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Abstract

Einstein’s clock synchronization procedure has led to the contention of conventionalism
that clock synchronization is arbitrary and, thus, the one-way speed of light cannot be
measured even in principle. In the context of relativistic theories, we analyze the linear
Sagnac effect and show that its interpretation implies the existence of superluminal light
speeds. Furthermore, we consider an experiment of the Sagnac type that can test the second
postulate of special relativity by discriminating absolute synchronization from Einstein
synchronization. The mere existence in principle of such a test settles the nearly century-
long controversy about the conventionality of the one-way speed of light. An immediate
consequence is that the one-way speed is measurable and the Lorentz transformations
maintain their unique physical meaning and, thus, cannot be substituted by transformations
based on absolute synchronization. The outcome of the experiment, attainable with present
technology, will either corroborate the postulate of a universal light speed in all inertial
frames or identify the preferred frame of reference of relativistic theories. PACS: 03.30.+p;
03.65.-w; 45.50.-j
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Introduction

A theory is physically meaningless unless its basic postulates can
be tested, i.e., verified experimentally. This procedure is sometimes
referred to by saying that the theory can be falsified. The second
postulate of the special theory of relativity reflects Einstein’s
assumption that the universal one-way speed of light ¢ is constant.
With the exception of experts, many physicists believe that the speed
of light measured in experiments refers to the one-way speed,’ while
what is measured is the round-trip value,? in accordance with Einstein
synchronization procedure using a mirror on a round-trip flight path.
In fact, Einstein did not provide a way to test his basic assumption.
Instead, by proposing his well-known clock synchronization
procedure, spatially separated clocks are conventionally synchronized
by assuming that the average round-trip speed and the one-way speed
are the same. Considering that, in principle, the two speeds (round-trip
and one-way) may not be the same, the question of whether or not the
one-way speed of light is measurable, represents one of the prominent
controversial debates of modern physics. The conventionality of the
synchronization procedure of spatially separated clocks in special
relativity (SR), and the related measurement of the one-way speed of
light, has been thoroughly discussed by Poincaré® and Einstein,* and
reinforced in the works of Reichenbach,® and Griinbaum.® Discussions
on this fundamental issue were revived by the works of Méller” and
Mansouri and Sexl,® who confirmed that synchronization by means
of clock transport, is equivalent to Einstein’s procedure, favoring the
conventionalist view.

According to Mansouri and SexL?® the intrinsic indetermination in
the one-way speed ¢ renders the validity of the second postulate of
SR not testable. This has led to a renaissance of alternative relativistic
theories that assume the existence of a preferred frame where space
and light speed are isotropic while, in a relatively moving inertial
frame, they are no longer isotropic. Thus, physicists have focused
their attention to preferred frame theories that use transformations
with the same rod-contraction and clock-retardation as the Lorentz
transformation (LT), but differ from it by an arbitrary synchronization

parameter. By their very construction, preferred frame theories
interpret all the known experiments that support SR. For example,
in the Michelson-Morley experiment, the observable turns out
to be independent from synchronization. Therefore, besides the
Lorentz transformations, also the transformations based on absolute
synchronization, such as the Tangherlini transformations (TT),’
provide the same null result of SR. What matters in this and in
other optical experiments is the average speed on the optical path,
which turns out to be exactly ¢ with transformations (such as the TT)
that foresee the Lorentz-Fitzgerald contraction of moving rods and
the time dilation of moving clocks. One important contribution to
the subject was given by Bell,'” who stated that although there is a
stringent “difference in philosophy” between the view of SR and that
of a preferred frame theory, “The facts of physics do not oblige us to
accept one philosophy rather than the other”. Bell’s assertion was used
as a starting point in a series of works adopting the conventionalist
thesis within relativistic theories,'®'* where it has been argued that
there is essentially one theory, Bell’s two philosophies corresponding
rather to different aspects of the same theory.!""?

If synchronization is arbitrary and the two synchronizations
(Einstein’s and absolute) are equivalent, important consequences
arise. Indeed, the Lorentz covariance concept exploits the symmetry
of the Lorentz group and is usually applied by theoreticians to several
branches of modern physics. If Einstein and absolute synchronizations
are physically indistinguishable, the LT could be equivalently
substituted by the TT, which possesses a lower symmetry, similar
to that of the Galileo group. In this case, the equivalence of the two
synchronizations implies that what is important is the contraction
of moving rods and the slowing down of moving clocks but not the
symmetry of the transformations. This fact is hardly acceptable for
most physicists who have been relying for decades on the properties
of the Lorentz group. There are instances in the literature where,
instead of the LT, the TT transformations are equivalently used
to describe physical reality. In the context of relativistic theories,
an example is found in the interpretation of the Sagnac® effect by
Kassner,”! who proposes to solve Selleri’s*** paradox by replacing
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Testing Einstein’s second postulate with an experiment of the Sagnac type

Einstein synchronization with the absolute synchronization. Kassner’s
conclusion is then that the light speeds ¢+v and ¢—v, pointed out by
Selleri in his paradox, are to be interpreted in terms of the arbitrariness
of synchronization and, thus, do not invalidate the second postulate of
SR that requires the unique, universal value c for the speed of light.

Kassner’s paper is important for two reasons. First, he makes
it evident that the approach of conventionalism has spread in the
literature even among journals of didactic nature. Second and most
importantly, because it supports the opinion shared by many physicists
that within relativistic theories the principle of relativity remains valid
even when we adopt a synchronization procedure different from that
of Einstein, regardless of the validity or not of Einstein’s second
postulate. In this complex scenario, the important issue consists in
clarifying the physical equivalence — or lack thereof — of preferred
frame theories with standard SR (i.e., special relativity with Einstein
synchronization). The purpose of our paper is to show that, at least in
principle and even on a kinematical basis,>*?’ there are experiments
capable of testing the one-way speed of light, and the Sagnac effect is
one of them. In Sects. 2 and 3 we consider the relativistic interpretation
of the Sagnac effect, using a “linearized” version of it, and discuss
the related controversial problem of the superluminal speeds of the
light signals, highlighted by detractors of Einstein synchronization as
disproving the validity of Einstein’s second postulate.

In Sect. 4 we show that an experiment of the Sagnac type can
discriminate Einstein synchronization from absolute synchronization,
i.e.,, standard SR from identifiable preferred frame theories. If
the experiment is performed, its outcome will have significant
consequences on modern physics. The first important result is that,
from a theoretical perspective and in the description of physical
theories, the LT are not equivalent to and cannot be arbitrarily
replaced by the TT. In fact, if the one-way speed of light is observable,
even only in principle, the validity of the second postulate of special
relativity can be tested. Thus, standard SR maintains its unique
meaning, physically different from that of theories that assume the
existence of an identifiable preferred frame. Finally, we provide
an indication of the sensitivity required by the experimental setup,
capable of detecting in certain situations the velocity of the preferred
frame if it were to exist.

The sagnac effect and Einstein’s second
postulate

The usual circular Sagnac experiment is pictured in (Figure
1). Consider a disk rotating at constant angular velocity w and an
observer with a clock O* stationary on a point at radius R, the origin of
a co-rotating reference frame S*. As indicated in Figurel, this observer
sends two light signals (as in the Sagnac experiment), or two particles
(or two clocks, as in the Hafele-Keating experiment®®) at velocity C
around the disk circumference in opposite directions, respectively.
Equivalently, we may consider the Sagnac experiment performed in a
conveyor belt, as shown in Figure 2, which has been used to describe
a modified, but equivalent, “linearized” version of the Sagnac effect.””
We wish to know the time span observed by O on the return of each
signal on the disk. First, we consider the description given by an inertial
observer O at the center of the disk stationary in the laboratory frame S.
The observer O*at R is co-moving with the disk with angular velocity
 and possesses the tangential speed v = @R . If the laboratory frame
§'is chosen as the preferred frame, the description of the Sagnac effect
and corresponding time span variation At = — ‘) in such a frame is
the same for Newtonian mechanics and relativistic theories with any
synchronization. In general, with different speeds C, and C— in the
counter-rotating (+ clockwise) and co-rotating (- counterclockwise)
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directions, respectively, the result, for the propagation time ¢, and —of
the signal in S, is
2L 2L

o . 2L(C.~C_+2v)
+ Co4v’ -

- (C,+v)(C_—v)°

= s At
o D)

where L =7zRand At =t — z‘+ The local time of O* runs slower

1/2
than the time of O by the time dilation factor1/ y = (l—v2 /c2) , SO

that for O* the light signals take the times t: =1, /y and,
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where A¢'is the time span variation measured by the clock O"and
the last term corresponds to the case C+ =C =c.

With reference to Figure 1, for the observer O" on the disk at 7 = R
, the circumference length corresponds to the proper ground length of
the path followed by the signals and is given by 27y R . For the usual

case C+ =C =c , the time spans are t = 27R/ (civ). Then, for

the Sagnac effect, the average speeds of light in the counter- and co-
rotating senses are

_2mR
Ty

ctv, 3)

Where the results ¢ £ v correspond to the speed of light in vacuum,
C=c.

Figure | Clock O* (originally at point A) is fixed on the circumference of
the disk of radius Rrotating counter-clockwise at the angular velocity cwith
respect to the laboratory frame S. Two light signals are sent around the
circumference of the disk in opposite directions starting from clock O*, which
measures the time span on the return of each signal to O*.

Different interpretations of the sagnac effect

Besides other properties, the Sagnac effect is widely recognized as
an optical experiment capable of indicating the state of rotation of the
interferometer.** We mention here only some of the several contrasting
interpretations of the Sagnac effect, originally thought to disprove
special relativity.® Landau and Lifshitz*! trace the physical cause of
the existence of the Sagnac effect in the rotating reference system
as due to a difference between the velocities of counter-propagating
waves. This velocity difference, which refers to the average velocities
in (3), leads to a paradox according to the interpretation of Selleri,?
who shows that when the radius of the rotating disk is increased
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to R — o keeping constant wR = v, the local speed of light in an
inertial frame would be ¢ + v or ¢ — v depending on the direction of
propagation, in disagreement with the unique value ¢ foreseen by the
second postulate of special relativity. The existence of Selleri’s paradox
has been supported by other papers**>7 where the authors claim that
the phase difference of counter-propagating waves in the reference
system co-rotating with a ring interferometer, calculated in the context
of standard SR, is equal to zero. Instead, Malykin®® argues that we are
rather in the presence of a Zeno paradox because, considering that the
rotating disk is not an inertial frame, the interpretation of the Sagnac
effect is reliant on the equivalence principle and the effect of time
dilation in a gravitational field.

Light
signal

Clack O* ~ e

co-moving with (=]
frame 5 at the 5
velocity V with

respect to frame AB

Distance AB = L according to the laboratory frame S

Figure 2 The conveyor belt system represents a “linearized” version of the
Sagnac effect. The belt stands for a flexible tube and the signals propagate in
opposite directions along the closed path inside the tube, acting as a wave-
guide and rotating counter-clockwise while leaning over the two pulleys
separated by the arm AB of fixed length L.The inertial frame S$”is co-moving
with the upper part of the tube with velocity vwith respect to the arm AB,
stationary in the laboratory frame S, while frame S’and clock O*are co-moving
with the lower part of the tube in the opposite direction.

The argument against Einstein synchronization can be resumed
as follows. Because of the motion of O*, for the observer O of the
laboratory frame S, the paths + of the signal have different lengths,
27R /(1 £v/c) and, since the velocity ¢ of the signal is the same
in both directions, it appears obvious that we must have different
propagation time’s r+. For O, instead, the propagation paths have
the same length 27zyR but still we have different propagation times,
ti =t _/y. Thus, for propagation on paths of the same lengths, if

the respective propagation times, ti , are different, different speeds

c, (and not the same speed c) are expected. This argument, which
seems to cast doubts about the validity of a universal constant speed
of light ¢, has been expanded by Selleri who claims that the paradox
can be solved only if relativistic theories adopt the “natural” absolute
synchronization that foresees the different speedsc +vand ¢ —vof
expression (3). In this context, it is worth recalling the arguments of
Kassner about Selleri’s paradox. In rebutting Selleri’s claim, Kassner?!
attempts to refute the paradox by explaining the Sagnac effect in the
frame of the co-moving observer O"in two ways: through Minkowsky’s
analysis and by means of the absolute synchronization. The point is
that, if Einstein synchronization is applied along the closed circular
path, the resulting average speed in (3) is ¢, and not ¢ +vor ¢ —v
.Thus, in this case, the Sagnac effect invalidates standard SR. After
his Minkowsky analysis, Kassner concludes by acknowledging that
“Einstein synchronization fails when performed along a path around a
full circle”, i.e., on a closed path on the rotating disk, a failure that has
also been observed by Weber® and earlier by Anandan.*’
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The belt stands for a flexible tube and the signals propagate in
opposite directions along the closed path inside the tube, acting as
a wave-guide and rotating counter-clockwise while leaning over the
two pulleys separated by the arm AB of fixed length L. The inertial
frame S”is co-moving with the upper part of the tube with velocity v
with respect to the arm AB, stationary in the laboratory frame S, while
frame S’is co-moving with the lower part of the tube in the opposite
direction. Thus, in order to account for the resulting unphysical time
discontinuity arising from the speeds ¢ + vand ¢ — v and solve Selleri’s
paradox, Kassner introduces the unusual concept of a “time gap” on
the rotating disk and states, “the speed of light is ¢ everywhere except
at the point on the circle where we put the time gap. The position of
this point is arbitrary but there must inevitably be such a point.” The
solution based on Minkowsky’s analysis presented by Kassner has
been objected to by Gift!! who rejects Kassner’s adjustable “time gap”
based on an unphysical time discontinuity claiming that is a theoretical
construct that has no basis in reality. Similarly, Selleri has claimed that
“it is not true that the synchronization procedure can be chosen freely
because Einstein convention leads to an unacceptable discontinuity
in the physical theory”. Moreover, according to Selleri “Very
probably the above discontinuity is the origin of the synchronization
problems met with by the Global Positioning System”. In relation to
this, Gift emphasizes that the failure of Einstein synchronization is
well known to GPS engineers who discovered*# that they cannot
synchronize GPS clocks fixed on the rotating Earth using Einstein
synchronization.*#*

The second argument presented by Kassner?' to solve Selleri’s
paradox consists of replacing Einstein synchronization with the
absolute synchronization. Thus, instead of the Lorentz transformations
and without citing the related literature, Kassner makes use of the
Tangherlini transformations. Considering that the one-way speed of
light is synchronization dependent, for Kassner a difference from
¢ does not constitute a problem because the observable two-way
(average) speed of light remains ¢, as in the interpretation of the
Michelson-Morley experiment. In fact, if synchronization is arbitrary
(as also assumed by Kassner), the two synchronizations are equivalent
and provide the same observable result, as they actually do within
Kassner’s basic set up and hypotheses. Then, although acknowledging
the anisotropy due to the different speeds c¢+v and c—v in Selleri’s
paradox, Kassner argues that the difference is to be interpreted
in terms of the arbitrariness of synchronization and, thus, does not
invalidate the second postulate of special relativity. Yet, in Sect. 4
we demonstrate that, in general, Einstein synchronization and the
absolute synchronization are not physically equivalent. Therefore,
the assumption of conventionalism is groundless, so that Kassner’s
argument based on it is untenable. Moreover, while adhering to the
conventionality of the speed of light and the equivalence of the two
synchronizations, Kassner does not discuss the consequences of this
assumption on the countless physical theories traditionally based
on the LT. These physical theories would be substantially modified
if they were based on and developed by means of the TT. In the
next section, we review the arguments in favor and against Einstein
synchronization and the problem of superluminal speeds within the
context of the “linearized” Sagnac effect, shown in (Figure 2).

Linear Sagnac effect, clock synchronization
and superluminal ““ground” speed
With reference to Figure 2, we assume that, if the distance L

between the two pulleys of small radius 7 is long enough A¢ , the time
7 = R/ vspent by the signals in the short portion of the tube in contact
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with the pulleys will be negligible with respect to the total time of
flight and we may omit it. Furthermore, the acceleration a = Ve
that could cause a change in the flow of time of clocks co-moving with
the tube is constant and depends on v and r. Therefore, the change
due to the effect of the acceleration does not depend on L and, if the
distance L is long enough, becomes negligible with respect to the time
variation A¢” , proportional to L, observed in the Sagnac effect.

If the tube where the light signals propagate is filled with a co-
moving medium (for example, a fluid of refractive index » where the

local speed of light is c’=c/n ) the speed of light is no longer ¢ but
(. In this more general case, the two signals circumnavigate the tube

in opposite directions with the same local (ground) speed c =c’
with respect to the tube.

a) For special relativity with the LT.

T . 0
For simplicity we consider here the case C~ = ¢ We have,

2L 2L
t =—3t =—— “
+ ctv - c—V

* At t_—t L
A =T =T oy 5)

Y c N
It can be shown that the Sagnac effect, related to Az is foreseen to
be independent of the signals ground speed c’ , for both the circular
and linear cases.

b) For a preferred frame theory based on the TT.

The TT between the preferred frame S and the moving frame S
are:x = y(x—vt);y’ = y;z’ = z;tv =t/y. Using the TT, with
C+ =C’ /72 —vandC- =C" /72 + v, we have

, 2L _2;/2L.t 2L 2L
+  C,4+v ol - v C°
« At t+t
At =— =20,

4 4 0
Which implies no Sagnac effect independently of ¢ , the same

result as in Newtonian mechanics. From a mathematical perspective,
the internal consistency of the LT is not questionable and not
questioned here. In the following, we try to adopt an objective point
of view, simply presenting the arguments in favor or against Einstein
synchronization, with the aim of clarifying the issue of superluminal
average speeds in the context of the Sagnac effect. The incompatibility
of Einstein synchronization over a closed path has been discussed
above in Sect. 2. The objection that could be made in the context of
the circular Sagnac effect is that the rotating frame is a non-inertial
frame and, thus, Einstein synchronization is not applicable in such
a frame. Here, with the linear Sagnac effect, we may apply Einstein
synchronization separately to the inertial frames S"and S co-moving
respectively with the upper and lower part of the tube. Still, we find
that the mentioned incompatibility subsists and we are met once
more with superluminal speeds and the conflicting point of views, or
“realities”, of S’and S”.

The Lorentz transformations from S ’to S are,

X' = }/'(x"—wt");t’ =y|t—/ (6)

-1/2
withw =2v/ (1+v2/c2) andy' = (l—wz/cz) = }/2 (1+v2/02) .

Copyright:
©2017 Spavieri 17

The arm AB of length L, fixed in the laboratory frame S, moves
with velocity v with respect to S, stationary with the upper part of
the tube. Frame S”, co-moving with the lower part of the tube, moves
with velocity w with respect to S”and velocity v with respect to S. The
origins O", O'coincide with the origin O of frame Satz =¢ =¢ , when

the light signal is sent counter-propagating at the velocity C " =c At

the time tIB =t , the signal has reached point B while clock O* has
simultaneously reached point A. The crucial question for standard SR
is: How does the observer O* manage to explain the observed time
span difference for two signals counter-propagating along a path of

the same length and with the same ground speed c’ =c?
For our example, we choose a special case where the effect of non-

conservation of simultaneity is made apparent. For the experimental
set-up shown in (Figure 3), we assume that the three origins O, O, O”

of frames S, S’, S, coincide at the initial time ¢t = {=t =0 , while
the pulley at A is positioned at the distance L =vL /C’ =vL/ec
to the left with respect to O, and the pulley at B at the distance
L- Lo =L (1 —v/CO) = L(l —v/c) to the right. For our purposes,
it is sufficient to consider the clockwise propagation of a light signal
and determine its time of flight starting from the clock o', co-moving

with the tube and coincident with the origin 0 att = 0 , and
returning to O after a complete cycle. The single clock O* alone is
used to determine the time interval of the closed trip and, therefore,
no synchronization procedure is involved. The two physical realities
of S ”and S’ will be confronted.

Clock O* .S Light
co-moving 0 X signal co
with the tube 5 'O’"—. \ .

and frame 5 T g S
+ (O h
0* —
CD
Flexible tube 0
moving with X
velocity V with g

respect to O

According to "', when clock O* reaches
point A, the light signal reaches point B

Figure 3 The linear Sagnac effect described from the perspective of frame §".
The arm AB of length L, fixed in the laboratory frame S, moves with velocity
vwith respect to S”, stationary with the upper part of the tube. Frame §’, co-
moving with the lower part of the tube, moves with velocity w with respect to
$" and velocity v with respect to S.The origins O", O’ coincide with the origin

O of frame S at t = t' = t"=0, when the light signal is sent counter-propagating
" "

= c At the time ¢, = 'y the signal has reached point B

B
while clock O* has simultaneously reached point A.

at the velocity C0

Physical reality and total time for the clockwise trip
according to S”’

Clocks at rest in some inertial reference frame may be “internally”
synchronized according to Einstein’s procedure. Without reference to
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other inertial frames in relative motion, to say that the clocks at rest
along the x" of the inertial frame S are synchronized, it implies, for
both Newton and Einstein, that in S "the clocks show the same readings
simultaneously. Within a given inertial frame, “internal” simultaneity
or, simply, simultaneity, is a reflection of internally synchronized
clocks. Then, physical phenomena are described in S as a function
of the time ¢, the same time simultaneously displayed by all the
synchronized clocks. If a hypothetical signal is sent at infinite speed
along the x"axis of S, all the synchronized clocks on the x"axis will
display the same time simultaneously when the signal passes by. At
least in principle, clocks can be properly (internally) synchronized by
signals with either finite or infinite speed, if the latter were available.
The same conclusions apply for S’. For both Newton and Einstein,
the concept of (internal) simultaneity applies when keeping within
the physical reality of any inertial frame. The difference between
Newton and Einstein shows up only when we relate two inertial
frames in relative motion by means of the space-time coordinates
transformations. In fact, as is well-known, if the hypothetical signal
sent along the x"axis of S had infinite speed also along the x"axis of
§”, there would be a conflict with the Lorentz transformations that
assume the relativity of time and foresee different, non-simultaneous
time readings between the two sets of clocks of S”and S’. Supporters
of special relativity overcome this problem by arguing that a signal
with infinite speed is not operationally acceptable within the theory,
which requires ¢ to be the maximum speed permitted. However, given
that the concept of simultaneity holds (internally) for both Newton
and Einstein when keeping within the physical reality of a given
frame, we may say that physical phenomena are portrayed in that
frame as a function of the same “absolute” time. Thus, the restriction
imposed by the finite speed ¢ does not impede to conceive that, if
spatially separated clocks are synchronized, they will display the
same time simultaneously when a hypothetical infinite-speed signal
passes by. The same is true for the synchronized clocks of any other
inertial frame.

What is to expect in any case, is that the related physical realities
of the two inertial frames in relative motion are compatible and reflect
the same objective physical reality. In our analysis of the linear Sagnac
effect, we shall consider the compatibility of the internal simultaneity
of an inertial frame S with that of another generic inertial frame S’
in relative motion with respect to S”. As shown below, we find that
internal simultaneity is not compatible with Einstein synchronization
and the Lorentz transformations, because the latter imply, for S”" and
S, two contrasting and irreconcilable physical realities. We calculate
now the time taken by the signal to reach point B after leaving the

clock O°. Since, at ¢ = 0 point B is at the distance L(1-v/c)/ yto

the right from the origin 0 =0 and point A is at vL / yc to the left,
the signal reaches B at the time

to=—=t )

And at the same time t; clock 0" = 0" reaches point A, the two
events at A and B being simultaneous. In the time span t, the signal

has covered the ground length L / y of the upper part AB of the tube
at the local speed c. As shown in Figure 3, after the clock O, initially
co-moving with the origin O", reaches point A, it turns around the
pulley and goes toward point B, co-moving now with the lower part
AB of the tube and the x'axis of . Frame S “and S agree on and share
the common value for the total invariant proper length 2yL of the tube
where propagation takes place. It follows that both S and S agree
that, after changing direction at B, the signal is bound to cover the
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remaining proper length L'=2yL—-L/y =y'L/y from B to O" by
traveling entirely in the lower part of the tube until clock O" is met,
as apparent from Figures 3, 4, and 5. For S”, the ground length of
the lower part of the tube is y L/ y , which (because of its relative
motion) is seen as being contracted by the factor y to L/ y and,
thus, it fits exactly the length L/ y of the segment AB. Conversely
and in contrast with the reality of S, frame S estimates that it is the
upper part of the tube that has ground length y L/ y , seen by S as
being contracted by the factor L /to the value L/ y . At this point,
detractors of Einstein synchronization may point out the following
two arguments against the validity of Einstein synchronization.

They may first argue that the time interval Ar , corresponding
to propagation in the lower part of the tube, can be inferred by S”,
knowing that the ground speed is ¢ also in that lower section of the tube.
In fact, the ground length of the lower part of the tube, L =y L/ y,
to be covered by the signal, and the corresponding ground speed ¢ of
the signal are known. Thus, an observer of S may say that, whatever
may be the time displayed by a clock of S when the signal starts
propagating along the xaxis, this clock will have advanced by the
time interval At = L / ¢, after the signal has completely covered the
ground distance L. About the corresponding elapsed time of clock O
, we need to consider that, when co-moving in the lower part of the
tube, clock O is sharing the same properties of the clocks fixed to the
x axis. Therefore, since for S”clock O is always co-moving with the
lower part of the tube while the signal is propagating along this lower
part, the time interval by which O advances must be the same as that
of any other clock of S’ It follows that, as inferred by S”, the proper
length L =y L/ y must be covered by the signal in the time interval

a=a =B b (®)
c ye
As measured by clock O” or any other clock of S.

S” can claim the above result to be a necessary consequence
of the observed physical reality shown in Figure 3, reflecting the
simultaneity of the two events: signal at point B and clock O at point
A. For §”, this reality requires that the signal has still to travel the
ground distance L = y L/ y at the ground speed ¢ after the clock O
reaches point A and. therefore, result (8) must inevitably hold. Then,
for §", the total timet, = t1 displayed by clock O for the clockwise
signal propagation must be,

* " , L
1=t +AM :2;/;. ©)
For the counter-clockwise propagation, the result is the same.
Therefore, the propagation time difference for the light signals is

Al = t -t and no Sagnac effect is foreseen if the local speed of
the signal is c’=c everywhere along the tube.

b) The second argument that detractors of standard special
relativity maypoint out are the following.

Let us suppose that in (9) we have At" — AtSR =y (l—v/c)2 L/c,
in agreement with special relativity (see (4) and (5)) and experimental
observation. Then, we may write

{ =t +Ar (10)
+ B SR
And, correspondingly,
2yL(1-v/c) L/ 'L/
yL(i—vie) _Lly  y'Lly an
c ¢ c
Where, on the lhs of (11), 2yL is the total length covered by the
signal, and ¢/ (1 —v/c) =c+vis the corresponding superluminal
average speed. On the rhs of (11), the length L/ y of the first term
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represents the length covered by the signal in the upper part of the
tube and ¢ the corresponding local speed. The length y L/ y in the
second term represezts the length covered by the signal in the lower
part of the tube and® the corresponding local speed. Simple algebra
indicates that the local speed ¢ , in the lower part of the tube, must be
¢ = ¢+ 2v,i.e., superluminal, in contradiction with Einstein’s second
postulate, as pointed out by Selleri. It follows that internal simultaneity,
as assumed by both Newton and Einstein, is not compatible with the
Lorentz transformations based on Einstein synchronization.

Physical reality and total time for the trip according
to S

We have shown in the previous section that, according to the
physical reality of S, the local speed of light in the lower part of the
tube, co-moving with S’, must be superluminal. In order to restore
the local speed of light to ¢ in this lower section of the tube, frame
S’ has to synchronize clocks (“de-synchronize clocks”, would argue
a detractor) by means of Einstein synchronization, so that the LT can
be used.

The origins O" and O were coinciding with the origin O at
t=t =t .Atthetime t, the signal has reached point B while clock

O has not yet reached point A. At the instant t; , the reading of clock

0is t; = t;g /1y < t; , while the proper ground length O'BisL/ 14

. A~ Ly
. Hence, the corresponding ground speed is C-= ——=c+2v>c

Iy
In this way, the physical reality of S’ corresponds now to the reality
of S changed, or “transformed”, by means of the LT (6) as shown in
Figure 4. It follows that, according to S’, simultaneity no longer holds
because the signal reaches point B at the time

2
' fw L v
to=yt [ 1-2 =y 21
B yB[ cj 70( cj

While clock O reaches point A at the later time

P YR P
tA_lB+ t—}/tB—j/? +7

Bei ¢
eing
. " B " _ L w _ v
=1, ~t, =71, —27L—cz, (12)

The time interval (Kassner’s time gap) introduced by non-
conservation of simultaneity. Figure 4 pictures the physical reality

of S’at the time’® indicating that O is at the distance L / }/y’ from
B and at the distance Ax = 2(\/2 /cz) yL/ 7’ from A. The physical

reality of S~ at the later time ¢ is pictured by Figure 5, indicating
that when clock O’ reaches A tﬁqe signal has already traveled from B
toward point A in the lower part of the tube during the time interval
ot and is now at the shorter distance L/ y — ¢St from A and clock
!, .According to S’, as a consequence of non-conservation of
simultaneity the signal is not located at point B at the time L but has
already moved in the lower part of the tube from B toward O’ by the
amountcdt = 2yL (y/c), as shown in Figure 5. Meanwhile, in the
same time interval ot point A has moved with respect to O by —vot

. Thus, at the time ‘s the remaining shorter distance to be covered by
the signalis L/ y = (c-v)&t’, so that when the signal finally reaches
O this clock must have advanced by the time interval

(13)

. Liy—cSt+vst yL 2
n o Mrmestet L (1_Kj .
SR c c

C
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Then, according to S’, the total time displayed by clock O~ at the
end of the clockwise cycle is

* " ' 2yL  2yLv 2L
Comfeal =TS , (14)
+ B SR c 02 }/(C+V)

-— W

Clock O* 5 Light
co-moving with o X B signal co
the tube and e >
frame §° \gt \.-. N

~ G-)--% ————— @

Flexible tube
moving with

velocity V with . X
respect to O S

Distance O*B = L/(y’y), at the time t'; according to 5~

Figure 4 The linear Sagnac effect described from the perspective of frame §'
at the time tB .The origins O" and O’ were coinciding with the origin O at

t=t

clock O* has not yet reached point A.At time 7B the reading of clock O%is

=t"= 0 Atthe time tR the signal has reached point B while
t'B = t'B/}/'<t'B while the proper ground length O* Bis L/y .Hence,

the corresponding ground speedis cc = c+2v > ¢ .

o — W X

@k

& o* "—Cq"“‘- Light
Clock O* . signal
co-moving with o J
the tube and s x
frame 5’ S

Positions of the signal and the clock O*
at the time t', according to 5

Figure 5 The linear Sagnac effect described from the perspective of frame §’
at the time? .Clock O* has reached point A and, after turning around the

pulley, starts co-moving with the lower part of the tube and frame S’. Because
of the swifter ground C > ¢ speed in the upper part of the tube, the signal
has already moved along the lower part of the tube advancing by ¢dt' from
B toward O *.

In agreement with (10) and (11) as foreseen by special relativity.
For the counterclockwise propagation, we find = 2yL(1-v/c)/ ¢
and thus, being Al = ti —ti =4Lv/c” as in (5), the LT applied
in frame § correctly foresee the Sagnac effect. It should be pointed
out that the difference between (8) and (13) is precisely the time
interval (12),8¢ = yL2v/c2 , introduced by non-conservation of
simultaneity. As pointed out above, according to S and in agreement
with standard special relativity, result (14) indicates that, for ’=e¢
, the average counter-propagation speed, along the invariant ground
length 2y L of the closed path, is superluminal and givenby = c +v.

Clock O has reached point A and, after turning around the pulley,
starts co-moving with the lower part of the tube and frame S’. Because
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of the swifter ground speed C > c in the upper part of the tube, the
signal has already moved along the lower part of the tube advancing
by ¢St from B toward O

Supporters of special relativity may claim that, although the
average speed is superluminal, after Einstein synchronization the local
speed in the lower part of the tube co-moving with S’is ¢, as it should
be. Nevertheless, detractors of Einstein synchronization may argue
that the local speed in the lower part of the tube has been achieved
by re-setting the clocks in that part of the tube in such a way that the
speed be c. For doing this, frame S has to pay a price because now
the average superluminal speed = ¢ + valong the closed path 2yL
cannot be justified by S’, unless the ground speed in the upper part of
the tube is not only superluminal, but greater than the average value
= ¢+ vand of the order= ¢+ 2v. In fact, by synchronizing clocks
with Einstein procedure, S "has introduced the kinematical mechanism
of non-conservation of simultaneity and the physical reality of S~
has been changed. The resulting effect consists of modifying the
time interval (8), making it shorter by a first order contribution in
v/ ¢ in order to equal the value (13). Because of non-conservation of
simultaneity, when seen from the snapshot perspective of S’shown in
Figure 4, the clocks of S ”in the upper part of the tube (Espl ay r adings
predicted by the Lorentz time transformations # = y'| #'+—— | .If the
perspective of S’is taken reahstlcally (and is not a mete mathematical

makeup), the reading of O, at the tlmet a be 1nfe ed by means
of the inverse Lorentz transformatlonst = , so that the
time readlngt =t, of clock O (atx = s otit
P "
£ =Ly (1—Ej = [1“) (15)
B 4 B c ye c

Obviously, the clock reading t represents the time of flight of
the signal from O to the point of the tube reached by the signal at
that time. According to S, at the time ZB the light signal has not yet
reached point B but has covered only the shorter ground distance

to the point B shown in Figurf; #. For the Newtonian

L, = ct;
mfndset, the fact that, at the displayed time ts , the signal can be in
two different places, at B or B”, depending on the point of view of S’
or S”, hints at an inconsistency between the two physical realities.
However, if we admit non-conservation of simultaneity and focus on
the reality of S, it is a fact that, at the time ¢, the signal has already
reached point B, past B . Thus, we may conclude that the signal has
been sped up by non-conservation of 51multane1ty, while propagating
in the upper section of the tube from clock O"to point B, pastB

. Considering that the ground length O"Bis L/ y and that? is the
time of flight of the signal, we are compelled to infer that the local
ground speedof the signal along OB is,
~ Ly ¢
€= t; T 1-wle

=c+2v,

(16)

i.e., superluminal for C ’=¢ , in conflict with the postulate of the
constancy of ¢

In short, the argument discussed in b) in the above subsection,
holds here also. If the average speed over the total length 2y L is
= ¢+ v, and, over the partial length yL (1 v/c) of (13) in the lower
part of the tube, the local speed is c, it follows that the local speed in
the remaining part must be = ¢ + 2v, i.e., superluminal.

Preliminary conclusions

The two physical realities of Figure 3 (for S”) and Figure 4 (for
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S”) are physically incompatible and lead to different results and
interpretations of the Sagnac effect. For both Newton and Einstein,
in an inertial reference frame the physical reality is described
synchronously, i.e., at the same simultaneous time in every point of
space of the inertial frame. The contrasting results obtained by S~
and S’ ((9) and (14), respectively) are simply the reflection of the
incompatibility between the concept of simultaneity and Einstein’s
concept of relative time. Non-conservation of simultaneity and
the Lorentz transformations are direct consequences of Einstein
synchronization and the validity of the second postulate of special
relativity. Detractors of Einstein synchronization may claim that the
resulting average propagation speed = ¢ + v of (14) implies signal
propagation at a superluminal local ground speed along some section
of'the closed path, in line with Selleri’s paradox for the circular Sagnac
effect. We have shown that, for the equivalent linear Sagnac effect, if
in one of the inertial frames, S ”or S, the local ground speed is ¢, the
local speed in the other inertial frame must be superluminal and of
the order of = ¢+ 2v, in contrast with Einstein’s second postulate.
This result is seen as reflecting the incompatibility of Einstein
synchronization applied to the closed path of the Sagnac effect, even
when applied separately to the upper and lower parts of the tube.
Therefore, since Einstein synchronization implies the existence of
superluminal local speeds, the second postulate of SR is invalid.

Nevertheless, thinking beyond the controversy about the validity
of the postulate of the universal light speed c in all inertial systems,
supporters of SR may shift the debate to a more pragmatic scenario
by highlighting the correctness of the predictions of the theory.
They could argue that, even though the second postulate of SR is
questionable because of the superluminal speeds involved in the
interpretation of the Sagnac effect, from an operational standpoint,
Einstein synchronization can still be applied to the upper and lower
parts of the tube. Therefore, from a pragmatic point of view, followers
of standard special relativity may claim that the theory is sound
because, by means of non-conservation of simultaneity, it predicts for
the Sagnac effect the observed results, derived either in the laboratory
frame S or in the tube co-moving frame S or S’. Along these lines,
assuming the physical equivalence between absolute and Einstein
synchronization, Kassner argues that the difference between a local
speed ¢ and a superluminal average or local speed = ¢ + vis to be
interpreted in terms of the arbitrariness of synchronization and, thus,
does not invalidate the second postulate of special relativity.

Thus, the debate of relative versus absolute time is at a standstill
and it is unlikely that historically long debates such as this can be
settled through mere theoretical arguments. Fortunately, physicists
agree that, if there is a meaningful difference between opposing
points of view, it must be ultimately observable, i.e., experimentally
testable. Therefore, the best clear-cut way to solve the controversy is
by means of a test capable of discriminating absolute versus Einstein
synchronization. As shown in the next section, such a test exists and
is precisely the Sagnac effect. Regardless of the feasibility or not of
experimental verification, the mere existence in principle of such a test
proves that the Lorentz transformations are not physically equivalent
to transformations based on absolute synchronization. An immediate
consequence is that it is conceptually unfeasible to use the Tangherlini
transformations and absolute synchronization in trying to conciliate,
as claimed by Kassner, the superluminal average speed of the Sagnac
effect with the postulate of the constancy of the speed of light. In
principle, the two synchronizations are physically distinguishable
and the arbitrariness of synchronization can no longer be invoked to
substitute the LT with the TT in order to explain Selleri’s paradox,
which remains unsolved.
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Non-equivalence of Einstein and absolute

synchronization

In relativistic theories, the coordinate transformations between
inertial frames of reference in relative motion may take into account
the synchronization procedure adopted (for example, internal and
external ) through the dependence of the time 7 on a convenient
synchronization parameter ¢. The contention of conventionalism
is that clock synchronization is arbitrary and, thus, the one-way
speed of light, that can be expressed asc(g), is conventional and
not measurable in principle. It follows that, within this scenario,
an observable quantity must be synchronization-independent in
order to be physically meaningful. If the observable quantities of
relativistic theories are independent of the chosen synchronization
procedure, all the experiments supporting standard special relativity
also support a preferred frame theory with absolute synchronization.
Then, non-conservation of simultaneity, which is a consequence of
Einstein synchronization procedure, should not be observable per se.
If, instead, synchronization is not arbitrary, it is feasible that some
observable quantities are dependent on synchronization and, thus,
their measurement would allow for the determination of the “natural”
synchronization that fits with observation. In the case of the Sagnac
effect, the propagation times over a cycle are measured by means of a
single clock and there is no need to perform synchronization of distant,
spatially separated clocks. If the laboratory frame S is chosen as the
preferred frame where space is isotropic, the time relation between
t=1t/yclock O"in motion with relative velocity v and a clock
stationary in S is the same for TT and LT. Therefore, both theories
foresee the same results, independent of . However, it is unlikely
that the laboratory where the Sagnac experiment is performed,
located somewhere on the rotating Earth, should coincide with the
preferred frame of some ether theory. Thus, it is justified to consider
the hypothetical case when, in frame S, space is no longer isotropic, as
a consequence of its possible motion with respect to some preferred
frame. Let us then envision the existence of the preferred inertial
frame X (X,T) where space is isotropic and the one-way speed of
light is c. In the Figure 2 we have to suppose that the laboratory frame
S, where the set-up (arm AB) of the linear Sagnac effect is stationary,
moves with velocity 7 in the X direction with respect to . The clock
0", co-moving with frame S, has velocity W with respect to . The
following transformations [8] apply to relativistic theories (special
relativity with arbitrary synchronization parameter ¢):

x=7, (X-WT);y=Y;z=2

wx

2
L=y, T[1+W/2(g—l)}—52
c

4

(a7

In Equation (17), when & = lwe recover the time relation
1=y, (T -WX /cz)of the LT and, whene = 0, the relation
t=T/ 7y of the TT. After taking the derivativedx /dt, for the

components of the velocity in the x, X direction, we obtain from (17),
u-w

i [1+sz(g—l)]—£W§J

c c

(18)

Where u = dx/dtis the velocity with respect to the lab frame
S and U =dX /dT is the velocity with respect to the preferred
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frame X. If U = W is the velocity with respect to Zof the clock O°
(or interferometer) co-moving with S, from (18) we find that the
corresponding relative velocity u = v of the clock with respect to §
is, W
w'-w
w? ww'

1+C—2(5—1)—5 e (19)

We can see that for the LT (¢ = 1)the velocity composition

(19) gives, as expected, v = (W'—W) / (1 —W'W/cz), while for the

V=

TT (¢ = 0)we havev = 7;/ (w'-w) . Expressed in terms of  and
v, the velocities of S'and " with respect to X are respectively,

W+V{I+V:22(5—1)1 " W—V[Hi/zz(s—l)}
we—+t W=t = (0

14—5ﬁ 1—5@

c? ¢’

The following results, which depend on &, are obtained for the
linear Sagnac effect. As measured in the preferred frame Z, the time
intervals for the counter-propagating signal (clockwise propagation
in Figure 2) with one-way speed ¢ from A to B and from B to O are
respectively:

w'-w
c+W' a8’

T = L ;T = L
B (W )y " go" (AW )y
The time 7, for counter-propagation and 7— for co-propagation
turns out to be, respectively,

2L
L =Ty, TBO* - c(1+W'[c)(1-W ic)yy
. 2L
- (1-We) 14+ ey,
4L ,
AT =T -T =C—2y;7W (w'—w) @1)

where AT is the time span difference. The corresponding time
difference At measured by the clock 0" for the Sagnac effect is,
, « AT 4L
A=At =—=—
ot
By means of (20), we may substitute in (22) W expressed in terms
of Wand v and obtain,

, 4Lv
At = 1+
Crw

(w'-w) (22)

Ywlw

-1/2
2

(23)

2 2
EVVZVJ | K+K 1+m
c ¢ ¢ 2

Result (23) indicates that the optical path difference for two
counter-propagating electromagnetic waves depends on the
synchronization parameter ¢in the Sagnac effect. If the procedure used
above is applied to other optical tests, for example, to the Michelson-
Morley experiment, we find instead that A7 is independent of ¢, as also
shown by Mansouri and Sexl.

If we set ¢ = lin (23), the term {...}_1/2 becomes y,y and, as
4yLv/ ¢ independent of W.
Withe = 0, the coupled term vV / ¢’ does not vanish and, being
attributable to the absolute synchronization, is present also in the
Newtonian case. Thus, for the TT, from (23) we obtain,

foreseen by the LT, we obtain At =
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1/2

To the order vI7 / c”andwithy > = 1 —v’ /¢’ , the term [.]

in (24) becomes,

[.]"

When, after reaching point B, the clock O* changes direction anzd
moves with velocity —v with respect to S, the relation W' = W + v / -

o vW _i2 \2/4
=y -2—1 " "=7¢ [HZJ (25)
c c

has to be replaced by Wo=W-v/ ;/;/ , while the factor Yy has to
be replaced by y ,in the calculations. Furthermore, instead of
the time interval Kt’ = Af", we have now At "= A , which
is the same as the expression At of (24) with the term —vI¥ / ¢
replaced by +vIW / ¢’ . Result (24) can be immediately extended to
the circular Sagnac effect, where the clock moves with tangential
speed v = @R and its x-component is v o= veos(wt) , by writing
wW /e = (vW/cz)cos(wt). Then, with the help of (25), the time

span (24) measured by clock O in the Sagnac effect can be expressed
as

. 4;/Lv|: wvW 26)

At = 1+cos(a)t)}
2 2
c 4
Precision measurements of (26) can provide the value of the
component ¥ of the absolute velocity of the laboratory frame with
respect to .

Concerning the smallest measurable time interval, there are
techniques capable of resolving femtosecond (10715 (s) )* or even
attosecond (10718 (5))*4 pulses of laser light while better limits
may be achieved by means of advanced interferometer. In terms of

phase shift, we may write Agp = cAt"/ (yA) where 1 is the vacuum
wavelength and c is the free-space velocity of light.*® Then, result (26)
can be expressed as
(pzﬂ[Hg cos cos(a)t)}:K[HA cos(a)t)]
c

P (27)

The amplitude 4 in (27) could be more easily measured if
interferometer techniques were available where the constant amplitude
Kis locked and fixed and we could estimate /7 by resolving the relative
fluctuation proportionalto 4 = vV / ¢’ and alternating with frequency
. In any case, the stability of the amplitude K, is probably the
limiting factor in any such possible experiment because the inevitable
vibrations of the table or pillar on which the experiment is mounted
will be hard to cancel out altogether. Therefore, the “constant” K will
have its own fluctuations which can exceed 4. Hopefully, we can
transfer some of the advanced techniques developed for gravitational
wave detection,” to the scenario of our experiment. There are
vibration cancellation schemes available for wave interferometers,
although very expensive. The phase measuring gravity wave detectors
(which are the best in this category) keep K near zero and, in special
conditions by various enhancement techniques, one can theoretically
hope for 107°—107"" of a fringe. Sometimes adding an optical cavity
multiplies the signal by factor of 10
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Already at the time of Sagnac, for similar experiments3*#>-° the
fringe shift was Ap = K = 1. With this value for K in (27) and with
an optimal resolution of 107 of a fringe, requiring a lot of work and
money, we can get an idea of the value of 1 that can be detected in
some experimental conditions. Assuming that the smallest detectable
value of A =vi /¢ is10™" , with a velocity v = 450 (m/s) (a value
of the order of the tangential speed of the Earth at the equator), we
have W = 10 "¢’ /v =20 (m/s)as the minimum absolute velocity
W detectable. Historically, the velocity ¥ with respect to the preferred
frame has been expected to be that of the Earth’s orbital speed
(W =30(km/s), in relation to the Michelson-Morley experiment)
or the absolute speed of the Earth through space (W = 300 (km/s),
in relation to the observed cosmic background-radiation anisotropy).
Therefore, we could hope to verify these two assumptions and
even check if the hypothetical preferred frame is identifiable with
the inertial rest frame of the center of the Earth (W = 450 (m/s)).
Although the realization and the cost of the experiment are certainly
quite challenging factors, we believe this test not to be completely
outside the reach of present technology. We may conclude that the two
synchronizations (Einstein and absolute) are not physically equivalent
in principle, but almost equivalent in practice and, should experimental
evidence favor the absolute synchronization, it is understandable
why experimental discrepancies with Einstein synchronization have
not been evidenced so far. In this case, we may state that, from an
operational perspective, Einstein synchronization represents a useful
simple approach to the procedure of clock synchronization, capable of
reproducing approximately the results of relativistic theories based on
absolute synchronization.

Nevertheless, we will show in a future contribution that, }:vith
a modified experiment of the Sagnac type, the variation in A¢ of

expression (26) can be enhanced to the order (L / c)(vW / cz) ,which
should be more easily measurable.

Consequences of the non-equivalence of Einstein and
absolute synchronization

In the case of the Michelson-Morley experiment, the observed null
result rules out the Galileo transformations, which foresee a non-null
outcome. Instead, the TT and LT are confirmed because both predict
the observed null result. In the case of the Sagnac effect, the non-
null result W = 0would confirm absolute synchronization, i.e.,
Galileo transformation and the TT, while disproving standard SR. If
the experimental result indicates that W = 0, the conclusion that can
be drawn is the same as that of the Michelson-Morley experiment: the
preferred frame coincides with the laboratory frame S and both LT and
TT are confirmed. However, it would be a conceptual error to conclude
that they are equivalent, after having shown above that in principle
they are physically distinguishable. A conclusive experimental proof
consists of repeating the experiment having the Sagnac apparatus
in motion with respect to S, identified as the preferred frame by
the first experiment. Regardless of experimental verification, the
mere existence in principle of such a test proves that absolute and
Einstein synchronization are not physically equivalent. Even if the
outcome of the experiment indicates the existence of a preferred
frame of reference, the principle of relativity of physical laws holds.
However, in this case, the principle has to reflect the invariance under
transformations adopting absolute synchronization. In conclusion,
the countless theoretical approaches to modern physics based on the
Lorentz covariance are substantially different from, and cannot be
equivalently substituted by, approaches based on the invariance of
physical laws under the TT. Therefore, it is conceptually unfeasible to
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use the Tangherlini transformations in trying to conciliate, as claimed
by Kassner, the superluminal average speed of the Sagnac effect with
the postulate of the constancy of the speed of light by invoking the
arbitrariness of synchronization.

Conclusion

The thesis of conventionalism is based on the assumption that
clock synchronization is arbitrary, so that the one-way speed of light
is conventional and not measurable. Accordingly, Einstein’s second
postulate of special relativity, requiring a universal light speed ¢ in
all inertial frames of reference, is not falsifiable. Consequently, all the
experiments supporting special relativity can be interpreted in terms
of the Lorentz transformations based on Einstein synchronization, as
well as the physically equivalent Tangherlini transformations based
on absolute synchronization. This scenario implies that the Lorentz
transformations can be substituted by the Tangherlini transformations,
a substitution hardly acceptable by physicists who have been relying
on the symmetry of the Lorentz group for decades.

For the Sagnac effect, where light signals propagate in a closed
path, for counter-clockwise light propagation, relativistic theories
foresee the superluminal average speed=c+v, a well-known
circumstance that leads to Selleri’s paradox and, according to
detractors of SR, invalidates Einstein’s second postulate. The analysis
of the “linear” Sagnac effect points out the role of non-conservation
of simultaneity in keeping the local speed c in different sections of the
tube when Einstein synchronization is used. Since the superluminal
average speed is = ¢ + v over the total length 2y L of the tube, if in
the upper part of the tube clocks are synchronized in such a way that
the local speed is c, it follows that in the lower part of the tube the
local speed must be = ¢ + 2v, and vice versa. Thus, detractors of SR
may claim once more that the existence of superluminal light speeds
invalidates Einstein’s second postulate. Despite Selleri’s paradox and
superluminal average speeds, supporters of Einstein synchronization
may argue that special relativity provides the correct observable
result for the Sagnac effect and, thus, is still valid from a pragmatic
operational point of view.

The controversy about the conventionality of the one-way
speed of light and the validity or not of Einstein synchronization,
reaches a turning point when it is shown that the second postulate
of SR can be tested with an experiment of the Sagnac type, capable
of discriminating absolute from Einstein synchronization. Hence,
Einstein’s second postulate is falsifiable and the one-way speed of
light is measurable in principle. From a theoretical point of view, an
immediate consequence is that the symmetry of the Lorentz group
maintains its unique physical meaning and cannot be equivalently
substituted by the group properties of transformations based on
absolute synchronization. Moreover, the claim that the existence of
superluminal speeds in the Sagnac effect can be justified in terms
of the arbitrariness of synchronization becomes groundless. The
experiment is realizable with present technology and the required
sensitivity of the measuring apparatus is evaluated in some scenarios.
The outcome of the test will have a significant impact on modern
physics because, by testing Einstein’s postulate of a universal speed
of light, it identifies, or rules out, the preferred frame of reference.
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