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Introduction
Infertility is known as an inability to conceive (regardless of cause) 

after one year of consistent (at least two times a week) unprotected 
intercourse when a female partner is younger than thirty-five years 
old or within six months if older than thirty-five years of age. The 
occurrence of infertility is around 14% of the general population, 
thus affecting roughly 1-in-7 couples. Among the most known causes 
of infertility are ovulatory disorders, male factors, fallopian tube 
pathology, uterine and/or peritoneal conditions.1 

As a rule, the diagnosis of unexplained infertility is established via 
ruling out the other causes of infertility after using standard fertility 
tests, including spermogram, ovulation tests, and tubal patency 
testing. It accounts for almost 40% of cases of female infertility, and 
involves from 8% to 28% of couples, experiencing fertility problems.2 

The establishment of an unexplained infertility diagnosis is based 
on the investigations done prior to diagnosis. Some of the affected 
couples who are investigated for the unexplained infertility may 
successively conceive spontaneously. Their rate of spontaneous 
successful pregnancy reaches 2-4%. The most significant prognostic 
factor for successful spontaneous conception is woman’s age, which 
has a higher conception rates below 30 years. After one year of 
unsuccessful attempts, half of females with unexplained infertility may 
conceive during the subsequent year, and 12% more of the females 
may conceive within the next two years.3 But women nowadays 
cannot wait too long since their childbirth plans have already been 
delayed significantly due to cultural and social changes.

Oxidative stress and mitochondrial dysfunction in 
female reproductive system 

A disproportion in the amount of naturally-occurring antioxidants 
and reactive oxygen species (ROS), with the accumulation of the 
ROS, creates perfect conditions for oxidative stress. Oxidative 
stress causes lipid peroxidation, protein peroxidation, and genomic 

damages to DNA and RNA.4,5 The oxidation of phospholipids disturbs 
the integrity of cellular membranes. The peroxidation of RNA and 
DNA causes its degradation, which can be a trigger to programmed 
death of the cells.5–7 Impaired adaptation mechanisms against the 
oxidative stress causes mitochondrial dysfunction within the cell 
by inactivating the enzymes of the mitochondrial electron transport 
chain and by promoting the mutations in mitochondrial DNA. Apart 
from that oxidative stress has also been linked to telomere shortening 
and cellular senescence.8 Mitochondrial dysfunction diminishes ATP 
production and has a negative impact on the antioxidant synthesis. 
Such situation creates a vicious cycle when mitochondrial dysfunction 
caused by the free radicals further increased production of ROS and 
worsen mitochondrial damage.9

Oxidative stress and mitochondrial dysfunction are initiated by 
both endogenous and exogenous factors. The endogenous factors are 
biological age, endometrial disorders, polycystic ovarian syndrome 
(PCOS), and premature ovarian insufficiency (POI).10 While 
exogenous factors comprise of environmental exposure to the inducers 
of ROS - diet, occupational hazards, and assisted reproduction 
treatment techniques.11

Cellular and subcellular aging mechanisms 
contributing to infertility

Aging process implicates not only the deterioration of the 
physiological functions of the organism, but also impairs the fertility 
of the aging individual. The advanced maternal age is associated with 
the increased risk of adverse obstetric outcomes such as miscarriage, 
preeclampsia and eclampsia, increased occurrence of pre-term and/
or post-term delivery, low birth weight and neonates that are small or 
large for their gestational age, and C-section.12,13 Hence, the constantly 
increasing occurrence of female infertility and consequent need in 
assisted reproductive technologies. 

According to the research of the last few decades, the failures to 
conceive and low pregnancy rates performed both naturally or with 
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Abstract

Infertility affects up to 20% of couples worldwide. Among the frequent causes of female 
infertility are fallopian tubes-related disorders, hormonal and ovulation disorders, 
endometriosis, and unexplained infertility. The modern-day tendency to delay pregnancy 
has increased the incidence of age-related infertility, as female reproductive competence 
decreases with aging. Aging is associated with low-grade inflammation, mitochondrial 
dysfunction, reduced capacity of antioxidant protection system, and stem cell exhaustion in 
female reproductive system. Hence, the appropriate actions should be made to address the 
infertility caused by reproductive aging, oxidative stress, and mitochondrial dysfunction. 
In recent years, a considerable progress in cell therapy as an emerging approach for the 
treatment infertility has been made. Cell therapy involves utilizing stem cells, precursor 
cells, cellular extracts, exosomes and other cell-derived therapeutic agents. Cell therapy can 
be an effective strategy as it provides an interactive, dynamic, specific and individualized 
treatment.
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the help of assisted reproduction technologies can be related to low-
quality oocytes and sperm cells. It has also been proven that the 
quality of gametes directly depends on the number of mitochondria 
they contain and the mitochondrial function. Low gametes quality can 
also be the reason for a decline in response to ovarian stimulation, 
reduced embryo quality and pregnancy rates, as well as an increased 
incidence of miscarriages and fetal aneuploidy. Couples 35 years 
and above with unexplained infertility are the most representative 
category of patients who are implicated to have low gamete quality 
due to aging of their reproductive system. 

The aging process itself and any age-related pathologies nowadays 
are largely associated with the mitochondrial malfunction, mostly 
due to the accumulation of multiple deletions and mutations in the 
mitochondrial DNA (mtDNA) stran.14 Among other genetic defects 
observed in aging oocytes are reduction of intracellular antioxidants,15 
and acceleration of apoptosis in oocytes,16 abnormal calcium 
oscillation signals,17 and high incidence of aneuploidy.18 

Mitochondrial dysfunction in female reproductive 
disorders 

Embryonic oocytes are usually formed at the fetal development 
stage and are present inside the ovary for nearly 50 years before 
they grow and develop into matured oocytes. The ovulation process 
leads to a continuation of meiosis in the immature oocyte, making 
it mature and ready for conception. This implies the process of 
chromosome alignment and separation by the nuclear spindle, leading 
to the reduction of chromosomes to the amount of 23, where another 
23 chromosomes appear to be isolated outside of the oolema and 
enclosed subsequently in the first polar body. Once penetrated by a 
healthy spermatozoa, what happens next is the extrusion by the oocyte 
of 23 sister chromatids enclosed in the second polar body. That is how 
a fertilized zygote receives a normal diploid set of 46 chromosomes. 
The process of chromosome extrusion outside the oocyte and forming 
the first and second polar bodies is quite energy-consuming, and it 
appears to be supplied by mitochondria. The oocyte cell encompasses 
the largest number of mitochondria and mitochondrial DNA 
(mtDNA) copies compared to muscle cells and neurons, which have 
higher energy requirements and contain thousands of mtDNA copies. 
Upon the follicle recruitment process, the number of mitochondria 
in the oocyte cell is markedly increasing, from 6,000 mtDNA copies 
to 200,000, comprising nearly 50% of the total DNA content in the 
oocyte.19,20

The structure of mtDNA differs from that of nuclear DNA. It is 
also a double-stranded circular shape, containing 16,569 pairs, though 
it has no histones or introns like nuclear DNA, which makes it more 
susceptible to mutations and deletions. The mtDNA includes 37 
genes encoding proteins taking part in the respiratory chain of ATP 
production. The embryo cells always inherit maternal mtDNA, as the 
paternal one undergoes degradation and elimination via ubiquitination 
reactions.21

The aging process is well-known to be accompanied by 
mitochondrial dysfunction and decreased energy production, which 
results in impaired oocyte maturation, so the very important process, 
such as nuclear spindle activity or chromosomal segregation, appears 
to be seriously deteriorated. With age, the mitochondrial energy 
production in oocytes depletes, and processes like oocyte maturation 
with its nuclear spindle activity and segregation of the chromosomes 
deteriorate.22

 As a result, the aneuploidy rate increases, especially the trisomy, 
frequently observed in older women’s offspring. There is data that the 

number of mutations in mitochondria of the follicle cells increases 
with age, resulting in impaired reactions of ATP production and 
oxidative phosphorylation in older women.22 It was shown that 
chances for successful implantation strongly correlate with the ATP 
production and content in embryo cells. The study demonstrated that 
a reduced capacity of oocytes to produce ATP molecules leads to an 
abnormal nuclear spindle and random chromosome spreading.22,23 

Aging of human oocytes is closely associated with shifts in 
mitochondrial function, mitochondrial DNA copies numbers, and 
mitochondrial mutations.24,25 Simultaneously, in aging oocytes the 
significant increase in ROS levels and upregulation of mtDNA stress 
genes is observed. Notably, the hallmark of the aging oocyte are 
lower mtDNA and a number of essential mitochondrial dysfunction.26 

Research data on age-related changes in mtDNA in human oocytes 
suggests both the decrease,27 as well as increase of mtDNA.28 In a 
study of Fragouli the mtDNA copy number was decreased in cleavage 
stage embryos in females of a reproductively older age (average age 
40 years), and increased in blastocysts in comparison to females in 
a younger reproductive age (average age 35 years).29 Experimental 
studies reveal that mitochondria from old mice oocytes are different 
compared to young mice’ oocytes, and matured oocytes from old mice 
have considerably lower amount of mtDNA than young mice. The size 
and the total area covered by mitochondria in an oocyte vs total area 
of the oocyte’s cytosol was smaller in oocytes of older mice. Oocytes 
of the elder mice also have a less mitochondrial density compared 
to young ones. In general, the differences in mitochondrial status of 
young and old oocytes show the reduction in the functional capacity 
of mitochondria associated with ageing.26

The aging oocytes have their telomerase activity also decreased, 
which, in its turn, could further contribute to the chromosomal 
damage in oocytes.30 The relationship between oxidative stress and 
ovarian aging is closely linked to abnormal mitochondrial functions, 
accumulated mutations and the downregulation of mitochondrial 
antioxidant gene expression in aged oocytes.31 In fact, this shifts not 
only concern the mitochondria, but it is also well established that 
oxidative stress in main biological molecules (proteins and lipids), as 
well as in DNA of the aged oocytes causes the decline of the quality 
of the oocytes.32

In the ovaries, under normal circumstances the ROS generated 
during an inflammatory reaction from immune cells and cytokines in 
the follicular fluid induce oocyte maturation and subsequent follicle 
rupture and ovulation.33 Hence, the ROS produced at physiological 
level by the follicles are necessary for ovulation. On the contrary, 
inhibition of ROS would suppress the ovulation.34 Conversely, the 
excess of the ROS resulting in oxidative stress triggers abnormalities 
in female reproductive system, representing premature ovarian 
failure (POF), POI, and PCOS. POF, which usually means early 
menopause (before the age of 40 yo) is associated with prematurely 
impaired ovarian function due to abnormal development or depletion 
of follicles due to increased apoptosis.35 On the other hand, a drop 
in levels of endogenous antioxidants and increased oxidative stress 
in patients with PCOS produces abnormal formation of cysts and 
ovarian tissue remodelling, which leads to absence of ovulation and 
subsequent infertility.36

Albeit that ROS are generated in the corpus luteum post-ovulation 
playing a major role in progesterone synthesis, which is essential 
for the development of the uterine environment and in regulation 
of implantation, survival, and the progression of pregnancy, the 
excessive production of free radicals and oxidative stress to the corpus 
luteum disturbs the progesterone synthesis, which can be detrimental 
to embryo and development of pregnancy.37
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In the uterus, the excessive oxidative stress disturbs morphology 
and function of the uterus, including detachment of the endometrial 
epithelium and possible hindrance of implantation.38 During pregnancy, 
oxidative stress can lead immune dysfunction in the uterus that may 
lead to an early pregnancy loss.39 The impaired anti-oxidative stress 
protection mechanisms interfere with the successful implantation.40,41 

Oxidative stress and energy production-utilization pathways 
affect not only the oocytes, ovaries and uterus, but also the embryo. 
As a rapidly developing organism with high energy demand, the 
embryo gets the energy supplied by ATP produced via mitochondrial 
oxidative phosphorylation and glycolysis. The studies on mice 
demonstrated that post-compaction embryos consume times more 
oxygen than those in earlier stages of development and tend to shift to 
glucose utilization metabolic pathways.42 Because the mitochondria 
in embryo cells do not replicate until the blastocyst stage, its pool 
must be divided between all the numbers of increasing cells during 
the embryo cleavage. So, its metabolic activity must also increase 
according to the expanded cellular activity. Hence, we can suggest 
that the correlation between older maternal age and the risk of 
chromosomal abnormalities occurring in offspring is reasonably 
attributed to depleted mitochondrial activity in the oocytes, which 
leads to both non-disjunction of the chromosomes and arrest of 
embryo development.

Therapeutic modalities in unexplained infertility in 
Bioregenerative medicine

In this review, we emphasize that mitochondrial dysfunction 
plays a significant role in reproductive failures and propose that 
reproductive function in women can be improved largely with the use 
of mitochondrial peptides and other mitochondrial nutrients extracted 
from the xenogeneic stem cells derived from various fetal tissue 
- ovaries, testis, and placenta at a first place, as well as from other 
organs belonging to hypothalamus-pituitary-adrenal-gonadal (HPAG) 
axis. 

Despite significant advancements in assisted reproduction 
techniques, such as the intrauterine insemination and the in vitro 
fertilization (IVF), these techniques do not recreate the ideal conditions 
of natural impregnation. The presence of underlying mitochondrial 
dysfunction and failure of anti-oxidative stress defence mechanisms 
in reproductive system, require the supplementation of the human 
IVF culture media with the biologically active molecules capable of 
modulating the mitochondrial function, stimulators of mitochondrial 
genesis and biologically active substances with antioxidant properties. 
Such molecules include naturally-occurring peptides of HPAG axis, 
coenzyme-Q10, folic acid, vitamins A, C, and E, pantothenic acid, 
melatonin, resveratrol and others.43,44 

Thus, resveratrol exhibits therapeutic effects in treatment of many 
diseases due to its anti-aging, antioxidant, anti-inflammatory, insulin-
upregulating effects, cardioprotective, and anti-neoplastic properties.45 
Resveratrol may be beneficial for the women with impaired ovarian 
function, PCOS, endometriosis, and uterine fibroids.46,47 The 
beneficial effects of resveratrol are exerted through the sirtuin 1 
(SIRT1) activation.48 Another pathway through which resveratrol 
inhibits oxidative stress and inflammation in POI model and exerts 
its anti-apoptotic effects, hence improving the ovarian dysfunction 
caused by POI, is through the inhibition of the PI3K/AKT and the 
NF-kB signalling pathways.49–51 In addition, resveratrol inhibits 
theca-interstitial cell androgen production. Therefore, resveratrol is 
found beneficial in treatment of PCOS - a condition closely associated 
with insulin resistance and hyperinsulinemia, theca-interstitial cell 

hyperplasia, and hyperandrogenism.52 In the endometrium, resveratrol 
exhibits anti-apoptotic and anti-proliferative effects. Moreover, 
resveratrol reduces expression of the vascular endothelial growth 
factor (VEGF), thus aiding in management of endometriosis and 
ovarian hyperstimulation syndrome, as both of these conditions are 
related to the excessive VEGF activity.53

Coenzyme-Q10 (CoQ10) is the carrier-transporter of electrons in 
the mitochondrial respiratory chain between complexes I, II, and III. 
Thus, CoQ10 participates in the synthesis of ATP.54 Being a source 
for superoxide anion, CoQ10 acts both as a prooxidant as well as an 
antioxidant. Its reduced form - the ubiquinol, a potent antioxidant, 
protects biological membranes from lipid peroxidation.55 Addition of 
CoQ10 to the treatment protocols improves mitochondrial function, 
and through that pathway may improve the outcome in infertile 
patients. CoQ10 treatment prevented mitochondrial ovarian aging, 
and restored the age-related decline of oocyte quality.56

Lastly, CoQ10 administered to the aged mice restored 
mitochondrial respiratory function and increased glucose uptake in 
cumulus cells, hence helping to improve the reproductive function. 
The human studies shown that higher levels of CoQ10 in follicles 
are linked to a better embryo quality and higher pregnancy rates.57 

CoQ10 supplementation (600 mg/day for 2 months before ovarian 
stimulation) increased ovarian response, fertilization rates, and the 
number of high-quality embryos in young women with poor ovarian 
reserve.58 The pre-treatment before IVF with CoQ10 increases 
successful pregnancy rates.59

Folate, vitamin B9, and its synthetic form called folic acid, is 
common in dietary supplements due to its high bioavailability and 
massive health benefits.60 The main biochemical function of folate 
on the cellular level is the donation of the methyl group for the 
homocysteine to convert into methionine via methylation reaction,61 
which is a crucial transitional compound in endogenous synthesis of 
glutathione - the potent intracellular antioxidant. Consequently, folic 
acid exerts protection from oxidative stress by increasing endogenous 
expression of antioxidant in the cell. Hence, folic acid supplementation 
is widely used in the reproductive field, as well as during pregnancy 
and is essential in achieving favourable pregnancy outcomes.60,61

Cell therapy as a novel therapeutic modality in 
unexplained infertility 

In recent decade we are gathering more and more evidence that 
cell therapies can provide novel therapeutic paradigms in reversal 
of a wide range of degenerative and age-related disorders.62–64 New 
developments in molecular biology and cellular research have greatly 
expanded the clinical indications of these therapeutic modalities to 
unexplained infertility as well.64 The rationale behind this is that 
majority of disorders leading to the infertility and other reproductive 
disorders do not appear due to the deficiency in one protein or 
enzyme, but the changes in the complicated signalling on cellular 
and subcellular level. Cell-based therapy is an efficient modality that 
provides an interactive, dynamic, and individualized treatment, which 
addresses to patient’s pathophysiological conditions. 

Uterine tissue immune microenvironment has a crucial role in 
maintenance of pregnancy. The immunogenic cells, such as Placenta-
derived stem cells, Thymic progenitor cells and bone marrow-derived 
cells and their cytokines act as the key regulators. These cells express 
numerous cytokines, such as interleukins IL- 1α and IL-1β, TNF-α 
and exert positive affects on the endometrium. It also promotes the 
invasion and hemochorial placentation and regulates immune status 
of the embryo during implantation.65 Thus, Yoshioka in 2006 has 
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reported the direct effects of cell therapy on the human endometrium. 
The study concluded that the intrauterine administration of the stem 
cells, co-cultured in media with added HCG, has notably enhanced 
implantation and increased the live birth rates in cases of recurrent 
IVF failure.65

According to Hashii et al. stem cells co-culture with luteal cells 
derived from pregnant cases enhanced the Th2 cells cytokines 
production (IL-4 and IL-10), induced endometrial differentiation 
and promoted embryo implantation.66 Th1 cells enhance cytotoxicity 
function of NK cells via secretion of cytokines with pro-inflammatory 
properties (IL-2, INF-γ), thus inhibiting embryo implantation. Th2 
cells, on the contrary, produce anti-inflammatory cytokines (IL-
4 and IL-10), which protect the embryo from the immune system 
assaults via suppression of Th1 cells.67 Multiple studies found that the 
equilibrium between Th1/Th2 cytokines profile supported the feto-
maternal immune tolerance during pregnancy.68 Therefore, Th1 cells 
are predominantly produce negative effects on pregnancy, while, Th2 
cell cytokines play an important part in induction and maintenance of 
pregnancy.69

Based on the numerous reports, the stem cell therapy is an efficient 
therapeutic modality in the treatment of unexplained infertility. 
Many clinical trials have evaluated the efficiency of stem cell 
therapies in humans. Use of the xenogeneic precursor stem cells as 
therapeutic agents has a number of advantages, such as relatively easy 
preparation, abundant sources, and preventable ethical issues.62 After 
the implantation procedure, PSC are capable to survive, proliferate 
and differentiate into the finally differentiated cell, except placenta, 
ranging from hepatocyte, neural cells, muscles, liver, skin, and 
endocrine cells to oocytes and even sperm. Cultured in vitro, after 
implantation PSC proliferate in the recipient’s body hence promoting 
tissue remodelling.62

 In the meantime, administering organ-specific xenogeneic fetal 
precursor stem cells derived from the placenta and organs of the 
hypothalamus-pituitary-adrenals (HPA) and hypothalamus-pituitary-
gonads (HPG) axis would help to restore and support normal production 
of the hormones regulating menstrual cycle, which facilitate timely 
ovulation and oocyte maturation for further successful conception and 
embryo development.64,62 Stem cell transplantation as well as clinical 
use of decellularized organ-specific cell therapy products and cell 
derivatives becomes one of the most promising therapeutic solutions 
for incurable and untreatable diseases.62

Some studies reported benefits from the endometrial precursor stem 
cells, which are the inherent endometrial stem cells.70 The engraftment 
of endometrial precursor stem cells has a great potential in the treatment 
of endometriosis. Thus, Tersoglio et al. found that the endometrial 
precursor stem cells implantation into the thinned endometrium 
allowed to achieve the higher rates of In Vitro Fertilization (IVF) and 
higher rates of successful pregnancy, especially in cases of repeated 
implantation failure and/or downregulation of estrogen receptors.71

More recently, the female Germ Precursor Stem cells and Ovarian 
Precursor Stem cells were discovered to be able to promote the ovarian 
regeneration and modulate the ovarian function. For instance, female 
germline precursor stem cells increased the amount of functional 
oocytes.72 

Cellular extracts, procured from the cultured Precursor Stem Cells 
(PSC) are a well-established safe alternative. Clinical applications of 
cell extracts started in the beginning, mid- XX Century in Switzerland 
and Germany.64,73,74 Stem cells are secreting a broad spectrum of 
paracrine factors, representing the components of the extracellular 

matrix, adhesion- and binding proteins, enzymes, growth factors, 
cytokines, and chemokines.62,73,74

Promising potential has been shown by organ-specific cell 
extracts, the cell-free therapeutic, which can be derived and procured 
from xenogeneic tissue, possess a great reliability and reproducibility, 
easily manufactured, packaged and transported, can be lyophilized 
or shock-frozen, and do not need to match the donor-recipient 
compatibility to avoid immune reactions.73,74 Moreover, compared to 
stem cells, cell extracts have advantages of a lower production time 
and cost, a higher shelf-life, and relatively easy storage method.73,74 
Organ-specific cell extracts can be harvested from various types of 
cells and different culture conditions, to ensure the organ-specificity 
maintained. The evaluation of biologically active ingredients from 
various tissue sources has been done, showing the differences in the 
composition, peptide characterization and clinical effects produced.75 

Different types of PSC secret a great variety of cytokines, 
chemokines, and growth factors that produce powerful paracrine 
effects on patient’s endogenous pool of stem cells, as well as 
rejuvenating and regenerative effects on the tissue and organs. 
They also stimulate cell migration, proliferation, and tissue 
revascularization, thus promoting the organ’s regeneration. One of 
the studies has demonstrated that mRNA expressions of interleukins 
IL-1β, IL-6, and IL-8 were significantly downregulated compared to 
the controls.76 Few studies have demonstrated the more satisfactory 
outcomes in terms of endometrial growth and gestation in patients 
with thin endometrium following the use of decellularized cell-based 
therapy protocols.77,78

Mitochondrial replacement therapy in infertility

Mitochondrial substitution therapies target enhancement and/or 
replacement of the mitochondria inside the oocytes of the patient.79 

Currently there are two different techniques developed: either a 
oocyte cytoplasmic transfer from donor oocytes to patients’ oocytes80 
or a transfer of oocyte chromosomes attached to the meiotic spindle 
from the donor’s oocytes to the recipient’s oocytes.81 Both of these 
mitochondria transfer technologies have comparable clinical 
outcomes, and results in healthy mitochondria identified in the 
offspring population, though with a slightly less ratio of healthy 
mitochondria.82,83

In cases when there are no mitochondrial dysfunction diagnosed 
in females with idiopathic infertility, the clinical success of 
mitochondrial transfer is not just realized due to mitochondrial 
replacement per se, but rather due to numerous other biologically-
active factors present in the maternal mtRNA. The success of these 
treatments combined with absence of adverse reactions and safety 
for the embryo, should encourage the use of these techniques in 
the clinical practice of infertility treatment. A more recent clinical 
study confirmed that mitochondria replacement and substitution 
therapy using mitochondria obtained from the patient’s own stem 
cells instead of the allogeneic oocytes is another promising treatment 
modality to improve embryo quality in patients with unexplained 
infertility.84 According to the study, 52 women (age from 27 to 49 
years) were treated, that resulted in 61.5% fertilization rate and 23.8% 
pregnancy success rate: 11 live births, 1 intrauterine fetal death, and 4 
miscarriages. The average implantation rate and birth rate were 18.6% 
and 17.5%, correspondingly. The physical and cognitive development 
of all the babies born was normal, and no mtDNA mutations were 
detected.84

Apart from the mitochondrial transfer, there are other additional 
natural treatments, which combine the activities of a direct anti-
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oxidant agents, such as melatonin, glutathione, SOD2, catalase that 
protect cells against oxidative stress.85 Other antioxidants, such 
as vitamins C and E, as well as coenzyme Q10, provide additional 
advantages, and can be utilized before more complicated and invasive 
treatment modalities used.

Conclusion
Unexplained infertility is associated with various pathological 

conditions with no clear pathogenesis identified, hence with 
no straightforward guidelines regarding the suitable treatment 
options. However, the research on aging of the reproductive system 
provides emerging evidences that novel anti-aging and regenerative 
medicine and translational medicine modalities can give solutions 
to the problems related to infertility. Among such novel methods to 
preserve and restore fertility in women with unexplained infertility 
are various forms of cell-therapy. Cell therapy is an expanding field 
of Bio-regenerative medicine attempting to alleviate numerous 
diseases involving chronic systemic low-grade inflammation, insulin 
resistance, fibrosis, and diminishing pool of endogenous stem cells. 
Further characterization of the existing cell products, research of their 
mechanisms of action, and large-scale clinical trials are necessary 
to establishing cell therapy as an effective therapeutic option for the 
treatment of unexplained infertility.

The decreased capacity of defence mechanisms against oxidative 
stress, which is one of the hallmarks of aging, results in a loss of normal 
functions of the female reproductive system. Hence, the assisted 
reproductive techniques should be developed in a way to address 
infertility caused by both reproductive aging in general and oxidative 
stress in particular. The application of stem cells, precursor stem 
cells, cellular extracts, organ-specific peptides, exosomes et cetera in 
regenerative medicine has been well-known and accepted for their 
strong anti-inflammatory, immunomodulatory, antioxidant capacities 
and stimulatory reparative effects. In addition to conventional cell 
therapy, the therapeutic use of targeted organ-specific cell therapy 
modalities has been researched and developed as an effective method 
of addressing to a particular disorder depending on the conditions and 
individual status of the patient. In conclusion, further development 
of cell therapy protocols as a promising treatment modality against 
unexplained infertility with or without the assisted reproduction 
technologies, and further research and development of therapeutic 
methods of attenuating the mitochondrial dysfunction in aging female 
reproductive system is required.
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