
Submit Manuscript | http://medcraveonline.com

Introduction
The concept of adjoint function (or importance function) can be 

unlocked as follows. Let the problem under consideration requires 
finding some linear functional

                           
[ ( )] = ( , ) ( ) ( )J f P f P f d⋅ ≡ ∫ x x x  	       (1)

from a solution ( )f x  of the equation 

			   ( ) = ( ),Lf Qx x  		         (2)

Describing the transport of particles in a medium from a source 
with phase density ( )Q x  immersed in a medium, interaction of which 
with the particles is described by the operator L. In the problem 
under consideration, ( )f x  may denote the flux of photons, or their 
concentration, or some other local characteristics of the photon field at 
a point = ( , )x r p  of the phase space. For the sake of convenience, we 
will represent the photon momentum p  through the pair of variables  

= / pΩ p  (the direction unit vector) and =E cp  (photon’s energy).

The direct way of finding the value of the functional (1), 
expressing the reading of a photon detector, lies through solving of 
the kinetic equation (2) and computing integral ( ) ( )J f x Q x dx+= ∫  
over the photon field with a weighting function ( )P x  expressing the 
contribution of a single photon placed at point X into resulting reading 
of the detector. But this is not a unique way to reach this result. 
Another way is based on the other equivalent representation of the 
detector reading,1−3 using so-called adjoint (or importance) function 

( )f + x  being a solution of the adjoint (in Lagrange’s sense) equation

			   ( ) = ( ).L f P+ + x x  		         (3)

By definition, the primary L  and adjoint L+  operators are 
connected via relation

( , ) = ( , ).f Lf L f f+ + +

Inserting now Eq.(2) into the LHS of the latter equation and Eq.(3) 
into the RHS of it, and using Eq.(1), we understand that numerically 

0( )f + x  is the detector reading under condition that the source is 
localized at the point 0x  and has a unite power: 0( ) = ( )Q δ −x x x . 
A more deep exposition of the concept of the importance function is 
given in books.1−3

Integral equations and neumann series
The mathematical description of penetration of gamma radiation 

(X-rays) through a scattering matter is given in the well-known 
monograph.4,5 Primary transport equation (2) is written as a linearized 
kinetic Boltzmann equation, for time-independent problem having the 
form: 

       
( , , ) ( , ) ( , , ) = ( , , )

' ( , ) ( , ', ) ( ', , ).s

I E E I E Q E
d dE E I E W E E

µ

µ

Ω ⋅∇ Ω + Ω Ω +

′ ′ ′ ′Ω Ω Ω →Ω∫ ∫
r r r r

r r
	         (4)

Here = ( , , )I I EΩr  denotes the differential intensity (so, 
Id d d EΩS  is a mean number of particles, crossing over a unit 
elementary area d ⊥ ΩS  and belonging to intervals d dEΩ× ), 
µ  and sµ  are linear attenuation (total and scattering) coefficients  

( , , )Q EΩr  is the source phase density, W the scattering indicatrix, 
normalized to 1:

	        
4 0

( ', , ) = 1.
E

d dEW E E
π

′

′Ω Ω →Ω∫ ∫
The correspondent adjoint function is of the form: 

 
( , , ) ( , ) ( , , ) = ( , , )

( , ) ( , ', ) ( , ', ).s

I E E I E P E

d dE E W E E I E

µ

µ

+ +

+

−Ω ⋅∇ Ω + Ω Ω +

′ ′Ω Ω →Ω Ω∫ ∫
r r r r

r r
	        (5)

Both the equation can be transformed to the equivalent integral 
forms:6−7

 	 ( , , )

0
( , , ) = ( , , )EI E e Q E dτ ξ ξ ξ

∞
− −ΩΩ − Ω Ω∫ r rr r

                
(6)

with 

4
( , , ) = ( , , ) ' ( , ', ) ( , ) ( ', , ),

E

s
E

Q E Q E d dE I E E W E E
π

µ
′

′ ′ ′ ′Ω Ω + Ω Ω Ω →Ω∫ ∫r r r r

 

						              
(7)

and

	  ( , ; )

0
( , , ) = ( , ; ) ,EI E e P E dτ ξ ξ ξ

∞
+ − +ΩΩ +Ω Ω∫ r rr r 	         (8)

with

4 0
( , , ) = ( , , ) ( , ) ' ( , , ) ( , ', ).

E

sP E P E E d dE I E W E E
π

µ +′ ′Ω Ω + Ω Ω Ω →Ω∫ ∫r r r r  	

						              (9)
In these equations,  ( , ; )Eτ ξ± Ωr r  denotes the optical distance 

between the points for E -quanta with energy E  indicated in the 
argument:

		
0

( , ; ) = ( ) .E d
ξ

τ ξ µ ξ ξ′ ′± Ω ±Ω∫r r r 	       (10)
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Abstract

The structure of a narrow ray of gamma radiation propagating through a medium filled 
with free electrons (called Compton scatterer) is investigated. The dual representation 
is used including primary (basic) and adjoint forms of kinetic equations. In the ray 
propagation problem primary form possesses cylindrical symmetry whereas the 
adjoint form (in case of isotropic detector in an unbounded homogeneous medium) 
has the spherical symmetry. The analysis performed on the base of adjoint function 
singularities shows, in particular, that in a vicinity of the narrow gamma-ray single-
scattered radiation predominates over all other components. Analytical representation 
of the field in the vicinity of a cylindrical primary ray has been found. The result can 
be important in gamma astronomy processing.
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Inserting (7) into (6) and (9) into (8), we will see initial terms of 
the Neumann series representing solution of the integral equations. 
The terms with = 0n  relate to non-scattered radiation, whereas the 
other terms describe contribution of scattered quanta (the integer 

= 1,2,3,...n  indicate scattering multiplicity. In particular,

         ( , ; )
0

0
( , , ) = ( , , ) ,EI E e Q E dτ ξ ξ ξ

∞
− −ΩΩ −Ω Ω∫ r rr r 	          (11)

 	  

        ( , ; )
0

0
( , , ) = ( , , ) ,EI E e P E dτ ξ ξ ξ

∞
+ − +ΩΩ +Ω Ω∫ r rr r

                
(12)

=0 =0
( , ) = ( , , ), ( , ) = ( , , ),n n

n n
I I E I I E

∞ ∞
+ +Ω Ω Ω Ω∑ ∑r ,E r r ,E r

and next terms are computed by induction: 

 

( , ; )

0

1
4

( , , ) = ( , )

' ( ', , ) ( , ) , = 1,2,

E
n s

n
E

I E d e E

d dE W E E I n

τ ξ

π

ξ µ ξ

ξ

∞
− −Ω

∞

−

Ω −Ω ×

 
′ ′ ′Ω Ω →Ω −Ω Ω 

 

∫

∫ ∫

r rr r

r ,E 

    

(13)

( , ; )

0

1
4 0

( , , ) = ( , )

' ( , ', ) ( , ', ) , = 1,2,

E
n s

E

n

I E d e E

d dE W E E I E n

τ ξ

π

ξ µ ξ

ξ

∞
′+ − +Ω

+
−

Ω + Ω ×

 
′ ′ ′Ω Ω →Ω +Ω Ω 

 

∫

∫ ∫

r rr r

r 

      (14)

A point mono-directional source
Now we consider the field created by a point source of gamma-

quanta placed at the origin O of the Cartesian coordinate and directed 
along z-axis, and let the field be measured by a point isotropic detector 
showing the integral

		
		

1
4 0

= ( ) ( , , )J d dEP E I E
π

∞

Ω Ω∫ ∫ r

with ( )P E  standing for the detector response to a single photon 
with energy E. Thus, the free term in the adjoint equation (5) takes 
the form

	             1( , , ) = ( ) ( ),P E P E δΩ −r r r 		          (15)

Where as the primary equation (4) has it in the form 

 	 0 0( , , ) = ( ) ( ) ( )Q E Q Eδ δΩ Ω −Ωr r 		          (16)

0( )Q E  denotes the source energy spectrum). The medium is 
supposed to be homogeneous and isotropic, so a suitable choice 
of coordinate system is dictated by specifics of the source-detector 
arrangement. An important role in this is given to symmetries, 
allowing for the reduction of the number of independent variables 
in the problem and thereby facilitating its solution (Figure 1). As we 
saw above, the same physical problem is expressed in two different 
forms differing in the degree of symmetry: Eq.(15) exhibits spherical 
symmetry whereas Eq.(16) reveals cylindrical one. So, it is naturally 
to choose the spherical symmetry version, possessing higher degree 
of symmetry and requiring only one spatial variable 1| |−r r . In what 
follows, we put 1 = 0r , i.e. combine the origin of coordinates with 
the detector position, use the vector r  for the initial position of the 
quantum, and introduce the angle θ  via relation:

 		    cos = .
r

θ Ω
−

r 			          (17)

On substitution (15) into Eq.(12), we obtain non-scattered term in 
adjoint function decomposition: 

 	 ( , '; )
0 2

1( , ) = ( ) (1 cos ).
2

EI e P E
r

τ δ θ
π

+ −Ω −r rr ,E 	        (18)

For a homogeneous medium ( , ; ) = ( )E Eτ ξ µ ξ+ Ωr r  , so

 	 ( )
0 2

1( , ) = ( ) (1 cos ).
2

EI e P E
r

µ ξ δ θ
π

+ −Ω −r ,E 	        (19)

Figure 1 Geometry of narrow ray. Q is the source place, P is a counter place.

Computing single scattered intensity, we take into account that 
the scattering indicatrix includes the delta-function expressing the 
Compton interrelation between initial quantum energy E , scattering 
angle θ′  and scattered quantum energy

		
1 2= .

1 (1 cos ) /
EE

E mcθ′+ −

Denoting ξ+ Ωr   by 'r  and the regular multiplier in the indicatrix 
by (cos )V θ′ , we represent the latter as 

	    1( ') = (cos ) ( (cos , )),W V E E Eθ δ θ′ ′ ′Ω→Ω −

where 

 		         'cos =
r

θ Ω′
′
r 			   (20)

and 

		     

1(cos ) = dV
d
σθ

σ
′

Ω
is the normalized differential cross-section of the Compton 

scattering. In an explicit form,

		

22
0 1 1 2

1
= sin

2
rd E E E

d E E E
σ θ

   ′+ −  Ω    
(Klein-Nishina-Tamm formula) and

	

	     

0 3

0 2 2

3 1 2 (1 )= ln(1 2 )
4 1 2

3 1 1 3ln(1 2 ) , = .
4 2 (1 2 ) e

E
m c

ε
ε ε εσ σ ε

εε

εσ ε ε
ε ε

 + + − + +  +  
 +

+ − 
+ 

Inserting = 1n  into Eq.(14), using Eq.(19) and property of delta-
function, we arrive at the following expression for single scattering 
contribution into the sought quantity

( ) ( )1
1 1 2

0
= ( , , ) = ( ) (cos ) ( ) .E E r

s
dJ I E e E V P E
r

µ ξ µ ξµ θ
∞

′− −+ ′Ω
′∫r  (21)

With fixed variables r  and Ω , the variable ξ  is uniquely linked 
with the scattering angle θ′  (Figure 1). Applying the sinus-theorem 
yields interrelations 

       
2

sin sin( ) sin= = , = .
sin sin sin

r r r d r dθ θ θ θξ ξ θ
θ θ θ

′ −′ ′
′ ′ ′

Using these formulae for passage to other variables leads us to 
expression
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1 1
( )= exp [ ( )sin( ) ( )sin ] (cos ) ( ) .

sin sin

s
s E rJ E E V P E d

r

θ

θ

µ µ θ θ µ θ θ θ
θ θ

 ′ ′ ′− − + ′ ∫  	
	
						          (22)

In case of an infinite homogeneous medium (coefficients µ  and 
sµ  are independent of spatial variables), the upper limit of integration
=sθ ∞ , but this formula can be used and on the plain boundary with an 

absorbing medium, when the source is in a homogeneous semi-space 
and the point of measurement is on a plane surface perpendicular to 
direction Ω . In this case the lower limit of integrating is zero upper 
limit sθ  should be taken / 2.π

The formulae for single-scattered quanta obtained above, includes 
multiplier 1[ sin ]r θ − , which grows unboundedly with decreasing

0rθ → . Consequently, at small θ  or r  the rest terms (with n>1) 
may be ignored.

Singularity of the adjoint function at great 
depths

Let us pass to the cylindrical coordinate system each point of which 
is characterized by longitudinal ( = cos )z r θ  coordinate (depth) and 
transverse one ( = sin )rρ θ  (radius). Then

{ }1 1
( )( , , ) = exp ( ) ctg ( ) cosec (cos ) ( ) .

s
s EI E E E V P E d

θ

θ

µ µ ρ θ µ ρ θ θ θ
ρ

+ ′ ′ ′ ′Ω −∫r 	
	
						                (23)

Expand the exponential function in series and denote ith term of 
this series by : = 0,1,2,...i iϕ  : 

	       

( )
0 1

( )= (cos ) ( ) ,
s

E zs E e V P E d
θ

µ

θ

µϕ θ θ
ρ

− ′ ′∫  	            (24)

( )
1 1 1= ( ) [ ( )ctg ( )cosec ] (cos ) ( ) ,

s
E z

s E e E E V P E d
θ

µ

θ

ϕ µ µ θ µ θ θ θ− ′ ′ ′ ′−∫ 		
						                 (25)

( ) 2
2 1 1

1= ( ) [ ( )ctg ( )cosec ] (cos ) ( ) ,
2

s
E z

s E e E E V P E d
θ

µ

θ

ϕ µ ρ µ θ µ θ θ θ− ′ ′ ′ ′−∫  	
	
						                (26)
and so on.

Let the counter be far enough from the source and from the 
boundary (i.e. z ρ>  and h ρ< ). In this case, 0

z
ρθ ≈ →  and

s h
ρθ π π≈ − → , therefore, 

	         

( )
0 1

0

( )= (cos ) ( ) .E zs E e V P E d
π

µµϕ θ θ
ρ

− ′ ′∫ 			 
						               (27)

The integrand in Eq.(25) has a singularity at = 0θ  and =θ π . 

Let us break the integral into three pieces
/

/
=

hs

z

θ π ρε π ε

θ ρ ε π ε

−−

−

+ +∫ ∫ ∫ ∫ , where 

ε  is a small positive number choosing in such a way that all terms in 
this sum are positive. Neglecting the change of , Kµ  and P in the ε
-interval and leaving only singular terms, we obtain 

( )
1 = ( ) [ ( ) ( )] (cos ) ( )ln ,E z

s zE e E E V P Eµ
πϕ µ µ µ π ρ− + 	         (28)

where 
		  1(cos , ).E E Eπ π≡

Acting in a similar way, one can show that 2ϕ  and next terms in 
this sum at 0ρ →  do not have singularity.

If the counter is placed on the very boundary, then singularity 
characterizes only the first term (24) in the expansion of (23) 

           

/2
( )

0 1
0

( )= (cos ) ( ) .E zs E e V P E d
π

µµϕ θ θ
ρ

− ′ ′∫  	       (29)

Let us introduce the notations 

          
1

2( , ; ) = (cos ) ( ) ,
( )

E V P E d
P E

ψ

φ

πφ ψ θ θ′ ′Θ ∫

and = (0, ; )EψΘ Θ , then for both above mentioned positions of 
the counter the expression

	

0 1

( )

( , , ) ( , , ) ( , , )
1 [ ( ) ( ) ] ( ) , 0,

2
E z

s

I E I E I E

E P E e µδ ρ µ ρ
πρ

+ + +

−

Ω Ω + Ω ≈

+ Θ →

r r r

			 
					                          (30)

stay be valid, if put = / 2sθ π  in the boundary case, and π  
otherwise (more weak logarithmic singularity are omitted). As a 
result, we get:

	  
[ ]1( , , ;) = ( ) ( ) .

2
z

sI E P E e µδ ρ µ
πρ

+ −Ω + Θr

Let 0 ( , )I x y  be the initial profile of the ray at = 0z  and ( , , )I x y z  
the ray profile at depth z . According to the above result, the latter is 
composed from two terms: unscattered part repeating the shape of the 
incident ray, 

	        
nsc

0( , , ) = ( , ) ,zI x y z I x y e µ−

and scattered component 

       

sc 0
2 2

( , )( , , ) = ,
( ) ( )

z
s

I x y dx dyI x y z e
x x y y

µµ −

Σ

′ ′ ′ ′
Θ

′ ′− + −
∫  	       (31)

where Σ  stands for a cross section of the incident ray. The formula 
establishes the connection between the clear image of the ray given by 
the unscattered component, and the diffusion “halo,” responsible for 
which is the scattering process. This connection is reminiscent of the 
relationship known in electrostatics between the charge distribution 

0( , ) = ( , ) z
sx y I x y e µσ µ −′ ′ ′ ′Θ  on the plane = constz  and the potential 

s( , ) = ( , )cx y I x yφ  created by it in this plane.

In case of a uniform distribution of the initial flux over cross-
section having the circular form with radius a , 

		

0 , < ;
( ) = 0, > 0,

r a
r r

σ
σ





and 

           

2
0

2 2
0 0

( ) = .
2 cos

a r dr dr
r r rr

π σ ϑφ
ϑ

′ ′

′ ′+ −
∫ ∫

Integration with respect to r′  yields

     

2 2
0

0

2 2

( ) = 2 ( 2 cos

cos 2 coscos ln ) .
(1 cos )

r r a ra r

a r r a rar d
r

π

φ σ ϑ

ϑ ϑϑ ϑ
ϑ

+ − − +

− + + −
+

−

∫
	

Further, introducing 

                           
=

2
π ϑχ −
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and integrating the term with logarithm by parts, we obtain 

[ ]0
2( ) = 2 ( ) ( ) ( ) ( ) , = ,rar a r E k a r K k k
r a

φ σ + + −
+

 	      (32)

where K  and E  stand for total elliptic integrals of the first and 

second kind respectively. At = 0r  = =
2

E K π , and Eq. (32) becomes 

0(0) = 2 aφ π σ .

In the general case of an axially symmetrical initial profile, the 
halo ( )rφ  is expressed via integral 

		

2

2 2
0 0

( )( ) = .
2 cos

r r dr dr
r r rr

π σ ϑφ
ϑ

∞ ′ ′ ′

′ ′− −
∫ ∫  	        (33)

Expanding inverse distance with respect to Legendre polynomials, 

	  

<
2 2 =0> >

1 1= (cos )
2 cos

n

n
n

r P
r rr r rr

ϑ
ϑ

∞  
 

′ ′+ −  
∑

and inserting this into (33) yields: 

	

1

=0 0
( ) = ( ) ( ) ,

n nr

n
n r

r rr C r dr r dr
r r

φ σ σ
+ ∞∞  ′   ′ ′ ′ ′+    ′     

∑ ∫ ∫

where coefficients 

 	      

2
2

0
= (cos ) = 2 (0)n n nC P d P

π

ϑ ϑ π∫

are equal to 0 for odd n , and to 

2

12 / 2
2n

n
nπ

  
  
  

    

for even. 

Expression (33) can be integrated over the angle directly. 

 	 0

( ) 2( ) = 4 ( ) , = .r r dr rrr K k k
r r r r

σφ
∞ ′ ′ ′ ′

′ ′
′ ′+ +∫

In case of absence of axial symmetry the problem can be solved by 
numerical integration in expression (31).
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