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Introduction
Grinstein et al.1 argue that non-equilibrium spin systems on square 

lattices (SL) with up-down symmetry belongs to the same class of 
universality of the Lenz-Ising model in two dimensions (2D). This 
hypothesis was endorsed for some non-equilibrium models on other 
regular lattices.2−8

In 1992 Oliveira9 proposed the a non-equilibrium model known 
as MVM which disobeys the detailed balance. The update of the 
MVM follows a Markov sequence of stochastic dynamics with local 
rules and with up-down symmetry. In 2D, on a square lattice, the 
MVM presents a continuous phase transition with critical exponents 
identical9 of the Ising model10. Sousa11 and Brenda12 studied the 
Ising model and MVM on DSW random lattices, respectively. The 
exponents obtained in both models are identical and in agreement 
with the conjecture suggested by Grinstein et al.1

In this paper, we consider the MVM in 1D on DSW networks 
and perform an extensive computer simulation study of the MVM. 
To extract the critical exponents, we applied finite-size scaling (FSS) 
techniques. Monte Carlo simulations of this system were performed 
using a master equation to update the spins. Here, there is a continuous 
phase transition for 0<p 1,  where p is the rewiring probability. 
Besides, the calculated critical exponents for p=0.1 do not belong to 
the same universality class as the 2D Ising model.

We consider the non-equilibrium MVM on DSW networks by a 
set of spins variables iσ  assuming values values 1±  located on every 
node i of a DSW networks with L sites, where L is the length of a 
linear chain. The small-world network in one-dimension is built from 
a regular network with two closest neighbors, connected to L nodes 
and J neighbors. In this network, each node is randomly reconnected 
with n edges with probability p. When p = 0 for the network it is 
regular (received no long-range connection), but for 0 <p <1 the 
network is small world (short-range links) and p = 1 random network 
(long-range connections), as shown in Figure 1.

In the MVM on a network, the system dynamics traditionally is as 
follows: We assign a spin variable iσ  with values 1±  at each node of 
the net. At each step, we try to spin- flip a node. The flip is accepted 
with probability 
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where S(x) is the sign of x if 0x ≠ , S(x)=0 if x=0. To calculate
iw  our sum runs over the (J=2) nearest neighbours of spin i on the 

network. In this model, we add a long-range connection connecting to 
another site k with p=0.1. This connection is only one way, that is, the 
site k does not send back a connection to the site i. iw  means that with 
probability (1-q) the spin will adopt the same state as the majority of 
its neighbours. The control noise parameter ( )0 1q q  works like the 
temperature in the Ising model: the smaller the value of q, the greater 
the likelihood of parallel alignment with the local majority. The 
simulations have been performed on different DSW networks sizes 
comprising a number L=5000, 10000, 20000, 40000, 60000, 80000, 
120000, 160000, 200000, and 2600000 of sites. For each L size 
quenched averages over the connectivity disorder are approximated 
by averaging over independent realizations. For each simulation, we 
have started with a stable configuration of spins. We ran 53 10×  Monte 
Carlo steps (MCS) per spin with 52 10×  configurations discarded for 
thermalization using a` random-number generator.

Figure 1 Random networks.

Results and discussions
The molar magnetization, m= / ,ii Lσ∑  were measured. From 

magnetization, we can obtain other measures such as the average 
magnetization, susceptibility and the fourth-order Binder cumulant,
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Abstract

We investigate the critical properties of the Majority-Vote model (MVM) one-
dimensional (1D) on directed small-world networks. The MVM is studied by applying 
the Monte Carlo method. We calculate the critical points, as well as the critical 
exponent’s ratio ,  and . We find that MVM presents identical exponents to the Ising 
model one-dimensional on directed Small-World networks (DSW). Our results are 
in agreement with the Grinstein criterion for models with up and down symmetry on 
regular lattices
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in the above equations <...> stands for thermodynamic averages 
and [ ]av... ...  for averages over different realizations.

In order to calculate the exponents of these models, we apply 
finite-size scaling (FSS) theory. We then expect, for large system 
sizes, an asymptotic FSS behavior of the form

		   ( )[ ]/m 1 ... ,mL f xβ ν−= +  		       (5) 

		  ( )[ ]/ 1 ... ,L f xγ ν
χχ = +  		       (6)

Where β  and γ  are the usual critical exponents, and ( )if x  are 
FSS functions with

		        ( ) 1/
cx q q L ν= −  		       (7)

being the scaling variable. The dots in the brackets [1+...] indicate 
corrections-to-scaling terms. We calculated the error bars from the 
fluctuations among the different realizations. Therefore, from the 
size dependence of m and χ  we obtain the exponents ratios / vβ  
and / vγ respectively. The susceptibility at its maximum also scales 
as /íLγ . Moreover, the value of ( )0

cT T L=  for which χ  has a 
maximum scales with the lattice size as

		       ( ) 1/
c cT L T bL ν−= +

In this way, Eq. 7 may be used to get 1/ν .7

In the Figure 2, we plot the magnetization , Binder Cumulante, 
and susceptibility versus the noise parameter q for sizes L=5M, 10M, 
20M, 30M, 40M, 60M, 80M, 120M, 160M, 200M, and 260M and 
rewiring probability p=0.1. The shape of these figures indicates that 
this model exhibits a continuous phase transition.

Figure 2 Plot of the magnetization (A) Binder Cumulant (U4) (B) and 
susceptibility χ  (C) as a function of the noise parameter q and for sizes 
L=5M, 10M, 20M, 30M, 40M, 60M, 80M, 120M, 160M, 200M, and 260M with 
rewiring probability p=0.1. Here 1M=1000.

In the Figure 3, we plot logarithm of the magnetization at cq  versus In L  for 
p=0.01 and of the eq. (5), we obtain the exponents ratio ( )/ 0.218 11β ν = .

Figure 3 Plot of the logarithm of the magnetization at qc as a function of the 

logarithm of L. noise parameter p=0.1.

In the Figure 4, we plot logarithm of the susceptibility χ  at cq  and maxχ  
versus In L . Of the eq. (6), we obtain the exponents ratio ( )/ 0.535 7

cqγ ν =
, and ( )max

/ 0.533 8qγ ν =  for 0.1p = .

Figure 4 Plot of the logarithm of the susceptibility qcχ  and maxχ  versus ln 
L and noise parameter p=0.1.

In the Figure 5, we plot the log-log of ( )c cq L q −    versus L and 

the eq. (7), we obtain the exponents ratio 1/ 0.51(3)v = .

Figure 5 Plot of the ( )c cln q L q −    versus ln L and noise parameter 
p=0.1.
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Conclusion
In the present work, we have shown that, by considering 

the ferromagnetic MVM in one-dimension on DSW networks 
there is a continuous phase transition. The exponents ratio 

/ 0.218(11), / 0.535(7)qcv vβ γ= =  and1/ 0.51(3)v =  for p=0.1 

indicate that they are identical from Ising model in one-dimension 
on DSW networks.13 Therefore, our results agree with the Grinstein 
criterion for DSW networks.
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