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A Gamma-ray in a uniform compton scatterer

Abstract

The structure of a narrow ray of gamma radiation propagating through a medium filled
with free electrons (called Compton scatterer) is investigated. The dual representation
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is used including primary (basic) and adjoint forms of kinetic equations. In the ray

propagation problem primary form possesses cylindrical symmetry whereas the
adjoint form (in case of isotropic detector in an unbounded homogeneous medium)
has the spherical symmetry. The analysis performed on the base of adjoint function
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singularities shows, in particular, that in a vicinity of the narrow gamma-ray single-

scattered radiation predominates over all other components. Analytical representation
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of the field in the vicinity of a cylindrical primary ray has been found. The result can

be important in gamma astronomy processing.
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Introduction

The concept of adjoint function (or importance function) can be
unlocked as follows. Let the problem under consideration requires
finding some linear functional

JLFO1=(P, f)=[P(x) f (x)dx (M
from a solution f(x) of the equation
Lf (x) = O(x), @)

Describing the transport of particles in a medium from a source
with phase density Q(x) immersed in a medium, interaction of which
with the particles is described by the operator L. In the problem
under consideration, f(x) may denote the flux of photons, or their
concentration, or some other local characteristics of the photon field at
apoint x=(r,p) of the phase space. For the sake of convenience, we
will represent the photon momentum p through the pair of variables
Q=p/ p (the direction unit vector) and £ =cp (photon’s energy).

The direct way of finding the value of the functional (1),
expressing the reading of a photon detector, lies through solving of
the kinetic equation (2) and computing integral J =J' T (x)0(x)dx
over the photon field with a weighting function P(x) expressing the
contribution of a single photon placed at point X into resulting reading
of the detector. But this is not a unique way to reach this result.
Another way is based on the other equivalent representation of the
detector reading,'” using so-called adjoint (or importance) function
/7 (x) being a solution of the adjoint (in Lagrange’s sense) equation

LTf7(x) = P(x). 3)

By definition, the primary L and adjoint L" operators are
connected via relation

LN =L 1)

Inserting now Eq.(2) into the LHS of the latter equation and Eq.(3)
into the RHS of it, and using Eq.(1), we understand that numerically
ST(xy) is the detector reading under condition that the source is
localized at the point X, and has a unite power: O(X)=d(x—X,) .
A more deep exposition of the concept of the importance function is
given in books.!

Integral equations and neumann series

The mathematical description of penetration of gamma radiation

(X-rays) through a scattering matter is given in the well-known
monograph.** Primary transport equation (2) is written as a linearized
kinetic Boltzmann equation, for time-independent problem having the

form:
Q-VI(r,QE)+ u(r,E)I(r,Q E)=Q(r,Q,E)+

4
[aQ[dE" 1, (x, ENI (x, QL EYW (Q,E' — Q. E). @

Here [=1I(r,QQ,E) denotes the differential intensity (so,
1dSdQd E is a mean number of particles, crossing over a unit
elementary area dS 1 Q and belonging to intervals dQxdE),
p and g are linear attenuation (total and scattering) coefficients
O(r,Q,E) is the source phase density, W the scattering indicatrix,

normalized to 1:

| dQlj'dEW(Q',E’ —S>QE)=1.
The correggond%nt adjoint function is of the form:
—Q-VI*(r,Q,E) + u(r, ) (r,Q,E) = P(r,Q,E) + )
[dQ[dE u (v, EYW (Q,E — Q,ENI" (r,Q, E).

Both the equation can be transformed to the equivalent integral
forms:*”’

I(r,QE) = Te*’“’““ff) é(r —E&Q,QE)dé (©6)
with ‘

-
O(r,Q,E)=0(r,Q,E)+ [dQ [dE'I(r,Q,Eu,(r,EYW(Q,E' — Q,E),

4r E
Q)
and
I'(r,Q,E) = [e 058 p(r+ Q& O E)dé, ®)
0

with
~ E
P(r,Q,E) = P(r,Q,E) + u (r,E) [dQ[dE'T" (r,QE)W(Q,E — Q. E').
4z 0

€
In these equations, 7(r,r £Q¢&;E) denotes the optical distance
between the points for g-quanta with energy E indicated in the
argument:

4
r(rr + Q& E) = [u(r £ QENdE (10)
0
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Inserting (7) into (6) and (9) into (8), we will see initial terms of
the Neumann series representing solution of the integral equations.
The terms with n=0 relate to non-scattered radiation, whereas the
other terms describe contribution of scattered quanta (the integer
n=1,2,3,... indicate scattering multiplicity. In particular,

I,(r,Q,E) = Ofe-“”-ﬂﬁ;mg(r -QE&QE)dE, (11)
0

Iy (r,QE) = [e 7T OSDP(r 4 QE,Q, E)dE, (12)
0

I(r,QE) =Y 1,(c,QE), I'(r,QE)= Y1, (r,QE),
n=0 n=0
and next terms are computed by induction:
1,(r,Q.E) = [dée ™™ 250y (r — Q& E) x
o (13)
{ [dQ[dE'W (Q.E'— Q.E)I, \(r - ch,Q,E’)} n=1,2,...
4 E

I (0, Q.E) = [dée ™™ 955y (r+ Q& E) x
. (14)
{ [dQ[dE'W (Q.E —> QL ENI ((r + Qg‘,Q‘,E’)},n =1,2,...
4r 0

A point mono-directional source

Now we consider the field created by a point source of gamma-
quanta placed at the origin O of the Cartesian coordinate and directed
along z-axis, and let the field be measured by a point isotropic detector
showing the integral

J = [dQ[dEP(E)I(r,Q,E)
4r 0
with P(F) standing for the detector response to a single photon
with energy E. Thus, the free term in the adjoint equation (5) takes
the form

P(r,Q,E)=P(E)o(r -1, (15)
Where as the primary equation (4) has it in the form
O(r,Q,E) = 6(r)6(Q2 - Q)0 (E) (16)

O,(E) denotes the source energy spectrum). The medium is
supposed to be homogeneous and isotropic, so a suitable choice
of coordinate system is dictated by specifics of the source-detector
arrangement. An important role in this is given to symmetries,
allowing for the reduction of the number of independent variables
in the problem and thereby facilitating its solution (Figure 1). As we
saw above, the same physical problem is expressed in two different
forms differing in the degree of symmetry: Eq.(15) exhibits spherical
symmetry whereas Eq.(16) reveals cylindrical one. So, it is naturally
to choose the spherical symmetry version, possessing higher degree
of symmetry and requiring only one spatial variable|r —r; | . In what
follows, we putr; =0, i.e. combine the origin of coordinates with
the detector position, use the vector r for the initial position of the
quantum, and introduce the angle # via relation:

Qr

cosf =——. a7
r

On substitution (15) into Eq.(12), we obtain non-scattered term in
adjoint function decomposition:
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Iy (r,Q,E) = %e-“”‘;“P(E)a(l —cosd). (18)
2y
For a homogeneous medium z(r,r + Q& E) = u(E)E , so
I (r,Q,E) = 2%5*“5%‘ P(E)S(1-cos8). (19)
zr

Figure 1 Geometry of narrow ray. Q is the source place, P is a counter place.

Computing single scattered intensity, we take into account that
the scattering indicatrix includes the delta-function expressing the
Compton interrelation between initial quantum energy E , scattering
angle @' and scattered quantum energy

_ E
1+(1=cos®)E/mc*’

E,

Denoting r + Q<& by r' and the regular multiplier in the indicatrix
by V' (cos @) , we represent the latter as

W(Q—Q)=V(cost)S(E' - E|(cosb', E)),

where
cosd' = Qr (20)
and
V(cosO') = 1do
o dQ

is the normalized differential cross-section of the Compton
scattering. In an explicit form,

2 2
do _n(EV(E E_ g
aQ 2\E)\E E

(Klein-Nishina-Tamm formula) and

o, =30, {”f{zg(lm—ln(l + 25)}}+
4 &

1+2¢
EGO L1n(l+249)771+3€2 , €= Ez.
4 2¢& (1+2¢&) m,c

Inserting n=1 into Eq.(14), using Eq.(19) and property of delta-
function, we arrive at the following expression for single scattering
contribution into the sought quantity

Jy=I" (0, QE) = [ “O Ay (EY (cos 0’)P(El)%. @1)
0
With fixed variables r and Q, the variable & is uniquely linked
with the scattering angle &' (Figure 1). Applying the sinus-theorem
yields interrelations

ind =rs1n('c9 —,6’), dé=r sm2491
sin@ sin@ sin0

Using these formulae for passage to other variables leads us to
expression

p=p 30 4 de'.
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HS
J= 4,(E) jexp{— i
’ s

- -[1(E)sin(0' - 0) + p(E,)sin 0]} V(cosO0")P(E,)dO'".
rsin@ ind

(22)
In case of an infinite homogeneous medium (coefficients x# and
4, are independent of spatial variables), the upper limit of integration
6, = oo, but this formula can be used and on the plain boundary with an
absorbing medium, when the source is in a homogeneous semi-space
and the point of measurement is on a plane surface perpendicular to

direction Q. In this case the lower limit of integrating is zero upper
limit 6, should be taken 7z /2.

The formulae for single-scattered quanta obtained above, includes
multiplier[rsin@]"', which grows unboundedly with decreasing
r@ — 0 . Consequently, at small 8 or r the rest terms (with n>1)
may be ignored.

Singularity of the adjoint function at great
depths
Letus pass to the cylindrical coordinate system each point of which

is characterized by longitudinal (z=rcos@) coordinate (depth) and
transverse one (o =rsiné) (radius). Then

HS
I/ (r,Q,E)= H(E) _[ exp{ u(E)pctgd’ — u(E) peosecd'}V (cos 0')P(E,)d .
)

(23)
Expand the exponential function in series and denote i term of
this series by ¢.: i=0,1,2,... :

gy = L= Dz [ (cos @) P(E,)d8, (24)
P 0

0Y
o = u(E)e ™7 [[u(E)ctgd’ - u(E,)cosecd' IV (cos0') P(E,)d 0,
0 (25)

HS
02 = (EYpe O [[u(Eetgl) ~ u(Ey Jeosee PV (cos) P(E O
0

(26)
and so on.

Let the counter be far enough from the source and from the

boundary (i.e. z>p and h<p). In this case, 0~ 50 and

P z
0. ~rx 7 — 7, therefore,

@ = H#(E) e M) .[V(cos 0")P(E)dO'.
P 0 (27)

The integrand in Eq.(25) has a singularity at =0 and 0=r.
7—plh
I , where

&

S & =&
Let us break the integral into three pieces I = I + I +
0 plz &
¢ is a small positive number choosing in such a way that all terms in
this sum are positive. Neglecting the change of 4, K and P in the ¢
-interval and leaving only singular terms, we obtain

@ = u(E)e “F3 [ u(E) + p(E,,)V (cos ) P(E, )In p,

where

(28)

E, =E((cosr,E).
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Acting in a similar way, one can show that ¢, and next terms in
this sum at p — 0 do not have singularity.

If the counter is placed on the very boundary, then singularity
characterizes only the first term (24) in the expansion of (23)

/2
PR ACI LY [V (cos6)P(E,)d6. (29)
P 0

Let us introduce the notations

2 %
O(¢,y; E)=—— |V (cos@)P(E)dE',
(¢.w3 E) P(E)i (cos&)P(E,)
and ©® =0(0,y;E), then for both above mentioned positions of
the counter the expression

I'(r,QE)~ I (r,QQE)+ I} (r,Q,E) =

1
—[8(p) + u,(EYBIP(E)e ™, p—0,
27rp[ (p) + 1, (E)O]P(E) p (30)
stay be valid, if put 6, =x/2 in the boundary case, and =
otherwise (more weak logarithmic singularity are omitted). As a

result, we get:
I"(r,Q,E;)= L[&(p) + 1@ P(E)e™ .
27p

Let 7,(x,y) be the initial profile of theray at z=0 and I (x,y,z)
the ray profile at depth z . According to the above result, the latter is
composed from two terms: unscattered part repeating the shape of the
incident ray,

1™ (x,y,2) = Ip(x, p)e **,

and scattered component
1y(x',))dx'dy’
n2 N2

x=x)"+(y=y)

where X stands for a cross section of the incident ray. The formula
establishes the connection between the clear image of the ray given by
the unscattered component, and the diffusion “halo,” responsible for
which is the scattering process. This connection is reminiscent of the
relationship known in electrostatics between the charge distribution

I*(x,y,z)= u®e™** 31
i J

o(x',y") = puOI,(x',y)e™** onthe plane z = const and the potential
#(x,y)=1I*(x,y) created by it in this plane.

In case of a uniform distribution of the initial flux over cross-
section having the circular form with radius a ,

oy, r<a
o(r)=<0, r>0,
and
alr )
o r'dr'd9
¢ =[] L

00 \/r2 +7% =21 cos 9

Integration with respect to ' yields

$() =20, [(Vr* +a® ~2racos 9 —r +
0
a-rcosd+\r’+a® —2racos §

)d 9.
r(1-cos9)

+7rcos$In

Further, introducing
T—39
2
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and integrating the term with logarithm by parts, we obtain
2Jra
r+a
where K and E stand for total elliptic integrals of the first and

o(r)=20, [(a +r)E(k)+(a— r)K(k)], k= , (32)

second kind respectively. At r=0 E=K =% ,and Eq. (32) becomes
#(0)=2rao, .

In the general case of an axially symmetrical initial profile, the
halo ¢(r) is expressed via integral
w27 AN )
o(r'r'dr'd9
o) = [ [ =22

2 2 ’
00 \/r -7 =2rr'cos 9

Expanding inverse distance with respect to Legendre polynomials,

! =IZ[”<J P,(cos 9
2 2 ’
\/r +7r'"=2rr'cos 5 an=0\ >
and inserting this into (33) yields:

o r \n+l © n
#(r=YC, { | (fj o(r)dr + j(ij O'(r')dr},
n=0 r r

I
o\7”

(33)

where coefficients

2z
C, = [P, (cos$)d9=27P}(0)
0

n

are equal to 0 for odd n, and to 2« 2]7 n/2 || for even.

Expression (33) can be integrated over the angle directly.

N

r+r

o(ryr'dr'

rer k=

#(r) = 4[K(K')
0
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In case of absence of axial symmetry the problem can be solved by
numerical integration in expression (31).
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