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Introduction
A theory is physically meaningless unless its basic postulates can 

be tested, i.e., verified experimentally. This procedure is sometimes 
referred to by saying that the theory can be falsified. The second 
postulate of the special theory of relativity reflects Einstein’s 
assumption that the universal one-way speed of light c is constant. 
With the exception of experts, many physicists believe that the speed 
of light measured in experiments refers to the one-way speed,1 while 
what is measured is the round-trip value,2 in accordance with Einstein 
synchronization procedure using a mirror on a round-trip flight path. 
In fact, Einstein did not provide a way to test his basic assumption. 
Instead, by proposing his well-known clock synchronization 
procedure, spatially separated clocks are conventionally synchronized 
by assuming that the average round-trip speed and the one-way speed 
are the same. Considering that, in principle, the two speeds (round-trip 
and one-way) may not be the same, the question of whether or not the 
one-way speed of light is measurable, represents one of the prominent 
controversial debates of modern physics. The conventionality of the 
synchronization procedure of spatially separated clocks in special 
relativity (SR), and the related measurement of the one-way speed of 
light, has been thoroughly discussed by Poincaré3 and Einstein,4 and 
reinforced in the works of Reichenbach,5 and Grünbaum.6 Discussions 
on this fundamental issue were revived by the works of Möller7 and 
Mansouri and Sexl,8 who confirmed that synchronization by means 
of clock transport, is equivalent to Einstein’s procedure, favoring the 
conventionalist view.

According to Mansouri and Sexl,8 the intrinsic indetermination in 
the one-way speed c renders the validity of the second postulate of 
SR not testable. This has led to a renaissance of alternative relativistic 
theories that assume the existence of a preferred frame where space 
and light speed are isotropic while, in a relatively moving inertial 
frame, they are no longer isotropic. Thus, physicists have focused 
their attention to preferred frame theories that use transformations 
with the same rod-contraction and clock-retardation as the Lorentz 
transformation (LT), but differ from it by an arbitrary synchronization 

parameter. By their very construction, preferred frame theories 
interpret all the known experiments that support SR. For example, 
in the Michelson-Morley experiment, the observable turns out 
to be independent from synchronization. Therefore, besides the 
Lorentz transformations, also the transformations based on absolute 
synchronization, such as the Tangherlini transformations (TT),9 
provide the same null result of SR. What matters in this and in 
other optical experiments is the average speed on the optical path, 
which turns out to be exactly c with transformations (such as the TT) 
that foresee the Lorentz-Fitzgerald contraction of moving rods and 
the time dilation of moving clocks. One important contribution to 
the subject was given by Bell,10 who stated that although there is a 
stringent “difference in philosophy” between the view of SR and that 
of a preferred frame theory, “The facts of physics do not oblige us to 
accept one philosophy rather than the other”. Bell’s assertion was used 
as a starting point in a series of works adopting the conventionalist 
thesis within relativistic theories,10–14 where it has been argued that 
there is essentially one theory, Bell’s two philosophies corresponding 
rather to different aspects of the same theory.11–19

If synchronization is arbitrary and the two synchronizations 
(Einstein’s and absolute) are equivalent, important consequences 
arise. Indeed, the Lorentz covariance concept exploits the symmetry 
of the Lorentz group and is usually applied by theoreticians to several 
branches of modern physics. If Einstein and absolute synchronizations 
are physically indistinguishable, the LT could be equivalently 
substituted by the TT, which possesses a lower symmetry, similar 
to that of the Galileo group. In this case, the equivalence of the two 
synchronizations implies that what is important is the contraction 
of moving rods and the slowing down of moving clocks but not the 
symmetry of the transformations. This fact is hardly acceptable for 
most physicists who have been relying for decades on the properties 
of the Lorentz group. There are instances in the literature where, 
instead of the LT, the TT transformations are equivalently used 
to describe physical reality. In the context of relativistic theories, 
an example is found in the interpretation of the Sagnac20 effect by 
Kassner,21 who proposes to solve Selleri’s22,23 paradox by replacing 
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Einstein synchronization with the absolute synchronization. Kassner’s 
conclusion is then that the light speeds c+v and c−v, pointed out by 
Selleri in his paradox, are to be interpreted in terms of the arbitrariness 
of synchronization and, thus, do not invalidate the second postulate of 
SR that requires the unique, universal value c for the speed of light.

Kassner’s paper is important for two reasons. First, he makes 
it evident that the approach of conventionalism has spread in the 
literature even among journals of didactic nature. Second and most 
importantly, because it supports the opinion shared by many physicists 
that within relativistic theories the principle of relativity remains valid 
even when we adopt a synchronization procedure different from that 
of Einstein, regardless of the validity or not of Einstein’s second 
postulate. In this complex scenario, the important issue consists in 
clarifying the physical equivalence — or lack thereof — of preferred 
frame theories with standard SR (i.e., special relativity with Einstein 
synchronization). The purpose of our paper is to show that, at least in 
principle and even on a kinematical basis,24–27 there are experiments 
capable of testing the one-way speed of light, and the Sagnac effect is 
one of them. In Sects. 2 and 3 we consider the relativistic interpretation 
of the Sagnac effect, using a “linearized” version of it, and discuss 
the related controversial problem of the superluminal speeds of the 
light signals, highlighted by detractors of Einstein synchronization as 
disproving the validity of Einstein’s second postulate.

In Sect. 4 we show that an experiment of the Sagnac type can 
discriminate Einstein synchronization from absolute synchronization, 
i.e., standard SR from identifiable preferred frame theories. If 
the experiment is performed, its outcome will have significant 
consequences on modern physics. The first important result is that, 
from a theoretical perspective and in the description of physical 
theories, the LT are not equivalent to and cannot be arbitrarily 
replaced by the TT. In fact, if the one-way speed of light is observable, 
even only in principle, the validity of the second postulate of special 
relativity can be tested. Thus, standard SR maintains its unique 
meaning, physically different from that of theories that assume the 
existence of an identifiable preferred frame. Finally, we provide 
an indication of the sensitivity required by the experimental setup, 
capable of detecting in certain situations the velocity of the preferred 
frame if it were to exist.

The sagnac effect and Einstein’s second 
postulate

The usual circular Sagnac experiment is pictured in (Figure 
1). Consider a disk rotating at constant angular velocity ω and an 
observer with a clock O∗ stationary on a point at radius R, the origin of 
a co-rotating reference frame S∗. As indicated in Figure1, this observer 
sends two light signals (as in the Sagnac experiment), or two particles 
(or two clocks, as in the Hafele-Keating experiment28) at velocity C 
around the disk circumference in opposite directions, respectively. 
Equivalently, we may consider the Sagnac experiment performed in a 
conveyor belt, as shown in Figure 2, which has been used to describe 
a modified, but equivalent, “linearized” version of the Sagnac effect.29 

We wish to know the time span observed by O∗ on the return of each 
signal on the disk. First, we consider the description given by an inertial 
observer O at the center of the disk stationary in the laboratory frame S. 
The observer O∗ at R is co-moving with the disk with angular velocity 
ω and possesses the tangential speed v Rω= . If the laboratory frame 
S is chosen as the preferred frame, the description of the Sagnac effect 
and corresponding time span variation t t t

− +
∆ = − in such a frame is 

the same for Newtonian mechanics and relativistic theories with any 
synchronization. In general, with different speeds C+ and C− in the 
counter-rotating (+ clockwise) and co-rotating (- counterclockwise) 

directions, respectively, the result, for the propagation time t+ and t−of 
the signal in S, is
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where *t∆ is the time span variation measured by the clock O∗ and 
the last term corresponds to the case C C c

+ −
= = .

With reference to Figure 1, for the observer O∗ on the disk at r R=
, the circumference length corresponds to the proper ground length of 
the path followed by the signals and is given by 2 Rπγ . For the usual 
case C C c

+ −
= =  , the time spans are ( )2 /t R c vπ

±
= ± . Then, for 

the Sagnac effect, the average speeds of light in the counter- and co-
rotating senses are

		
*

2 R
c

t

πγ
±

±

= ≃ c v± 		          (3)

Where the results c v± correspond to the speed of light in vacuum, 
.C c=

Figure 1 Clock O∗ (originally at point A) is fixed on the circumference of 
the disk of radius Rrotating counter-clockwise at the angular velocity ωwith 
respect to the laboratory frame S. Two light signals are sent around the 
circumference of the disk in opposite directions starting from clock O∗, which 
measures the time span on the return of each signal to O∗.

Different interpretations of the sagnac effect

Besides other properties, the Sagnac effect is widely recognized as 
an optical experiment capable of indicating the state of rotation of the 
interferometer.30 We mention here only some of the several contrasting 
interpretations of the Sagnac effect, originally thought to disprove 
special relativity.20 Landau and Lifshitz31 trace the physical cause of 
the existence of the Sagnac effect in the rotating reference system 
as due to a difference between the velocities of counter-propagating 
waves. This velocity difference, which refers to the average velocities 
in (3), leads to a paradox according to the interpretation of Selleri,22 
who shows that when the radius of the rotating disk is increased 
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to R → ∞ keeping constant R vω = , the local speed of light in an 
inertial frame would be c + v or c − v depending on the direction of 
propagation, in disagreement with the unique value c foreseen by the 
second postulate of special relativity. The existence of Selleri’s paradox 
has been supported by other papers32–37 where the authors claim that 
the phase difference of counter-propagating waves in the reference 
system co-rotating with a ring interferometer, calculated in the context 
of standard SR, is equal to zero. Instead, Malykin38 argues that we are 
rather in the presence of a Zeno paradox because, considering that the 
rotating disk is not an inertial frame, the interpretation of the Sagnac 
effect is reliant on the equivalence principle and the effect of time 
dilation in a gravitational field.

Figure 2 The conveyor belt system represents a “linearized” version of the 
Sagnac effect. The belt stands for a flexible tube and the signals propagate in 
opposite directions along the closed path inside the tube, acting as a wave-
guide and rotating counter-clockwise while leaning over the two pulleys 
separated by the arm AB of fixed length L. The inertial frame S’’ is co-moving 
with the upper part of the tube with velocity vwith respect to the arm AB, 
stationary in the laboratory frame S, while frame S’ and clock O*are co-moving 
with the lower part of the tube in the opposite direction.

The argument against Einstein synchronization can be resumed 
as follows. Because of the motion of O∗, for the observer O of the 
laboratory frame S, the paths ± of the signal have different lengths, 

( )2 / 1 /R v cπ ± and, since the velocity c of the signal is the same 
in both directions, it appears obvious that we must have different 
propagation time’s t±. For O∗, instead, the propagation paths have 
the same length 2 Rπγ  but still we have different propagation times,

* /t t γ
± ±
= . Thus, for propagation on paths of the same lengths, if 

the respective propagation times, *t
±

, are different, different speeds 
c
±

(and not the same speed c) are expected. This argument, which 
seems to cast doubts about the validity of a universal constant speed 
of light c, has been expanded by Selleri who claims that the paradox 
can be solved only if relativistic theories adopt the “natural” absolute 
synchronization that foresees the different speeds c v+ and c v− of 
expression (3). In this context, it is worth recalling the arguments of 
Kassner about Selleri’s paradox. In rebutting Selleri’s claim, Kassner21 
attempts to refute the paradox by explaining the Sagnac effect in the 
frame of the co-moving observer O* in two ways: through Minkowsky’s 
analysis and by means of the absolute synchronization. The point is 
that, if Einstein synchronization is applied along the closed circular 
path, the resulting average speed in (3) is c, and not c v+ or c v−
.Thus, in this case, the Sagnac effect invalidates standard SR. After 
his Minkowsky analysis, Kassner concludes by acknowledging that 
“Einstein synchronization fails when performed along a path around a 
full circle”, i.e., on a closed path on the rotating disk, a failure that has 
also been observed by Weber39 and earlier by Anandan.40

The belt stands for a flexible tube and the signals propagate in 
opposite directions along the closed path inside the tube, acting as 
a wave-guide and rotating counter-clockwise while leaning over the 
two pulleys separated by the arm AB of fixed length L. The inertial 
frame S’’ is co-moving with the upper part of the tube with velocity v 
with respect to the arm AB, stationary in the laboratory frame S, while 
frame S’ is co-moving with the lower part of the tube in the opposite 
direction. Thus, in order to account for the resulting unphysical time 
discontinuity arising from the speeds c v+ and c v− and solve Selleri’s 
paradox, Kassner introduces the unusual concept of a “time gap” on 
the rotating disk and states, “the speed of light is c everywhere except 
at the point on the circle where we put the time gap. The position of 
this point is arbitrary but there must inevitably be such a point.” The 
solution based on Minkowsky’s analysis presented by Kassner has 
been objected to by Gift41 who rejects Kassner’s adjustable “time gap” 
based on an unphysical time discontinuity claiming that is a theoretical 
construct that has no basis in reality. Similarly, Selleri has claimed that 
“it is not true that the synchronization procedure can be chosen freely 
because Einstein convention leads to an unacceptable discontinuity 
in the physical theory”. Moreover, according to Selleri “Very 
probably the above discontinuity is the origin of the synchronization 
problems met with by the Global Positioning System”. In relation to 
this, Gift emphasizes that the failure of Einstein synchronization is 
well known to GPS engineers who discovered41,42 that they cannot 
synchronize GPS clocks fixed on the rotating Earth using Einstein 
synchronization.43,44

The second argument presented by Kassner21 to solve Selleri’s 
paradox consists of replacing Einstein synchronization with the 
absolute synchronization. Thus, instead of the Lorentz transformations 
and without citing the related literature, Kassner makes use of the 
Tangherlini transformations. Considering that the one-way speed of 
light is synchronization dependent, for Kassner a difference from 
c does not constitute a problem because the observable two-way 
(average) speed of light remains c, as in the interpretation of the 
Michelson-Morley experiment. In fact, if synchronization is arbitrary 
(as also assumed by Kassner), the two synchronizations are equivalent 
and provide the same observable result, as they actually do within 
Kassner’s basic set up and hypotheses. Then, although acknowledging 
the anisotropy due to the different speeds c+v and c−v in Selleri’s 
paradox, Kassner argues that the difference is to be interpreted 
in terms of the arbitrariness of synchronization and, thus, does not 
invalidate the second postulate of special relativity. Yet, in Sect. 4 
we demonstrate that, in general, Einstein synchronization and the 
absolute synchronization are not physically equivalent. Therefore, 
the assumption of conventionalism is groundless, so that Kassner’s 
argument based on it is untenable. Moreover, while adhering to the 
conventionality of the speed of light and the equivalence of the two 
synchronizations, Kassner does not discuss the consequences of this 
assumption on the countless physical theories traditionally based 
on the LT. These physical theories would be substantially modified 
if they were based on and developed by means of the TT. In the 
next section, we review the arguments in favor and against Einstein 
synchronization and the problem of superluminal speeds within the 
context of the “linearized” Sagnac effect, shown in (Figure 2).

Linear Sagnac effect, clock synchronization 
and superluminal “ground” speed

With reference to Figure 2, we assume that, if the distance L 
between the two pulleys of small radius r is long enough t ′∆ , the time 

/R vτ  spent by the signals in the short portion of the tube in contact 
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with the pulleys will be negligible with respect to the total time of 
flight and we may omit it. Furthermore, the acceleration 2 /a v r=
that could cause a change in the flow of time of clocks co-moving with 
the tube is constant and depends on v and r. Therefore, the change 
due to the effect of the acceleration does not depend on L and, if the 
distance L is long enough, becomes negligible with respect to the time 
variation t∗∆ , proportional to L, observed in the Sagnac effect.

If the tube where the light signals propagate is filled with a co-
moving medium (for example, a fluid of refractive index n where the 
local speed of light is 0 /C c n= ) the speed of light is no longer c but 
C0. In this more general case, the two signals circumnavigate the tube 
in opposite directions with the same local (ground) speed * 0C C=
with respect to the tube.

a)	 For special relativity with the LT.

For simplicity we consider here the case 0C c= We have,

		

2 2
;

L L
t t

c v c v+ −
= =

+ − 		            
(4)

		

*

2
4

t t t vL
t

c
γ

γ γ
− +∆ −

∆ = = =  		           (5)

It can be shown that the Sagnac effect, related to *t∆ is foreseen to 
be independent of the signals ground speed 0C , for both the circular 
and linear cases.

b)	 For a preferred frame theory based on the TT.

The TT between the preferred frame S and the moving frame S′ 

are: ( ) ; ; ; /x x vt y y z z t tγ γ′ ′ ′ ′= − = = = . Using the TT, with 
0 2/C C vγ

+
= − and 0 2 /C C vγ− = + , we have

	      

2 2

0 0

2 2 2 2
;

L L L L
t t

C v C vC C

γ γ
+

+ −
= = = =−+ −

	                 

* 0,
t t t

t
γ γ

− +∆ +
∆ = = =

Which implies no Sagnac effect independently of , the same 
result as in Newtonian mechanics. From a mathematical perspective, 
the internal consistency of the LT is not questionable and not 
questioned here. In the following, we try to adopt an objective point 
of view, simply presenting the arguments in favor or against Einstein 
synchronization, with the aim of clarifying the issue of superluminal 
average speeds in the context of the Sagnac effect. The incompatibility 
of Einstein synchronization over a closed path has been discussed 
above in Sect. 2. The objection that could be made in the context of 
the circular Sagnac effect is that the rotating frame is a non-inertial 
frame and, thus, Einstein synchronization is not applicable in such 
a frame. Here, with the linear Sagnac effect, we may apply Einstein 
synchronization separately to the inertial frames S′′ and S′ co-moving 
respectively with the upper and lower part of the tube. Still, we find 
that the mentioned incompatibility subsists and we are met once 
more with superluminal speeds and the conflicting point of views, or 
“realities”, of S’and S’’.

The Lorentz transformations from S’’to S’are,

	           ( ) ''
'' '' ''; ,

2
wxx x wt t t
c

γ γ′ ′
 
 = − = −′ 
 
′  	         (6)

with ( )2 22 / 1 /w v v c= +  and ( ) ( )1/2 22 2 22' 1 / 1 /w c v cγ γ
−

= − = + .

The arm AB of length L, fixed in the laboratory frame S, moves 
with velocity v with respect to S’’, stationary with the upper part of 
the tube. Frame S’, co-moving with the lower part of the tube, moves 
with velocity w with respect to S′′ and velocity v with respect to S. The 
origins O′′, O′coincide with the origin O of frame S at t t t′ ′′= = , when 
the light signal is sent counter-propagating at the velocity 0C c= . At 
the time '' ''

B A
t t= , the signal has reached point B while clock O∗ has 

simultaneously reached point A. The crucial question for standard SR 
is: How does the observer O∗ manage to explain the observed time 
span difference for two signals counter-propagating along a path of 

the same length and with the same ground speed 0 ?C c=  
For our example, we choose a special case where the effect of non-

conservation of simultaneity is made apparent. For the experimental 
set-up shown in (Figure 3), we assume that the three origins O, O′, O′′ 

of frames S, S’, S’’, coincide at the initial time  0t t t′ ′′= = = , while 

the pulley at A is positioned at the distance 0/ /
o

L vL C vL c= =
to the left with respect to O, and the pulley at B at the distance 

( ) ( )01 /  1 /
o

L L L v C L v c− = − = −
 
to the right. For our purposes, 

it is sufficient to consider the clockwise propagation of a light signal 
and determine its time of flight starting from the clock O∗ , co-moving 
with the tube and coincident with the origin O′′ at  0t ′′ = , and 
returning to O∗ after a complete cycle. The single clock O∗ alone is 
used to determine the time interval of the closed trip and, therefore, 
no synchronization procedure is involved. The two physical realities 
of S’’ and S’ will be confronted.

Figure 3 The linear Sagnac effect described from the perspective of frame S′′. 
The arm AB of length L, fixed in the laboratory frame S, moves with velocity 
vwith respect to S’’, stationary with the upper part of the tube. Frame S’, co-
moving with the lower part of the tube, moves with velocity w with respect to 
S′′ and velocity v with respect to S. The origins O′′, O′ coincide with the origin 
O of frame S at t = t′ = t′′=0, when the light signal is sent counter-propagating 

at the velocity 
0C c= At the time 

" "t tB A= the signal has reached point B 

while clock O∗ has simultaneously reached point A.

Physical reality and total time for the clockwise trip 
according to S’’

Clocks at rest in some inertial reference frame may be “internally” 
synchronized according to Einstein’s procedure. Without reference to 
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other inertial frames in relative motion, to say that the clocks at rest 
along the x′′ of the inertial frame S’’ are synchronized, it implies, for 
both Newton and Einstein, that in S’’ the clocks show the same readings 
simultaneously. Within a given inertial frame, “internal” simultaneity 
or, simply, simultaneity, is a reflection of internally synchronized 
clocks. Then, physical phenomena are described in S’’ as a function 
of the time t′′, the same time simultaneously displayed by all the 
synchronized clocks. If a hypothetical signal is sent at infinite speed 
along the x′′ axis of S’’, all the synchronized clocks on the x′′ axis will 
display the same time simultaneously when the signal passes by. At 
least in principle, clocks can be properly (internally) synchronized by 
signals with either finite or infinite speed, if the latter were available. 
The same conclusions apply for S’. For both Newton and Einstein, 
the concept of (internal) simultaneity applies when keeping within 
the physical reality of any inertial frame. The difference between 
Newton and Einstein shows up only when we relate two inertial 
frames in relative motion by means of the space-time coordinates 
transformations. In fact, as is well-known, if the hypothetical signal 
sent along the x′′ axis of S’’ had infinite speed also along the x′ axis of 
S’, there would be a conflict with the Lorentz transformations that 
assume the relativity of time and foresee different, non-simultaneous 
time readings between the two sets of clocks of S’’ and S’. Supporters 
of special relativity overcome this problem by arguing that a signal 
with infinite speed is not operationally acceptable within the theory, 
which requires c to be the maximum speed permitted. However, given 
that the concept of simultaneity holds (internally) for both Newton 
and Einstein when keeping within the physical reality of a given 
frame, we may say that physical phenomena are portrayed in that 
frame as a function of the same “absolute” time. Thus, the restriction 
imposed by the finite speed c does not impede to conceive that, if 
spatially separated clocks are synchronized, they will display the 
same time simultaneously when a hypothetical infinite-speed signal 
passes by. The same is true for the synchronized clocks of any other 
inertial frame.

What is to expect in any case, is that the related physical realities 
of the two inertial frames in relative motion are compatible and reflect 
the same objective physical reality. In our analysis of the linear Sagnac 
effect, we shall consider the compatibility of the internal simultaneity 
of an inertial frame S’’ with that of another generic inertial frame S’ 
in relative motion with respect to S’’. As shown below, we find that 
internal simultaneity is not compatible with Einstein synchronization 
and the Lorentz transformations, because the latter imply, for S’’ and 
S’, two contrasting and irreconcilable physical realities. We calculate 
now the time taken by the signal to reach point B after leaving the 
clock O∗. Since, at  0t ′′ = point B is at the distance ( )1 / /L v c γ− to 
the right from the origin O O′′ ∗= and point A is at /vL cγ to the left, 
the signal reaches B at the time

			 

'' ''

B A

L
t t

cγ
= = 		         (7)

And at the same time ''

A
t  clock O O∗ ′′=  reaches point A, the two 

events at A and B being simultaneous. In the time span ''

B
t  the signal 

has covered the ground length /L γ of the upper part AB of the tube 
at the local speed c. As shown in Figure 3, after the clock O∗, initially 
co-moving with the origin O′′, reaches point A, it turns around the 
pulley and goes toward point B, co-moving now with the lower part 
AB of the tube and the x′ axis of S′. Frame S’’and S′ agree on and share 
the common value for the total invariant proper length 2γL of the tube 
where propagation takes place. It follows that both S’’ and S′ agree 
that, after changing direction at B, the signal is bound to cover the 

remaining proper length ' 2 / ' /L L L Lγ γ γ γ= − =  from B to O∗ by 
traveling entirely in the lower part of the tube until clock O∗ is met, 
as apparent from Figures 3, 4, and 5. For S’’, the ground length of 
the lower part of the tube is /Lγ γ′ , which (because of its relative 
motion) is seen as being contracted by the factor γ ′ to /L γ and, 
thus, it fits exactly the length /L γ of the segment AB. Conversely 
and in contrast with the reality of S’’, frame S′ estimates that it is the 
upper part of the tube that has ground length /Lγ γ′ , seen by S′ as 
being contracted by the factor /L γto the value /L γ . At this point, 
detractors of Einstein synchronization may point out the following 
two arguments against the validity of Einstein synchronization.

They may first argue that the time interval t ′∆ , corresponding 
to propagation in the lower part of the tube, can be inferred by S’’, 
knowing that the ground speed is c also in that lower section of the tube. 
In fact, the ground length of the lower part of the tube, /L Lγ γ′ ′= , 
to be covered by the signal, and the corresponding ground speed c of 
the signal are known. Thus, an observer of S’’ may say that, whatever 
may be the time displayed by a clock of S′ when the signal starts 
propagating along the x′ axis, this clock will have advanced by the 
time interval /t L c′ ′∆ = , after the signal has completely covered the 
ground distance L′. About the corresponding elapsed time of clock O∗

, we need to consider that, when co-moving in the lower part of the 
tube, clock O∗ is sharing the same properties of the clocks fixed to the 
x′ axis. Therefore, since for S’’ clock O∗ is always co-moving with the 
lower part of the tube while the signal is propagating along this lower 
part, the time interval by which O∗ advances must be the same as that 
of any other clock of S′. It follows that, as inferred by S’’, the proper 
length /L Lγ γ′ ′= must be covered by the signal in the time interval

		

* ,
L L

t t
c c

γ
γ

′
′ ′∆ = ∆ = = 		         (8)

As measured by clock O* or any other clock of S′.

S’’ can claim the above result to be a necessary consequence 
of the observed physical reality shown in Figure 3, reflecting the 
simultaneity of the two events: signal at point B and clock O∗ at point 
A. For S’’, this reality requires that the signal has still to travel the 
ground distance /L Lγ γ′ ′= at the ground speed c after the clock O∗

reaches point A and, therefore, result (8) must inevitably hold. Then, 
for S′′, the total time  displayed by clock O∗ for the clockwise 
signal propagation must be,

		  * '' 2 .
B

L
t t t

c
γ

+
= + ∆ =′ 		            (9)

For the counter-clockwise propagation, the result is the same. 
Therefore, the propagation time difference for the light signals is

* * *t t t
− +

∆ = − , and no Sagnac effect is foreseen if the local speed of 
the signal is 0C c= everywhere along the tube.

b) The second argument that detractors of standard special 
relativity maypoint out are the following.

Let us suppose that in (9) we have ( )2' 1 / / c
SR

t t v c Lγ∆ → ∆ = −′ , 
in agreement with special relativity (see (4) and (5)) and experimental 
observation. Then, we may write

			   * '' '

B SR
t t t
+
= + ∆

		          
(10)

And, correspondingly,

		       

( )2 1 / / /L v c L L
c c c

γ γ γ γ′−
= +  	         (11)

Where, on the lhs of (11), 2 Lγ is the total length covered by the 
signal, and ( )/ 1 /  c v c c v− + is the corresponding superluminal 
average speed. On the rhs of (11), the length /L γ of the first term 
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represents the length covered by the signal in the upper part of the 
tube and c the corresponding local speed. The length /Lγ γ′ in the 
second term represents the length covered by the signal in the lower 
part of the tube and  the corresponding local speed. Simple algebra 
indicates that the local speed c , in the lower part of the tube, must be 

2c c v+ , i.e., superluminal, in contradiction with Einstein’s second 
postulate, as pointed out by Selleri. It follows that internal simultaneity, 
as assumed by both Newton and Einstein, is not compatible with the 
Lorentz transformations based on Einstein synchronization. 

Physical reality and total time for the trip according 
to S′

We have shown in the previous section that, according to the 
physical reality of S’’, the local speed of light in the lower part of the 
tube, co-moving with S’, must be superluminal. In order to restore 
the local speed of light to c in this lower section of the tube, frame 
S’ has to synchronize clocks (“de-synchronize clocks”, would argue 
a detractor) by means of Einstein synchronization, so that the LT can 
be used.

The origins O′′ and O′ were coinciding with the origin O at
t t t′ ′′= = . At the time '

B
t  the signal has reached point B while clock 

O∗ has not yet reached point A. At the instant '

B
t , the reading of clock 

O∗ is '' ' ''/
B B B

t t tγ= <′ , while the proper ground length O B∗ is /L γ

. Hence, the corresponding ground speed is
''

/
2 .ˆ

B

L
c v c

t
C γ

= + >

In this way, the physical reality of S’ corresponds now to the reality 
of S’’ changed, or “transformed”, by means of the LT (6) as shown in 
Figure 4. It follows that, according to S’, simultaneity no longer holds 
because the signal reaches point B at the time

		

2
' '' 1 1
B B

Lw vt t
cc c

γ γ ′  = − = −   
   

While clock O∗ reaches point A at the later time

		

2
' ' ''

2
1

A B B

L vt t t t
c c

δ γ γ
 
 = + = = +


′


′ 
Being 

		

' ' ''

2
2 ,

A B B

w v
t t t t L

c c
δ γ γ− = =′=′

	         
(12)

The time interval (Kassner’s time gap) introduced by non-
conservation of simultaneity. Figure 4 pictures the physical reality 
of S’at the time  indicating that O∗ is at the distance /L γγ ′ from 
B and at the distance ( )2 2 2 / /x v c Lγ γ′ ′∆ = from A. The physical 
reality of S’ at the later time 

A
t ′ is pictured by Figure 5, indicating 

that when clock O∗ reaches A the signal has already traveled from B 
toward point A in the lower part of the tube during the time interval 
δt′ and is now at the shorter distance /L c tγ δ ′− from A and clock

A
t ′

.According to S’, as a consequence of non-conservation of 
simultaneity the signal is not located at point B at the time 

A
t ′ , but has 

already moved in the lower part of the tube from B toward O∗ by the 
amount ( ) 2 /c t L v cδ γ′ = , as shown in Figure 5. Meanwhile, in the 
same time interval tδ ′ point A has moved with respect to O′ by v tδ ′−
. Thus, at the time

A
t ′ , the remaining shorter distance to be covered by 

the signal is ( )/  L c v tγ δ− − ′, so that when the signal finally reaches 
O∗ this clock must have advanced by the time interval

	    

2
'

'/
1 .

SR

L c t v t L vt
c c c

γ δ δ γ− +  ∆ = = − 


′


 	          (13)

Then, according to S’, the total time displayed by clock O∗ at the 
end of the clockwise cycle is

	 ( )
* '' '

2

2 2 2
,

B SR

L Lv L
t t t

c c vc

γ γ
γ+

= + ∆ = − =
+

 (14)

Figure 4 The linear Sagnac effect described from the perspective of frame S′ 
at the time 

'

B
t . The origins O′′ and O′ were coinciding with the origin O at 

  0t t t= ′ = ′′ =  At the time 'tB  the signal has reached point B while 

clock O* has not yet reached point A. At time 'tB  the reading of clock O*is 
' ' '/ '<t t tB B Bγ=  while the proper ground length *O  B is /L γ  . Hence, 

the corresponding ground speed is 2cc c v c+ >  .

Figure 5 The linear Sagnac effect described from the perspective of frame S’ 
at the time

'

A
t . Clock

 
*O  has reached point A and, after turning around the 

pulley, starts co-moving with the lower part of the tube and frame S’. Because 
of the swifter ground Ĉ c> speed in the upper part of the tube, the signal 
has already moved along the lower part of the tube advancing by 'c tδ  from 
B toward *O .

In agreement with (10) and (11) as foreseen by special relativity. 
For the counterclockwise propagation, we find ( )* 2 1 / /t L v c cγ

−
= −  

and thus, being * * * 24 /t t t Lv c
− +

∆ = − =  as in (5), the LT applied 
in frame S′ correctly foresee the Sagnac effect. It should be pointed 
out that the difference between (8) and (13) is precisely the time 
interval (12), ' 2 / 2t L v cδ γ=  , introduced by non-conservation of 
simultaneity. As pointed out above, according to S′ and in agreement 
with standard special relativity, result (14) indicates that, for 0C c⇒
, the average counter-propagation speed, along the invariant ground 
length 2 Lγ  of the closed path, is superluminal and given by c v+ .

Clock O∗ has reached point A and, after turning around the pulley, 
starts co-moving with the lower part of the tube and frame S’. Because 
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of the swifter ground speed C c> in the upper part of the tube, the 
signal has already moved along the lower part of the tube advancing 
by c tδ ′ from B toward O∗ .

Supporters of special relativity may claim that, although the 
average speed is superluminal, after Einstein synchronization the local 
speed in the lower part of the tube co-moving with S’ is c, as it should 
be. Nevertheless, detractors of Einstein synchronization may argue 
that the local speed in the lower part of the tube has been achieved 
by re-setting the clocks in that part of the tube in such a way that the 
speed be c. For doing this, frame S’ has to pay a price because now 
the average superluminal speed c v+ along the closed path 2 Lγ  
cannot be justified by S’, unless the ground speed in the upper part of 
the tube is not only superluminal, but greater than the average value 

c v+ and of the order  2c v+ . In fact, by synchronizing clocks 
with Einstein procedure, S’ has introduced the kinematical mechanism 
of non-conservation of simultaneity and the physical reality of S’ ’ 
has been changed. The resulting effect consists of modifying the 
time interval (8), making it shorter by a first order contribution in 

/v c in order to equal the value (13). Because of non-conservation of 
simultaneity, when seen from the snapshot perspective of S’shown in 
Figure 4, the clocks of S’’ in the upper part of the tube display readings 
predicted by the Lorentz time transformations ''

2

wxt t
c

γ
 
 =

′


′ +


′  .If the 

perspective of S’ is taken realistically (and is not a mere mathematical 
makeup), the reading of O∗ , at the time

B
t ′ , can be inferred by means 

of the inverse Lorentz transformations
''

''
2

' wxt t
c

γ ′
 
 = − 
 

, so that the 
time reading '' ''

B
t t=  of clock O∗ (at  0x′′ = ) turns out to be,

		

'
'' '' 1 1B
B B

t Lw wt t
cc cγ γ

   = = − = −   
   ′

	     (15)

Obviously, the clock reading ''

B
t represents the time of flight of 

the signal from O∗ to the point of the tube reached by the signal at 
that time. According to S’’, at the time ''

B
t  the light signal has not yet 

reached point B but has covered only the shorter ground distance
''

'' B
B

L ct=  to the point B′′ shown in Figure 4. For the Newtonian 

mindset, the fact that, at the displayed time , the signal can be in 
two different places, at B or B′′, depending on the point of view of S’ 
or S’’, hints at an inconsistency between the two physical realities. 
However, if we admit non-conservation of simultaneity and focus on 
the reality of S’, it is a fact that, at the time '

B
t , the signal has already 

reached point B, past B′′ . Thus, we may conclude that the signal has 
been sped up by non-conservation of simultaneity, while propagating 
in the upper section of the tube from clock O∗ to point B, past B′′

. Considering that the ground length O B∗ is /L γ and that ''

B
t is the 

time of flight of the signal, we are compelled to infer that the local 
ground speedof the signal along O∗B is,

		

 /
2  ," 1 / B

L c
c c v

w ct

γ
= = +

−
  	       (16)

i.e., superluminal for 0C c= , in conflict with the postulate of the 
constancy of c

In short, the argument discussed in b) in the above subsection, 
holds here also. If the average speed over the total length  2 Lγ is

c v+ , and, over the partial length ( )21 /L v cγ − of (13) in the lower 
part of the tube, the local speed is c, it follows that the local speed in 
the remaining part must be  2c v+ , i.e., superluminal.

Preliminary conclusions

The two physical realities of Figure 3 (for S’’) and Figure 4 (for 

S’) are physically incompatible and lead to different results and 
interpretations of the Sagnac effect. For both Newton and Einstein, 
in an inertial reference frame the physical reality is described 
synchronously, i.e., at the same simultaneous time in every point of 
space of the inertial frame. The contrasting results obtained by S’’ 
and S’ ((9) and (14), respectively) are simply the reflection of the 
incompatibility between the concept of simultaneity and Einstein’s 
concept of relative time. Non-conservation of simultaneity and 
the Lorentz transformations are direct consequences of Einstein 
synchronization and the validity of the second postulate of special 
relativity. Detractors of Einstein synchronization may claim that the 
resulting average propagation speed c v+ of (14) implies signal 
propagation at a superluminal local ground speed along some section 
of the closed path, in line with Selleri’s paradox for the circular Sagnac 
effect. We have shown that, for the equivalent linear Sagnac effect, if 
in one of the inertial frames, S’’or S’, the local ground speed is c, the 
local speed in the other inertial frame must be superluminal and of 
the order of  2c v+ , in contrast with Einstein’s second postulate. 
This result is seen as reflecting the incompatibility of Einstein 
synchronization applied to the closed path of the Sagnac effect, even 
when applied separately to the upper and lower parts of the tube. 
Therefore, since Einstein synchronization implies the existence of 
superluminal local speeds, the second postulate of SR is invalid.

Nevertheless, thinking beyond the controversy about the validity 
of the postulate of the universal light speed c in all inertial systems, 
supporters of SR may shift the debate to a more pragmatic scenario 
by highlighting the correctness of the predictions of the theory. 
They could argue that, even though the second postulate of SR is 
questionable because of the superluminal speeds involved in the 
interpretation of the Sagnac effect, from an operational standpoint, 
Einstein synchronization can still be applied to the upper and lower 
parts of the tube. Therefore, from a pragmatic point of view, followers 
of standard special relativity may claim that the theory is sound 
because, by means of non-conservation of simultaneity, it predicts for 
the Sagnac effect the observed results, derived either in the laboratory 
frame S or in the tube co-moving frame S’’or S’. Along these lines, 
assuming the physical equivalence between absolute and Einstein 
synchronization, Kassner argues that the difference between a local 
speed c and a superluminal average or local speed c v+ is to be 
interpreted in terms of the arbitrariness of synchronization and, thus, 
does not invalidate the second postulate of special relativity.

Thus, the debate of relative versus absolute time is at a standstill 
and it is unlikely that historically long debates such as this can be 
settled through mere theoretical arguments. Fortunately, physicists 
agree that, if there is a meaningful difference between opposing 
points of view, it must be ultimately observable, i.e., experimentally 
testable. Therefore, the best clear-cut way to solve the controversy is 
by means of a test capable of discriminating absolute versus Einstein 
synchronization. As shown in the next section, such a test exists and 
is precisely the Sagnac effect. Regardless of the feasibility or not of 
experimental verification, the mere existence in principle of such a test 
proves that the Lorentz transformations are not physically equivalent 
to transformations based on absolute synchronization. An immediate 
consequence is that it is conceptually unfeasible to use the Tangherlini 
transformations and absolute synchronization in trying to conciliate, 
as claimed by Kassner, the superluminal average speed of the Sagnac 
effect with the postulate of the constancy of the speed of light. In 
principle, the two synchronizations are physically distinguishable 
and the arbitrariness of synchronization can no longer be invoked to 
substitute the LT with the TT in order to explain Selleri’s paradox, 
which remains unsolved.
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Non-equivalence of Einstein and absolute 
synchronization

In relativistic theories, the coordinate transformations between 
inertial frames of reference in relative motion may take into account 
the synchronization procedure adopted (for example, internal and 
external ) through the dependence of the time t on a convenient 
synchronization parameter ε. The contention of conventionalism 
is that clock synchronization is arbitrary and, thus, the one-way 
speed of light, that can be expressed as ( )c ε , is conventional and 
not measurable in principle. It follows that, within this scenario, 
an observable quantity must be synchronization-independent in 
order to be physically meaningful. If the observable quantities of 
relativistic theories are independent of the chosen synchronization 
procedure, all the experiments supporting standard special relativity 
also support a preferred frame theory with absolute synchronization. 
Then, non-conservation of simultaneity, which is a consequence of 
Einstein synchronization procedure, should not be observable per se. 
If, instead, synchronization is not arbitrary, it is feasible that some 
observable quantities are dependent on synchronization and, thus, 
their measurement would allow for the determination of the “natural” 
synchronization that fits with observation. In the case of the Sagnac 
effect, the propagation times over a cycle are measured by means of a 
single clock and there is no need to perform synchronization of distant, 
spatially separated clocks. If the laboratory frame S is chosen as the 
preferred frame where space is isotropic, the time relation between 

* /t t γ= clock O∗ in motion with relative velocity v and a clock 
stationary in S is the same for TT and LT. Therefore, both theories 
foresee the same results, independent of ε. However, it is unlikely 
that the laboratory where the Sagnac experiment is performed, 
located somewhere on the rotating Earth, should coincide with the 
preferred frame of some ether theory. Thus, it is justified to consider 
the hypothetical case when, in frame S, space is no longer isotropic, as 
a consequence of its possible motion with respect to some preferred 
frame. Let us then envision the existence of the preferred inertial 
frame ( ),X TΣ where space is isotropic and the one-way speed of 
light is c. In the Figure 2 we have to suppose that the laboratory frame 
S, where the set-up (arm AB) of the linear Sagnac effect is stationary, 
moves with velocity W in the X direction with respect to Σ. The clock
O∗ , co-moving with frame S′, has velocity W′ with respect to Σ. The 
following transformations [8] apply to relativistic theories (special 
relativity with arbitrary synchronization parameter ε):

		
( ) ; ;

W
x X WT y Y z Zγ= − = =

		

		

( )
2

2 2
1 1

W

W WXt T
c c

γ ε ε
  
  = + − −
  
   	       

 (17)

In Equation (17), when  1ε = we recover the time relation 

( )2/
W

t T WX cγ= − of the LT and, when  0ε = , the relation

/
W

t T γ= of the TT. After taking the derivative /dx dt , for the 
components of the velocity in the x, X direction, we obtain from (17),
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2

2 2
1 1

U W
u

W WU

c c
ε ε

−
=
 
 + − −
 
 

	

						              (18)

Where /u dx dt= is the velocity with respect to the lab frame 
S and /U dX dT= is the velocity with respect to the preferred 

frame Σ. If U W ′= is the velocity with respect to Σof the clock O∗

(or interferometer) co-moving with S′, from (18) we find that the 
corresponding relative velocity u v= of the clock with respect to S 
is,W ′
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2

2 2
1 1

W W
v

W WW

c c
ε ε− −

′

′

−
=

+

 

						               (19)

We can see that for the   1( )LT ε = the velocity composition 

(19) gives, as expected, ( ) ( )2 / 1 /v W W W W c′ ′= − − , while for the 

  0( )TT ε = we have ( )2

W
v W Wγ= ′− . Expressed in terms of W and 

v, the velocities of S′ and S′′ with respect to Σ are respectively,

( )
2

2

2

1 1

1

WW v
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W vW

c

ε

ε

 
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1 1

1
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c
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c

W
ε

ε

 
 − + −
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−

          (20)

The following results, which depend on ε, are obtained for the 
linear Sagnac effect. As measured in the preferred frame Σ, the time 
intervals for the counter-propagating signal (clockwise propagation 
in Figure 2) with one-way speed c from A to B and from B to O∗ are 
respectively:

	 ( ) ( )*
;

AB ABW WBO

L L W W
T T T

c W c W c Wγ γ
−

= =
+ +

′
′

−
− ′

.

The time T+ for counter-propagation and T− for co-propagation 
turns out to be, respectively,

	  ( )( )*

2
1 / 1 /AB WBO

L
T T T

c W c W c γ+
= + =

+ −′

	          ( )( )
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1 / 1 / W

L
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	  ( )2

2

4
W W

L
T T T W W

c
γ γ

− ′+
∆ = − ′= −

		          
(21)

where T∆ is the time span difference. The corresponding time 

difference t ′∆ measured by the clock O∗  for the Sagnac effect is,

	 ( )*

2

4
W WW

T L
t t W W

c
γ γ

γ ′
′

∆
∆ = ∆ = = ′−′ 		           (22)

By means of (20), we may substitute in (22) W ′ expressed in terms 
of W and v and obtain,

( )
1/2

22 2

2 2 2
.

4 1
1 1

W

Lv WvW W vt
c cc c c

ε
ε

γ

−     −   ∆ = + − + +           

′          (23)

Result (23) indicates that the optical path difference for two 
counter-propagating electromagnetic waves depends on the 
synchronization parameter εin the Sagnac effect. If the procedure used 
above is applied to other optical tests, for example, to the Michelson-
Morley experiment, we find instead that ∆t′ is independent of ε, as also 
shown by Mansouri and Sexl.

If we set  1ε = in (23), the term { } 1/2... − becomes γWγ and, as 
foreseen by the LT, we obtain 2 4 /t Lv cγ′∆ = independent of W. 
With  0ε = , the coupled term 2/vW c does not vanish and, being 
attributable to the absolute synchronization, is present also in the 
Newtonian case. Thus, for the TT, from (23) we obtain,
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To the order 2/vW c and with 2 2 2 1 /v cγ − = − , the term [ ] 1/2... −

in (24) becomes,
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vW vW
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  	          (25)

When, after reaching point B, the clock O∗ changes direction and 
moves with velocity −v with respect to S, the relation 2/

W
W W v γ′ = +  

has to be replaced by '' 2/
W

W W v γ= − , while the factor 
W
γ ′  has to 

be replaced by 
''

W
γ in the calculations. Furthermore, instead of 

the time interval  t t′ ∗∆ = ∆ , we have now  t t′′ ∗∆ = ∆ , which 

is the same as the expression t ′∆ of (24) with the term 2/vW c−

replaced by 2/vW c+ . Result (24) can be immediately extended to 

the circular Sagnac effect, where the clock moves with tangential 

speed v Rω= and its x-component is ( )
x

v vcos tω= , by writing 

( )2 2/ / .( )vW c vW c cos tω± ⇒ Then, with the help of (25), the time 

span (24) measured by clock O∗ in the Sagnac effect can be expressed 
as

		  ( )*

2 2

4
1 cos

Lv vWt t
c c

γ
ω

 
∆ + 

  
 	           (26)

Precision measurements of (26) can provide the value of the 
component W of the absolute velocity of the laboratory frame with 
respect to Σ.

Concerning the smallest measurable time interval, there are 
techniques capable of resolving femtosecond ( ( )1510 s− )45 or even 
attosecond ( ( )1810 s− )46,47 pulses of laser light while better limits 
may be achieved by means of advanced interferometer. In terms of 
phase shift, we may write (/ )c tϕ γλ∗∆ = ∆ where λ is the vacuum 
wavelength and c is the free-space velocity of light.30 Then, result (26) 
can be expressed as

        ( ) ( )2
4 1 coscos 1 cosLv vW t K A t

c c
ϕ ω ω

λ
 ∆ + = +    

 	           (27)

The amplitude A in (27) could be more easily measured if 
interferometer techniques were available where the constant amplitude 
K is locked and fixed and we could estimate W by resolving the relative 
fluctuation proportional to 2/A vW c= and alternating with frequency 
ω. In any case, the stability of the amplitude K, is probably the 
limiting factor in any such possible experiment because the inevitable 
vibrations of the table or pillar on which the experiment is mounted 
will be hard to cancel out altogether. Therefore, the “constant” K will 
have its own fluctuations which can exceed A. Hopefully, we can 
transfer some of the advanced techniques developed for gravitational 
wave detection,49 to the scenario of our experiment. There are 
vibration cancellation schemes available for wave interferometers, 
although very expensive. The phase measuring gravity wave detectors 
(which are the best in this category) keep K near zero and, in special 
conditions by various enhancement techniques, one can theoretically 
hope for 10−9−10−11 of a fringe. Sometimes adding an optical cavity 
multiplies the signal by factor of 102.

Already at the time of Sagnac, for similar experiments30,49–50 the 
fringe shift was 1Kϕ∆   . With this value for K in (27) and with 
an optimal resolution of 10−13 of a fringe, requiring a lot of work and 
money, we can get an idea of the value of W that can be detected in 
some experimental conditions. Assuming that the smallest detectable 
value of 2/A vW c= is 1310− , with a velocity ( )450 /v m s (a value 
of the order of the tangential speed of the Earth at the equator), we 
have ( )13 2 10 / 20 /W c v m s−=  as the minimum absolute velocity 
W detectable. Historically, the velocity W with respect to the preferred 
frame has been expected to be that of the Earth’s orbital speed

( )30 /(W km s , in relation to the Michelson-Morley experiment) 
or the absolute speed of the Earth through space ( )300 /(W km s , 
in relation to the observed cosmic background-radiation anisotropy). 
Therefore, we could hope to verify these two assumptions and 
even check if the hypothetical preferred frame is identifiable with 
the inertial rest frame of the center of the Earth ( )450 )/(W m s . 
Although the realization and the cost of the experiment are certainly 
quite challenging factors, we believe this test not to be completely 
outside the reach of present technology. We may conclude that the two 
synchronizations (Einstein and absolute) are not physically equivalent 
in principle, but almost equivalent in practice and, should experimental 
evidence favor the absolute synchronization, it is understandable 
why experimental discrepancies with Einstein synchronization have 
not been evidenced so far. In this case, we may state that, from an 
operational perspective, Einstein synchronization represents a useful 
simple approach to the procedure of clock synchronization, capable of 
reproducing approximately the results of relativistic theories based on 
absolute synchronization.

Nevertheless, we will show in a future contribution that, with 
a modified experiment of the Sagnac type, the variation in *t∆  of 
expression (26) can be enhanced to the order 2( / )( / )L c vW c ,which 
should be more easily measurable.

Consequences of the non-equivalence of Einstein and 
absolute synchronization

In the case of the Michelson-Morley experiment, the observed null 
result rules out the Galileo transformations, which foresee a non-null 
outcome. Instead, the TT and LT are confirmed because both predict 
the observed null result. In the case of the Sagnac effect, the non-
null result  0W = would confirm absolute synchronization, i.e., 
Galileo transformation and the TT, while disproving standard SR. If 
the experimental result indicates that  0W = , the conclusion that can 
be drawn is the same as that of the Michelson-Morley experiment: the 
preferred frame coincides with the laboratory frame S and both LT and 
TT are confirmed. However, it would be a conceptual error to conclude 
that they are equivalent, after having shown above that in principle 
they are physically distinguishable. A conclusive experimental proof 
consists of repeating the experiment having the Sagnac apparatus 
in motion with respect to S, identified as the preferred frame by 
the first experiment. Regardless of experimental verification, the 
mere existence in principle of such a test proves that absolute and 
Einstein synchronization are not physically equivalent. Even if the 
outcome of the experiment indicates the existence of a preferred 
frame of reference, the principle of relativity of physical laws holds. 
However, in this case, the principle has to reflect the invariance under 
transformations adopting absolute synchronization. In conclusion, 
the countless theoretical approaches to modern physics based on the 
Lorentz covariance are substantially different from, and cannot be 
equivalently substituted by, approaches based on the invariance of 
physical laws under the TT. Therefore, it is conceptually unfeasible to 
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use the Tangherlini transformations in trying to conciliate, as claimed 
by Kassner, the superluminal average speed of the Sagnac effect with 
the postulate of the constancy of the speed of light by invoking the 
arbitrariness of synchronization.

Conclusion
The thesis of conventionalism is based on the assumption that 

clock synchronization is arbitrary, so that the one-way speed of light 
is conventional and not measurable. Accordingly, Einstein’s second 
postulate of special relativity, requiring a universal light speed c in 
all inertial frames of reference, is not falsifiable. Consequently, all the 
experiments supporting special relativity can be interpreted in terms 
of the Lorentz transformations based on Einstein synchronization, as 
well as the physically equivalent Tangherlini transformations based 
on absolute synchronization. This scenario implies that the Lorentz 
transformations can be substituted by the Tangherlini transformations, 
a substitution hardly acceptable by physicists who have been relying 
on the symmetry of the Lorentz group for decades.

For the Sagnac effect, where light signals propagate in a closed 
path, for counter-clockwise light propagation, relativistic theories 
foresee the superluminal average speed c v+ , a well-known 
circumstance that leads to Selleri’s paradox and, according to 
detractors of SR, invalidates Einstein’s second postulate. The analysis 
of the “linear” Sagnac effect points out the role of non-conservation 
of simultaneity in keeping the local speed c in different sections of the 
tube when Einstein synchronization is used. Since the superluminal 
average speed is c v+ over the total length 2 Lγ  of the tube, if in 
the upper part of the tube clocks are synchronized in such a way that 
the local speed is c, it follows that in the lower part of the tube the 
local speed must be  2c v+ , and vice versa. Thus, detractors of SR 
may claim once more that the existence of superluminal light speeds 
invalidates Einstein’s second postulate. Despite Selleri’s paradox and 
superluminal average speeds, supporters of Einstein synchronization 
may argue that special relativity provides the correct observable 
result for the Sagnac effect and, thus, is still valid from a pragmatic 
operational point of view.

The controversy about the conventionality of the one-way 
speed of light and the validity or not of Einstein synchronization, 
reaches a turning point when it is shown that the second postulate 
of SR can be tested with an experiment of the Sagnac type, capable 
of discriminating absolute from Einstein synchronization. Hence, 
Einstein’s second postulate is falsifiable and the one-way speed of 
light is measurable in principle. From a theoretical point of view, an 
immediate consequence is that the symmetry of the Lorentz group 
maintains its unique physical meaning and cannot be equivalently 
substituted by the group properties of transformations based on 
absolute synchronization. Moreover, the claim that the existence of 
superluminal speeds in the Sagnac effect can be justified in terms 
of the arbitrariness of synchronization becomes groundless. The 
experiment is realizable with present technology and the required 
sensitivity of the measuring apparatus is evaluated in some scenarios. 
The outcome of the test will have a significant impact on modern 
physics because, by testing Einstein’s postulate of a universal speed 
of light, it identifies, or rules out, the preferred frame of reference.
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