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Majority-vote model in one-dimensional on directed

small-world networks

Abstract

We investigate the critical properties of the Majority-Vote model (MVM) one-
dimensional (1D) on directed small-world networks. The MVM is studied by applying

Volume 2 Issue 6 - 2018

Cicera MVA, FWS Lima

Department of Physics, Federal University of Piaui, Brazil

the Monte Carlo method. We calculate the critical points, as well as the critical

exponent’s ratio , and . We find that MVM presents identical exponents to the Ising
model one-dimensional on directed Small-World networks (DSW). Our results are
in agreement with the Grinstein criterion for models with up and down symmetry on

regular lattices
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Introduction

Grinstein et al." argue that non-equilibrium spin systems on square
lattices (SL) with up-down symmetry belongs to the same class of
universality of the Lenz-Ising model in two dimensions (2D). This
hypothesis was endorsed for some non-equilibrium models on other
regular lattices.”™®

In 1992 Oliveira’ proposed the a non-equilibrium model known
as MVM which disobeys the detailed balance. The update of the
MVM follows a Markov sequence of stochastic dynamics with local
rules and with up-down symmetry. In 2D, on a square lattice, the
MVM presents a continuous phase transition with critical exponents
identical® of the Ising model. Sousa' and Brenda'? studied the
Ising model and MVM on DSW random lattices, respectively. The
exponents obtained in both models are identical and in agreement
with the conjecture suggested by Grinstein et al.!

In this paper, we consider the MVM in 1D on DSW networks
and perform an extensive computer simulation study of the MVM.
To extract the critical exponents, we applied finite-size scaling (FSS)
techniques. Monte Carlo simulations of this system were performed
using a master equation to update the spins. Here, there is a continuous
phase transition for O<p<l, where p is the rewiring probability.
Besides, the calculated critical exponents for p=0.1 do not belong to
the same universality class as the 2D Ising model.

We consider the non-equilibrium MVM on DSW networks by a
set of spins variables o; assuming values values +1 located on every
node 7/ of a DSW networks with L sites, where L is the length of a
linear chain. The small-world network in one-dimension is built from
a regular network with two closest neighbors, connected to L nodes
and J neighbors. In this network, each node is randomly reconnected
with n edges with probability p. When p = 0 for the network it is
regular (received no long-range connection), but for 0 <p </ the
network is small world (short-range links) and p = / random network
(long-range connections), as shown in Figure 1.

In the MVM on a network, the system dynamics traditionally is as
follows: We assign a spin variable o; with values 1 at each node of
the net. At each step, we try to spin- flip a node. The flip is accepted
with probability

1

W, =5[1—(1—2q)ai.5(§aJD (1)

where S(x) is the sign of x if x#0, S(x)=0 if x=0. To calculate
w; our sum runs over the (J=2) nearest neighbours of spin i on the
network. In this model, we add a long-range connection connecting to
another site £ with p=0.1. This connection is only one way, that is, the
site k does not send back a connection to the site . w; means that with
probability (/-g) the spin will adopt the same state as the majority of
its neighbours. The control noise parameter q(qugl) works like the
temperature in the Ising model: the smaller the value of q, the greater
the likelihood of parallel alignment with the local majority. The
simulations have been performed on different DSW networks sizes
comprising a number 2=5000, 10000, 20000, 40000, 60000, 80000,
120000, 160000, 200000, and 2600000 of sites. For each L size
quenched averages over the connectivity disorder are approximated
by averaging over independent realizations. For each simulation, we
have started with a stable configuration of spins. We ran 3x10° Monte
Carlo steps (MCS) per spin with 2x10° configurations discarded for
thermalization using a' random-number generator.

Small World

Figure | Random networks.

Results and discussions

The molar magnetization, m=zi0'i/L, were measured. From
magnetization, we can obtain other measures such as the average
magnetization, susceptibility and the fourth-order Binder cumulant,
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m=[{m)],,. @
xla) =] (), ~(m), ] S

().,

U, (q ) =l-—"0 )
3[Lm)],,
in the above equations <...> stands for thermodynamic averages
and ...[...] =~ for averages over different realizations.

In order to calculate the exponents of these models, we apply
finite-size scaling (FSS) theory. We then expect, for large system
sizes, an asymptotic FSS behavior of the form

m=L""f, (x)[1+..], Q)
x=U"f,(x)[1+.], (6)

Where £ and y are the usual critical exponents, and f,(x) are
FSS functions with

x=(q-q,)L" (7

being the scaling variable. The dots in the brackets [1+...] indicate
corrections-to-scaling terms. We calculated the error bars from the
fluctuations among the different realizations. Therefore, from the
size dependence of m and y we obtain the exponents ratios f/v
and y /v respectively. The susceptibility at its maximum also scales
as I’' . Moreover, the value of T° =T,(L) for which y has a
maximum scales with the lattice size as

T.(L)=T. +bL"
In this way, Eq. 7 may be used to get 1/v .’
In the Figure 2, we plot the magnetization , Binder Cumulante,
and susceptibility versus the noise parameter ¢ for sizes L=5M, 10M,
20M, 30M, 40M, 60M, 80M, 120M, 160M, 200M, and 260M and

rewiring probability p=0.1. The shape of these figures indicates that
this model exhibits a continuous phase transition.
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Figure 2 Plot of the magnetization (A) Binder Cumulant (U,) (B) and
susceptibility y (C) as a function of the noise parameter q and for sizes
L=5M, 10M, 20M, 30M, 40M, 60M, 80M, 120M, 160M, 200M, and 260M with
rewiring probability p=0.1. Here IM=1000.
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In the Figure 3, we plot logarithm of the magnetization at g, versus /nL for
p=0.01 and of the eq. (5), we obtain the exponents ratio /v = ().218(1 1) .

Figure 3 Plot of the logarithm of the magnetization at q_ as a function of the
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In the Figure 4, we plot logarithm of the susceptibility y at g, and .
versus [n L .Of the eq.(6), we obtain the exponents ratio  / v, =0.535 73
,and }//quax = 0.533(8) for p=0.1.
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Figure 4 Plot of the logarithm of the susceptibility Lge and ¥ . Vversusn
L and noise parameter p=0./.

In the Figure 5, we plot the log-log of [qc (L)- qC] versus L and
the eq. (7), we obtain the exponents ratio 1/v=0.51(3) .
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Figure 5 Plot of the ln[qc (L)—qc] versus In L and noise parameter
p=0.1.
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Conclusion

In the present work, we have shown that, by considering
the ferromagnetic MVM in one-dimension on DSW networks
there is a continuous phase transition. The exponents ratio
B/v=0218(11), y /v, =0.535(7) andl/v=0.51(3) for p=0.1

indicate that they are identical from Ising model in one-dimension
on DSW networks.!® Therefore, our results agree with the Grinstein
criterion for DSW networks.
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