈

∂ →           
(3)

the last one also can be represented as

( ) ( ) ( ) ( ) ,  ,   , ,  
lim

  x 2 2x 0

t x x t x x t x x t x x
x x

ϕ ϕ ϕ ϕϕ +∆ − − +∆ − −∂
= ≈

∂ →  
(5)

Thus, to not be biased to the right or left, we write it in following 
way

    
( ) ( ) ( ) ( ) ,  ,   , ,  

lim
2 2x 0

t x x t x x t x x t x x
x x

ϕ ϕ ϕ ϕ+∆ − − +∆ − −
≈

→          
(6)

plugging this into (5) we get

        
( ) ( ) ( ) ( ) t, ,   , ,  

0
2

t x t x t x x t x x
t x

ϕ ϕ ϕ ϕ
ζ

+∆ − +∆ − −
− =            (7)

physical meaning of this equation is the propagation of non-linear 
wave, however in some parts the amount of error can cause grainy 
(non- smooth) surface in the graph. As can be seen from Figure 3 the 
wave propagating over time starts to destabilize due to computational-
error accumulation.

Figure 2 Non-linear wave with grainy surface after some time.

Numerical solution
Numerical background and step by step algorithms

For 1D case no special calculating method must be introduced as it 
is solved analytically by using, solution that is presented in 2.2.

		        ( ) ( ) .  ox f x c tϕ = −

However, when we get to solve the PDE for the non-linear wave 
propagation, there is a methodology to be presented. As we already 
presented in figure & description 2.3 when having a hyperbolic PDE 
of type

 

( ) ( ) ( ) ( ) t, ,   , ,  
lim lim 0

2x 0 x 0

t x t x t x x t x x
t x

ϕ ϕ ϕ ϕ
ζ

+∆ − +∆ − −
− =
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Figure 3 Linear wave propagation.

we can approximate it by neglecting the limit and taking a small Δt 
and Δx. As we do we get the approximation

          
( ) ( ) ( ) ( ) t, ,   , ,  

0
2

t x t x t x x t x x
t x

ϕ ϕ ϕ ϕ
ζ

+∆ − +∆ − −
− =

After getting this equation lets divide our coordinate system into an 
n by m grid where where the difference between each to xi neighbors 
is Δx and ti  neighbors Δt.

Now having this grid we can rewrite the equation we got in the 
following form

        
( ) ( ) ( ) ( )1 1 1 ,  ,   ,  ,  

         0
2  

i i it x t x t x t x
t x

ϕ ϕ ϕ ϕ
ζ+ + −− −
− =

From here, given the initial condition (row ϕ (0,x)), we want to 
find the values of each row to reconstruct the wave at each point of 
time. That is we need to find φ(ti+1,x). Lets get it from the equation 
above. 

            ( ) ( ) ( ) ( )1 1
1

, ,
,      ,

2
i i

i
t x t x

t x t t x
x

ϕ ϕ
ϕ ζ ϕ+ +

+

−
= ⋅ +

Here is the numerical solution for the The PDE that we intended 
to solve. As one can notice this scheme can have a problem at the 
boundaries. Numerous methods have been developed to approximate 
and solve that problems. The famous schemes are Lax-Wander of, 
leap-frog ect. ect. 

Numerical solution of navier-stokes for linear waves

The numerical solution in the this case involves just using the 
analytical solution and simulating time in order to get the wave 
propagation. One just needs to assign 0( ) (  )x f x c tϕ = − ⋅ and 
correctly simulate the propagation of wave with the constant speed 
c0. For this simulation one can use the horizontal translation of the 
function by c0t. As one can see from Figure 4 the wave propagates 
with constant speed. The periodic for of the wave is the obvious 
assertion for the abovementioned words. Also no uncouthness or error 
cumulating is theoretically possible in this case, due to the fact that the 
solution for the equation is derived analytically.

Figure 4 Non-linear wave at two different time instances.

Numerical solution of navier-stokes for non-linear 
waves

In this section we will speak about main aim of this paper, the 
solution of two dimensional that is non-linear waves. As was 
mentioned in the previous chapter we will derive solution by PDEs. 
First let’s understand what we have and what we want to get. We have 
the function at the initial moment (t=0), and we want to be able to 
trace how it would behave during some given period. Also we have 
function ζ which describes the velocity change for the individual 
particle at the given time moment. 

(7) shows relation we had derived. For our purpose we will have 
to approximate the initial function at each next stage by result of 
the previous step. To make it more clear let’s examine Figure 5. In 
the given example we have propagation of function sin(x2) at two 
moments. Also we are looking at the range [ ]0,4 .π As we see the 
waves are similar however they slightly differ at the endpoints. 
The reason for alternative propagation is mainly because ofζ . In 
the figure it is defined by x+t, which forces the wave to change its 
shape. The change in the wave is seen much better in Figure 6 which 
demonstrates the wave in 16 different time moments. Two different 
view are presented to show the difference in
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Figure 5 A, B Non-linear wave at many time instances & Point construction of the function at next time moment.

Figure 6 Propagation of the linear wave constructed by function oneD.

Results
For one dimensional case our results are very stable. First let’s 

examine function sinx with constant speed 1 on [0,4π], given t=10. 
Figure 7 is the plot by using OneD function. As we see our wave 
propagates without any error. Figure 7 A is the plot using function 
tp1, as we see even for linear waves there exist an error caused by 
approximation of border points. Figure 7B again there is no error 
in propagation. tp2 is used. Figure 8A,B this figures illustrates the 
propagation of wave constructed by tp3 in different time moments 
in 2D and Figure 9A,B illustrates the propagation of wave using tp4. 
Error accumulation is obvious. There is no need for further exploration 
of linear wave case, thus we will move on to two dimensional case.

Conclusion
From Figures illustrated in Section 4.2 can be concluded that 

even though some times the numeric solution for partial derivative 
equations can give a correct result, it is not always describing a 
physical phenomena. As Waves simply cannot behave in nature as 
for example in figure 4.2 Few Things can be noticed. First there are 
cases when error occurs, but later it is self fixed and the continuation 
is normal.( For instance Figure 4.2Describing ex with ζ = x). Another 
thing that can be noticed is that Waves are inclined to the right, which 
is mainly caused by our method, double use of the same point). There 
are ways which can make this solution more realistic. That is making 
small Δt and/or Δx. However it will result in slower calculation. 
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There are known ways for stable Calculations. One of such methods 
is presented by Suren Khachatryan in the paper “Modification of 

the Method of Integration along Characteristics as Adaptive Mesh 
Approach in Solution of Hyperbolic and Parabolic PDEs”.

Figure 7 A,B Propagation of the linear wave constructed by function tp1 & Propagation of the linear wave constructed by function tp2.

Figure 8 A,B This figures illustrates the propagation of wave constructed by tp3 in different time moments in 2D.

Figure 9 A,B illustrates the propagation of wave using tp4. Error accumulation is obvious.
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