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Abbreviations: RyR, ryanodine receptors; SERCA, 
sarcoplasmic reticulum; PLN, phospholamban; ATP, 
adenosintriphosphate; AC, adenylate cyclase; cAMP, cyclic adenosine 
3’,5’–monophosphate; PKA, proteine kinase a; cGMP, cyclic 
guanosine monophosphate; NO, nitric oxide

Introduction
Treatment of cardiovascular diseases includes a wide range of 

pharmacological drugs, and plant remedies are suitable alternatives 
to synthetic drugs due to their availability, non–proarrhythmic 
characteristics, and minimal side effects.1 Medicinal plants distributed 
in the Central Asia and China provides abundant and precious 
medicinal resources for the Traditional Medicine in treating diseases.2 
Flavonoids are unique secondary metabolites are synthesized in 
almost all plant cells, exhibiting high biological activity and due to 
their properties increasingly finding wide practical application in 
pharmacology and medicine. A wide range of biological activities 
and low toxicity puts them in a row promising compounds in this 
respect. Therefore, in pharmaceutical industry researches find cure 
against many various diseases, the direction of tendency is observed 
towards the growth of interest to search and create medical products 
based on bioflavonoids.3–8 Also, nowadays, in chemical researches 
have extracted and identified many bioflavonoid from plants.7,9–12 
However, their mechanisms of cardio pharmacological impact have 
not been studied yet. Therefore, the aim of the present study was to 
involvement of NO–synthase in inotropic effect of 4’,5–dihydroxy–7–
methoxyflavon in rat papillary muscle.

Material and methods
Animals and ethics statement

This study was carried out in the Laboratory of Pharmacology 
of Institute of Bioorganic Chemistry of Academy Sciences of the 
Republic of Uzbekistan on physically fit, adult, albino rats in both 

sexes (female and male) obtained from the vivarium in the Laboratory 
of Pharmacology. Animals had been fed with standard food and 
water in the vivarium. In all experiments albino rats weighing 150–
200g were used (n=11). During the experiments, while working 
with experimental animals, International principles of the Helsinki 
Declaration and the rules of human attitudes towards animals were 
completely followed. 

Solvents and chemicals

All reagents, which were used in experiments, were of analytic–
grade (NaCl, KCl, CaCl2, MgSO4, KH2PO4, glucose, NaHCO3), (±)–
propranolol hydrochloride, dimethylsulfoxide (DMSO) was obtained 
from Sigma–Chemical (St. Louis, Missouri, USA). Ca2+

L–channels 
were inhibited by 0.01–1µmol.L–1 nifedipine hydrochloride (Sigma 
Aldrich; Germany).13 Also, β–AR was inhibited by 10µmol.L–1 (±)–
propranolol hydrochloride. 4’,5–Dihydroxy–7–methoxyflavon was 
isolated from plants Dracocephalum komarovii Lipsky (Lamiaceae), 
collected from the Tashkent region of Uzbekistan and presented by 
PhD. Students of CAS_TWAS president fellowship Chinese Academy 
of Sciences (Xinjiang Technical Institute of Physics and Chemistry) 
Zokir Toshmatov (Figure 1).

Dracocephalum komarovii Lipsky (Labiatae) is endemic species, 
groving only in territory of Republic Uzbekistan. Dracocephalum 
komarovii Lipsky– a perennial semishrub that grows in the vicinity 
of ~2300–3600 m above sea level in the western Tien Shan mountain 
system. This is called «buzbosh» in Uzbekistan, and the local 
people use the aerial parts in a tea to treat various diseases such as 
inflammatory diseases and hypertension.

4’,5–dihydroxy–7–methoxyflavon were dissolved in dimethyl 
sulfoxide (DMSO<0.1% in the bath). L–NAME (Nω–nitro–L–
arginine methyl ester, Sigma–Aldrich, Germany), (±)–propranolol 
hydrochloride and nifedipine hydrochloride were all dissolved 
in distilled water. In the experiments, modified the physiological 
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Abstract

The aim of the present study was to determine the inotropic effect of 4’,5–dihydroxy–7–
methoxyflavon in the rat myocardium. The present study demonstrates that 4’,5–
dihydroxy–7–methoxyflavon (1–5µmol.L–1) showed a positive inotropic effect on rat 
papillary muscles that can be explained with the increase of [cAMP]in and may depend on 
increase of [Са2+]in. Also, another possible mechanism of the positive inotropic effect 4’,5–
dihydroxy–7–methoxyflavon (5µmol.L–1) on the rat papillary muscles can be inhibited Na+/
K+–ATPase via activation of reverse–function of the Na+/Ca2+–exchange and, consequently, 
increase [Са2+]in. And 4’,5–dihydroxy–7–methoxyflavon (10–50µmol.L–1) may induce a 
negative inotropic effect in rat cardiac muscles and this effect at least partly be mediated by 
NO/cGC/cGMP/PKG pathway.

Keywords: biphasic inotropic effect, papillary muscles, nitric oxide, no/cgc/cgmp/pkg, 
4’,5–dihydroxy–7–methoxyflavon
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Krebs–Henseleit solution containing (in mM): 118 – NaCl; 4.7 – 
KCl; 2.5 – CaCl2; 1.2 – MgSO4; 1.1 – KH2PO4; 5.5 – glucose and 
25 – NaHCO3; pH 7.4 were used. This Krebs–Henseleit solution 
which was continuously bubbled with 95% O2 and 5% CO2 and kept 

at a temperature of +36±0.5°C by means of water heating system 
controlled by temperature controller U1 (Russia), and flowed in and 
out of the organ bath at a rate of 3–5ml/min with the peristaltic pump 
LKB Bromma (Sweden). 

Figure 1 Chemical structure of 4’,5–dihydroxy–7–methoxyflavon (
16 48 9

C Η Ο ; F.w. 284g/mol).

Preparation of tissue and measurement of contractility 
and setup of the equipment

In experiments the papillary muscles preparations, isolated from the 
right atrium of adult albino rats’ hearts. Rats were deeply anaesthetized 
with diethyl prior to paralyzing by using cervical dislocation method. 
The papillary muscles were ~0.4–1.3mm in diameter and 2.5–3.8mm 
in length. Isometric tension forces were recorded using a force 

transducer (SI–KG20, World Precision Instruments, Inc. 175 Sarasota 
Center Boulevard, Florida 34240–9258, USA), designed for the in 
vitro study in standard pharmacological experiments for measuring 
contraction force response of isolated muscle preparations. The organ 
chamber (20ml) was part of the experimental setup, as shown in 
Figure 2. For further details of setup of the recording system is given 
in the text. 

Figure 2 Schematic drawing of the experimental setup of the recording system for contractile activity of the isolated papillary muscle.

The Isometric force transducer SI–KG20 is connected to a 
transducer amplifier (SI–BAM21–LCB, WPI, Inc. 175 Sarasota 
Center Boulevard, Florida 34240–9258, USA). The papillary muscle 
was lifted with electric impuls that was higher than threthold (~20%), 
rectangular, electrical pulses of frequency 0.5Hz; 5–10msec and 5V 
amplitude, delivered via a pair of platinum electrodes placed in the 
muscle–mounting organ chamber by using stimulator ESL–2 (Russia). 

Thus, wires of a pair of platinum electrodes were placed as parallel 
to the organ; the physiological solution of Krebs–Henseleit provides 
shortening the electrical contact distance between the electrodes and 

the preparate of the papillary muscles. In this experiment, 10mN 
(1g~9.8mN) was accepted for a resting tension of the preparation 
papillary muscles. 

After a 45–60minutes equilibration period, the length that provides 
development of the maximal isometric contractile force (Lmax, the 
maximal length) length of the papillary muscle was found, and all 
experiments were carried out in these condition. After the equilibration 
period in the organ chamber, papillary muscles were stimulated by an 
initial electrical pulse of frequency 0.5Hz, amplitude 5V, and 5msec 
pulses. The signals obtained were given from the transducer SI–KG20 
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to amplifier and sent to a computer with analogue–digital converter 
Lab–Trax–4/16 (WPI, USA) software (iWorx LabScribe2; iWorx 
Systems, Inc., USA).

Data analysis

Papillary muscle contractions were plotted as a percentage of the 
force before the drug application in each muscle. Data were analyzed 
by Origin Lab Origin Pro v. 8.5 SR1 (EULA, Northampton, MA 
01060–4401, USA). Pooled data are given as means ±S.E.M. of 
observations (n). Concentration–response curves were fitted to the 
logistic equation: 

[ ]( )2/(1 10 k drug pDE Emax
− × −= +

where Emax – is the maximal effect, k – is a factor which represents 
the slope of the curve, and pD2 – is the drug concentration exhibiting 
50% of the Emax expressed as negative log molar. Values are expressed 
as mean±S.E.M. Statistical differences of the data were calculated by 
ANOVA and the paired or unpaired Student’s t–test where appropriate. 
The values were considered significantly different when p<0.01 and 
p<0.05.

Result and discussion
The positive inotropic effects of 4’,5–dihydroxy–7–
methoxyflavon on rat papillary muscle

In the experiments, the 4’,5–dihydroxy–7–methoxyflavon 
(1–50µmol.L–1) showed dose–dependent biphasic inotropic effects in 
rat papillary muscle contractility. 

The condition where the maximal effected concentration 
(5µmol.L–1) of 4’,5–dihydroxy–7–methoxyflavon, the isometric 
developed force of papillary muscle preparation was increased from 
2.6±0.1 mN (the control basal value) to 3.8±0.1mN or 46.2±4.78% in 
comparison with the control group (p<0.05; n=3–5). 

Studies have shown that in incubation to inhibited potential–
dependent Са2+–channel – nifedipine hydrochloride (0.01µmol.L–1) 
the positive effect of 4’,5–dihydroxy–7–methoxyflavon (5µmol.L–1) 
decreases to 31.5±4.7% of control values. The results of experiment 
demonstrate that the positive inotropic effect of 4’,5–dihydroxy–7–
methoxyflavon on papillary muscle is not completely connected with 
modulation of potential–dependent Са2+

L–channel cardiomyocytes. 
In addition, the positive inotropic effect of 4’,5–dihydroxy–7–
methoxyflavon (5µmol.L–1) was almost completely disappeared in the 
presence of inhibitor of potential–dependent Са2+

L–channel–nifedipine 
hydrochloride (0.01µmol.L–1) and inhibitor β–adrenoreceptor–(±)–
propranolol hydrochloride (10µmol.L–1) under incubation conditions. 

Other investigations showed that flavonoids demonstrate a positive 
inotropic effect, through an increase in cAMP, which increases [Ca2+]in. 
It is known that, increasing concentration of [cAMP]in activates protein 
kinase A (PKA), which phosphorylates the L–type Ca2+–channel, 
troponin I, and causes an increase of [cAMP]in and subsequently 
phosphorylation of contraction–controlling proteins, including Ca2+

L–
channels occured, and the amplitude force of contraction papillary 
muscles increased as well. Phosphorylation of these Ca2+

L–channels 
promotes Ca2+ influx that triggers the release of Ca2+

 from the RyRs 
of SR and [Ca2+]in transient finally activates the contraction system of 
myocardium.

The present study demonstrates that 4’,5–dihydroxy–3,6,7–

trimethoxyflavon has showed a positive inotropic effect on rat 
papillary muscles that can be explained with the increase of [cAMP]in 
and may depend on increase of [Са2+]in. 

Another possible source of [Са2+]in could be found in activation 
of reverse–function of the Na+/Ca2+–exchange.14 Also, cardiac 
glycosides (ouabain, digoxin et al.) exert a positive inotropic effect 
on papillary muscle through a mechanism the inhibition of the Na+/
K+–ATPase (sodium pump). This leads to an increased [Na+]in which 
in turn is thought to influence the Na+/Ca2+–exchange in such a way 
as to increase the [Ca2+]in and hence the force of contraction papillary 
muscle.15–21 And, inhibition of Na+/K+–ATPase is involved in probably 
to a large extent in therapeutic efficacy of cardiac glycosides.20,22,23 

The most frequently cardiac glycoside used in experimental 
research and in clinical conditions today is digoxin.24–28 Digoxin, 
a cardiac glycoside and digitalis alkaloid obtained from the leaves 
of plants of the plant Digitalis lanata, and used clinically in the 
treatment of heart failure and arrhythmias by inhibiting the Na+/
K+–ATPase by binding to the extracellular domain of the α–subunit 
of Na+/K+–ATPase on cardiomyocytes. And, reported29 that digoxin 
at 0.4micromol.L–1 demonstrated a near maximal positive inotropic 
effect (EC50=~0.2µmol.L–1).

Given that to examine this possibility, the Na+/K+–ATPase was 
modified by incubating papillary muscle with 1micromol.L–1 digoxin. 
Thus, papillary muscle from rat displayed an increase of force to 
87.4±6.7% of control values after digoxin (1micromol.L–1; 0.5Hz) 
(n=3–4; p<0.05). A combination of 1µmol.L–1 digoxin and 4’,5–
dihydroxy–7–methoxyflavon (5µmol.L–1) resulted in a potentiation of 
the developed contractile tension of the rat papillary muscles from to 
15.8±4.9% of control values. 

Also, reported30 that flavonoids demonstrated a positive inotropic 
effect, through an inhibited Na+/K+–ATPase in vitro.

These results indicate that another possible mechanism of 
the positive inotropic effect 4’,5–dihydroxy–7–methoxyflavon 
(5µmol.L–1) on the rat papillary muscles can be inhibited Na+/K+–
ATPase via activation of reverse–function of the Na+/Ca2+–exchange 
via increase [Са2+]in.

The negative inotropic effects of 4’,5–dihydroxy–7–
methoxyflavon on rat papillary muscle

In the experiments, the 4’,5–dihydroxy–7–methoxyflavon 
(15–50µmol.L–1) induced a concentration–dependent decrease 
of the contractile force of the rat papillary muscle (p<0.05). The 
condition where the maximal effected concentration (50µmol.L–1) 
of 4’,5–dihydroxy–7–methoxyflavon, the isometric developed force 
of papillary muscle preparation was decreased from 54.8±6.2% in 
comparison with the control group (p<0.05; n=3–4) (Figure 3).

Stimulation: 0.5Hz with pulses of amplitude 5V, and 5msec 
(+36±0.5°C).

In these conditions, the EC50 value (the values of concentration for 
50% of the maximal effect) 4’,5–dihydroxy–7–methoxyflavon was 
38.9µmol.L–1 or pD2 (–logEC50)=4.415 (Figure 4).

Results are given as means±S.E.M, n=3–4. Stimulation: 0.5Hz, 
5V, 5msec, +36±0.5°C, resting tension=10mN.

In the experiments, the NO donor sodium nitroprusside (SNP) 
(100µmol.L–1) showed a negative inotropic effect (at 0.5Hz; p<0.05). 
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Treatment with sodium nitroprusside (SNP) (100µmol.L–1) decreased 
maximal force by 56.4±4.6% compared to control conditions. These 
results are consistent with studies other authors.31 This effect is nearly 
eliminated by the inhibition of NO–synthases through L–NAME 
(100µmol.L–1).

Figure 3 Original recordings of negative inotropic effect of 4’,5–dihydroxy–7–
methoxyflavon (15–50µmol.L–1) on a rat papillary muscle.

Figure 4 Concentration–response curves for the negative inotropic effects of 
4’,5–dihydroxy–7–methoxyflavon.

Pretreatment with L–NAME (100µmol.L–1), an inhibitor of 
NO–synthase, attenuated the negative inotropic effect of 4’,5–
dihydroxy–7–methoxyflavon in the isolated rat papillary muscles 
(p<0.05) (Figure 5). 

Stimulation: 0.5Hz, 5V, 5msec, +36±0.5°C, resting tension=10mN. 
Data shown for L–NAME (100µmol.L–1) and 4’,5–dihydroxy–7–
methoxyflavon (50µmol.L–1) were presented as means±of 3–4 
experiments. p<0.01 and p<0.05 indicates value compared to control 
(n=3–4).

And, the negative inotropic effect of 4’,5–dihydroxy–7–
methoxyflavon (10–50µmol.L–1) in isometrically contracting papillary 
muscles seems to be mediated by NO/cGMP/PKG–cycle.

Cardio–pharmacological experimental studies in conditions in vitro/
in vivo and traditional medical literature point to the cardiovascular 
effects of bioflavonoids in many instances. All results indicated the 
potential inotropic and anti–arrhythmic effects of flavonoids in treating 
cardiovascular diseases. Thus, reported, that the bioflavonoids have a 

positive inotropic effect, through an increase [cAMP]in, with inhibited 
of phosphodiesterase (3’–5’–cAMP–phosphodiesterase) enzyme, also 
with activation of β–AR, consequently, increase [Са2+]in.

32– 37 

And, some bioflavonoids have an inhibitory effect on the Na+/K+–
ATPase Na+/K+–ATPase via activation of reverse–function of the Na+/
Ca2+–exchange and, which is increase [Са2+]in.

37,38,39

Figure 5 Comparison of the inotropic effects of 4’,5–dihydroxy–7–
methoxyflavon and L–NAME (100µmol.L–1) on the contraction force of 
extracted rat papillary muscle.

Conclusion
In conclusion, the present study demonstrates that 4’,5–

dihydroxy–7–methoxyflavon has showed a positive inotropic effect 
on rat papillary muscles that can be explained with the increase of 
[cAMP]in and may depend on increase of [Са2+]in. Also, another 
possible mechanism of the positive inotropic effect 4’,5–dihydroxy–7–
methoxyflavon (5µmol.L–1) on the rat papillary muscles can be 
inhibited Na+/K+–ATPase via activation of reverse–function of the 
Na+/Ca2+–exchange which increase [Са2+]in. And 4’,5–dihydroxy–7–
methoxyflavon (10–50µmol.L–1) may induce a negative inotropic 
effect in rat cardiac muscles and this effect at least partly be mediated 
by NO/cGC/cGMP/PKG pathway (Figure 6).

RyR – Ryanodine Receptors or Sarcoplasmic reticulum Ca2+–
channels; SERCA2a – The sarcoplasmic reticulum Ca2+–ATPase; 
PLN – Phospholamban; ATP – Adenosintriphosphat; Gs – Guanine 
nucleotide–binding proteins; AC – Adenylate cyclase; cAMP – 
Cyclic Adenosine 3’,5’–monophosphate; PKA – Proteine kinase A; 
cGMP – Cyclic guanosine monophosphate; PKG –cGMP–dependent 
protein kinase. Thus, depolarization of sarcolemmal membrane by 
AP leads to opening of Ca2+

L–channels, which allows entry of Ca2+ 
into cardiomyocytes. And, through Ca2+–induced activation RyR2, 
leads to increase in [Ca2+]in, leading to contraction of myofilaments. 
During relaxation, [Ca2+]in is accumulated into SR by SERCA2a and 
extruded by Na+/Ca2+–exchanger. Agonists β–AR through G–proteins 
increase [cAMP]in, which results in activation of PKA, which leads 
to phosphorylation of Ca2+

L–channels, allowing increase [Ca2+]
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in, phosphorylation of PLN, increasing SERCA2a activity, induce 
lusitropic effect. 

Figure 6 Hypothetical mechanisms of inotropic effect of 4’,5–dihydroxy–7–
methoxyflavon on the rat myocardium.

Also, phosphorylation RyR2, induce activation release of Ca2+ from 
SR, and allowing increase [Ca2+]in. Digoxin inhibits Na+/K+–ATPase, 
which increases [Na+]in, and this results in increase in [Ca2+]in via Na+/
Ca2+–exchanger, which leads to activation SERCA2a and increase in 
Ca2+ release via RyR2.

40 NO (nitric oxide) is an important messenger 
that regulates physiological functions throughout the cardiovascular 
system,41 and NO which increase the [cGMP]in level, decreased 
the contraction force in isolated cardiac muscle.31 The negative 
inotropic action mediated by cGC activation results from cGMP–
dependent protein kinase (PKG) activation and inhibition of cAMP–
phosphodiesterase (PDE III), with concomitant Ca2+ myofilament 
responsiveness reduction by troponin–I. Also, the decreased twitch 
tension can be due to a PKG–dependent reduction in myofilament 
responsiveness to Ca2+ in the modulation of NO.42,43 These data may 
serve as a basis for further detailed pharmacological mechanism of 
action of this compound.
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