

Optical properties of bacterial nanocellulose for the replacement of chemical filters with endocrine-disrupting consequences. a natural and sustainable approach

Abstract

In this review, we focus on understanding the optical properties of natural mineral products for incorporation into cosmetics and personal care products. Specifically, we focus on titanium dioxide and bacterial nanocellulose as alternatives to replace endocrine-disrupting molecules present in sunscreens. We want to highlight the importance of replacing benzophenones. These chemicals are known for their UV absorption capacity and their endocrine-disrupting activity. We believe that the complete replacement of benzophenones should be immediate. We propose replacing them with mineral sunscreens, such as those containing titanium dioxide or zinc dioxide. This natural alternative would allow us to add natural nanocellulose (NBC), reinforcing the mechanism of action by increasing the product's refractive capacity. To reach this conclusion, a total of 55 scientific publications were reviewed, covering topics such as toxicity, pharmacodynamics, alternatives, physics, optics, microbiology, and dermatology, among others.

Keywords: bacterial Nano Cellulose, endocrine disruptors, green approach, natural products

Volume 9 Issue 1 - 2026

González Exequiel,¹ Sesto Cabral Maria Eugenia²

¹Laboratorio de Estudios Farmacéuticos y Biotecnología Farmacéutica (LEFyBiFa)-Instituto de Biotecnología Farmacéutica y Alimentaria (INBIOFAL) - CONICET-UNT - Tucumán, Argentina

²San Luis 604, Tucumán, Argentina, Laboratorio de Estudios Farmacéuticos y Biotecnología Farmacéutica INBIOFAL-CONICET-UNT, Roca 1900, San Miguel de Tucumán, Tucumán, Argentina

Correspondence: Maria Eugenia Sesto Cabral, Laboratorio de Estudios Farmacéuticos y Biotecnología Farmacéutica INBIOFAL-CONICET-UNT, Roca 1900, San Miguel de Tucumán, Tucumán, Argentina, Tel +54-3814856596; 0054-0381-154-143210, Fax+54381-4856596

Received: January 28, 2026 | **Published:** February 12, 2026

Introduction

Bacterial nanocellulose (BNC) is a primary metabolite synthesized by the *Pseudomonas fluorescens* bacteria. BNC possesses distinctive characteristics that allow modifications on its biological, physical, and physicochemical properties. Its versatility stems from the processes involved in its production method. One well-studied and utilized characteristic of BNC are its mechanical strength, biocompatibility and swelling capacity, which reaches approximately 200 times its weight in water.¹ Under special conditions, this makes it a unique model for the design of, films and semi-solid topical pharmaceutical dosage forms. Previous studies conducted in our laboratory allowed us to obtain hydrogels and natural suspensions to carry all types of natural extracts, both oily and aqueous.²⁻⁵ While many laboratories, including ours, are studying the wide range of innovative approaches to developing new nanocellulose-based materials, there is diverse scope for designing new product prototypes involving BNC. One particularly promising characteristic is its optical properties.¹

Objective

In this review, the focus is on understanding the optical properties of endocrine-disrupting molecules present on cosmetics and personal care products. Specifically, we want to emphasize the importance of replacing benzophenones. These chemicals are known for their UV absorption capacity, but also for their endocrine-disrupting activity. We believe that the complete replacement of benzophenones should be immediate. Therefore, we are considering mineral sunscreens, such as those containing titanium dioxide or zinc dioxide. This natural alternative would allow us to add natural nanocellulose (NBC) by reinforcing the mechanism of action, that is, by increasing the product's refractive capacity.

Endocrine disruptors and their health consequences.⁶

Agrochemicals,⁷⁻¹² personal hygiene products such as deodorants, repellents, creams, perfumes, lotions, fabric softener, ultra-processed foods, and fumigated fruits and vegetables are just some of the countless products containing substances known as endocrine disruptors. An endocrine disruptor is any substance that enters our body through ingestion, skin absorption, or inhalation, and although it does not mimic its primary function, it does so by mimicking hormones. The main hormones affected fall into three groups: Estrogens (Xenoestrogens): These are the most frequently mimicked hormones. Compounds such as phthalates,¹³ Bisphenol A,¹⁴ benzophenones,¹⁵⁻¹⁷ parabens⁶ in cosmetics, and pesticides such as atrazine,^{18,19} 2,4-D,⁷⁻¹¹ glyphosate,¹² and all those misnamed "hormone-like" or "plant hormones", all of them act by mimicking estrogens. Androgens: Certain endocrine disruptors can mimic or antagonize testosterone, affecting reproductive function, especially agrochemicals such as 2,4-D,⁷⁻¹² atrazine,^{18,21} glyphosate,¹² and the list goes on. Thyroid Hormones:^{22,23} Compounds such as triclosan¹⁶ (in soaps/toothpaste) can alter thyroid function and the immune system.

Why do we use benzophenones in sunscreens?²⁴

Benzophenones, particularly oxybenzone (benzophenone-3), are organic chemical compounds used as broad-spectrum sunscreens to absorb UVA and UVB radiation. They are very common in creams and cosmetics. Main characteristics of benzophenones as sunscreens:^{25,26} Their action mechanism is the chemical absorption of UV rays, potentially transforming the radiation into energy that is less harmful to the skin.²⁷ Common uses: They are found in sunscreens,²⁷ moisturizers,²⁸ lipsticks, and makeup,^{29,30} often referred to as Benzophenone-3 (oxybenzone) or Benzophenone-4. Main

harms of Benzophenones as Endocrine Disruptors: Reproductive and Developmental Disruption:³⁰⁻³² They can cause infertility,³³ endometriosis,³⁴ genital malformations,³⁵ decreased sperm count, and reduced semen quality.³⁶ Hormonal Interference: They act as analogs of natural hormones (antiandrogens/estrogens), affecting the endocrine system, including thyroid function.⁶ Prenatal and Neonatal Impact: Risks of low birth weight and problems during fetal development.^{37,38} Cancer Risk: Benzophenone is identified as a possible human carcinogen, with studies suggesting risks of breast cancer or tumors, ovarian cancer and prostate cancer from chronic exposure.³⁹⁻⁴¹ Impact on Adolescents: It is associated with risks of obesity,^{42,43} non-food allergies,⁴⁵ and precocious puberty.⁴⁶ Continuous exposure to these compounds, present in sunscreens and personal hygiene products, can be harmful even at low doses.

How can we replace sunscreens that use chemical reactions as a mechanism for absorbing UV light?⁴⁷

One alternative is sunscreens that work through physical methods. Mineral (or physical) sunscreen uses natural ingredients such as titanium dioxide and zinc oxide to create a barrier on the skin's surface that reflects UVA/UVB rays. It is ideal for sensitive, reactive skin or skin with conditions like rosacea,⁴⁴⁻⁴⁶ as it is not absorbed,⁴⁸ offers immediate protection, and is environmentally friendly.⁴⁹ Also presents key features and benefits such as; Immediate action: As a physical filter, it works upon application, without needing to wait 30 minutes. Ideal for sensitive skin:⁴⁶ It generally does not cause irritation, so it is recommended for intolerant skin, acne-prone skin, or for children. Complete sun protection. It offers broad-spectrum protection."Screen" effect: It can leave a white cast on the skin, although modern formulas have improved this.^{47,48} Since the mechanism of action involves a barrier effect through the refraction of sunlight, it is possible to increase the sun protection factor (SPF) of mineral sunscreen.⁴⁹ This can be achieved by incorporating a new agent that adds refractive properties, such as BNC. Its optical properties have already been verified by measuring dispersion, refraction, diffraction, transmittance, absorbance, and birefringence.⁵⁰ Its action mechanism, in the form of acicular crystals, alters the properties of light upon interaction with an incident light beam.⁵¹⁻⁵³ The alterations in the properties of light that occur when it interacts with a medium are called the optical properties of that medium.⁵⁴ These optical properties are influenced by the physical and medium chemical characteristics, such as surface roughness and dangling bonds.⁵⁵ However, measuring optical properties is often simpler and more direct than analyzing physical and chemical properties and their complex correlations with optical behavior. Consequently, optical properties are often studied to better understand the properties of other materials. Some of the most frequently observed optical properties include dispersion, refraction, diffraction, transmission, absorbance, and birefringence.⁵³ Several laboratories around the world have studied the optical properties of plant-based nanocellulosic material and found encouraging results regarding refractive index and decreased transmittance in the UV. Our laboratory is conducting similar studies on BNC crystals and flakes, obtained through cleaner physical production methods. Our goal is to increase the sun protection factor (SPF) of titanium dioxide-based sunscreens with a sustainable, biodegradable alternative that has superior optical properties.

Conclusion

The benzophenone group, commonly used in sunscreens, is a potent endocrine disruptor with over 12,500 publications to date, including studies in healthy volunteers, patients, and laboratory animals. All

publications indicate a serious risk to human and animal health, as well as environmental risks. Our goal is to increase the sun protection factor (SPF) of titanium dioxide-based sunscreens with a sustainable, biodegradable alternative that has superior optical properties. Several studies are necessary before publishing the results to ensure the robustness of this process, but the results obtained so far indicate that the novel production method improves upon the parameters measured to date. Therefore, we can say that it is possible to increase the SPF of titanium dioxide-based sunscreens with a sustainable, biodegradable alternative that offers improved refractive activity.

Acknowledgments

National Council for Scientific and Technical Research (CONICET). National University of Tucuman (UNT).

Conflicts of interest

The authors declare that there is no conflict of interests regarding the publication of this paper.

Funding

Funding for this work comes from the National Council for Scientific and Technical Research – CONICET.

References

1. González Exequiel Elías, Cerusico Nicolás Abel, Moreno María Julieta, et al. Bacterial nano cellulose as non-active pharmaceutical ingredient. Advances and perspectives. *Drug Des Develop Ther.* 2018;2(6):230–233.
2. González Exequiel, Sesto Cabral María Eugenia. Bacterial Nanocellulose: An Alternative To Increase The Mosquito Repellent's Duration. Natural Repellent Bifasic Spray. Community Experience in A Rural Area with A High Prevalence. *Int Clin Med Case Rep Jour.* 2025;4(11):1–14.
3. González Exequiel, Sesto Cabral María Eugenia. Bacterial Nanocellulose, A Natural Non-Active Pharmaceutical Ingredient for Gel Design. Finding a Natural Mosquito Repellent, A Community Experience. *Int Clin Med Cásé Rep Jour.* 2023;2(18):1–15.
4. González Exequiel, Sesto Cabral María Eugenia. A Pharmaceutical Biotechnology Experience: Bacterial Nanocellulose for Transdermal Drug Delivery Systems Design. Safety and Organoleptic Acceptance Studies. *Int Clin Med Cásé Rep Jour.* 2024;3(1):1–13.
5. Sesto Cabral María Eugenia, González Exequiel. Scalp Psoriasis Natural Treatment. Shampoo Based on Bacterial Nanocellulose. Design, Technological studies and Concept Tests. *Int Clin Med Case Rep Jour.* 2024;3(6):1–15.
6. González, Exequiel Elías, Sesto Cabral ME, et al. Rethinking for Natural Pharmaceutical Technology: Parabens as Cosmetic Preservatives and their Potential as Chemical Endocrine Disruptors. *Current cosmetic Science.* 2023;7–11.
7. Anton BJ, Oguchi Y, White AM, et al. The impacts of 2, 4-D herbicide DMA® 4 IVM on reproductive health and gene expression along the hypothalamic-pituitary-gonad-liver [HPGL] axis in the fathead minnow (Pimephales promelas). *Chemosphere.* 2025;371:143994.
8. Garabrant DH, Philbert MA. Review of 2, 4-dichlorophenoxyacetic acid (2, 4-D) epidemiology and toxicology. *Crit rev toxicol.* 2022;32(4):233–257.
9. Gaaiad S, Oliveira M, Le Bihanic F, et al. Gene expression patterns and related enzymatic activities of detoxification and oxidative stress systems in zebrafish larvae exposed to the 2, 4-dichlorophenoxyacetic acid herbicide. *Chemosphere.* 2019;224:289–297.
10. Čeh K, Majdič G. Pesticides as endocrine disruptors. 2010.

11. de Araújo-Ramos AT, Passoni MT, Romano MA, et al. Controversies on endocrine and reproductive effects of glyphosate and glyphosate-based herbicides: a mini-review. *Front Endocrinol.* 2021;12:627210.
12. Mazuryk J, Klepacka K, Kutner W, et al. Glyphosate: hepatotoxicity, nephrotoxicity, hemotoxicity, carcinogenicity, and clinical cases of endocrine, reproductive, cardiovascular, and pulmonary system intoxication. *ACS pharmacol transl sci.* 2024;7(5):1205–1236.
13. Hamid N, Junaid M, Pei DS. Combined toxicity of endocrine-disrupting chemicals: A review. *Ecotoxicol environ saf.* 2021;215:112136.
14. Chatzigianni M, Pavlou P, Siamidi A, et al. Environmental impacts due to the use of sunscreen products: a mini-review. *Ecotoxicology.* 2022;31(9):1331–1345.
15. Ghazipura M, McGowan R, Arslan A, et al. Exposure to benzophenone-3 and reproductive toxicity: a systematic review of human and animal studies. *Reprod Toxicol.* 2017;73:175–183.
16. Mustieles V, Balogh RK, Axelstad M, et al. Benzophenone-3: Comprehensive review of the toxicological and human evidence with meta-analysis of human biomonitoring studies. *Environ int.* 2023;173:107739.
17. Yao YN, Wang Y, Zhang H, et al. A review of sources, pathways, and toxic effects of human exposure to benzophenone ultraviolet light filters. *Eco-Environ Health.* 2024;3(1):30–44.
18. Vom Saal FS, Vandenberg LN. Update on the health effects of bisphenol A: overwhelming evidence of harm. *Endocrinology.* 2021;162(3):bqaa171.
19. Galbiati V, Buoso E, d'Emmanuele di Villa Bianca R, et al. Immune and nervous systems interaction in endocrine disruptors toxicity: the case of atrazine. *Frontiers in Toxicology.* 2021;3:649024.
20. Guimarães-Ervilha LO, Assis MQ, da Silva Bento IP, et al. Exploring the endocrine-disrupting potential of atrazine for male reproduction: A systematic review and meta-analysis. *Reprod Biol.* 2025;25(1):100989.
21. Dutta S, Sengupta P, Bagchi S, et al. Reproductive toxicity of combined effects of endocrine disruptors on human reproduction. *Front Cell Dev Biol.* 2023;11:1162015.
22. Maksymowicz M, Machowiec PA, Reka G, et al. Mechanism of action of triclosan as an endocrine-disrupting chemical with its impact on human health—literature review. *Journal of Pre-Clinical and Clinical Research.* 2021;15(4):169–175.
23. Hamid N, Junaid M, Pei DS. Combined toxicity of endocrine-disrupting chemicals: A review. *Ecotoxicology and environmental safety.* 2021;215:112136.
24. Ma J, Wang Z, Qin C, et al. Safety of benzophenone-type UV filters: A mini review focusing on carcinogenicity, reproductive and developmental toxicity. *Chemosphere.* 2023;326:138455.
25. Sivakumar K, Nalini A. Benzophenone type UVR filters for various materials: A review. *Journal of Molecular Liquids.* 2024;395:123905.
26. Wnuk W, Michalska K, Krupa A, et al. Benzophenone-3, a chemical UV-filter in cosmetics: is it really safe for children and pregnant women?. *Postepy Dermatol Alergol.* 2022;39(1):26–33.
27. Downs CA, DiNardo JC, Stien D, et al. Benzophenone accumulates over time from the degradation of octocrylene in commercial sunscreen products. *Chem res toxicol.* 2021;34(4):1046–1054.
28. Morton JJ. The toxicity of sunscreens in moisturizers. *Journal of Toxicology: Cutaneous and Ocular Toxicology.* 1992;11(3):239–247.
29. Downs CA, DiNardo JC, Stien D, et al. Benzophenone accumulates over time from the degradation of octocrylene in commercial sunscreen products. *Chemical research in toxicology.* 2021;34(4):1046–1054.
30. Vieira D, Duarte J, Vieira P, et al. Regulation and Safety of Cosmetics: Pre-and Post-Market Considerations for Adverse Events and Environmental Impacts. *Cosmetics.* 2024;11(6):184.
31. Wei X, Zhang N, Zhu Q, et al. Exposure to multiple endocrine-disrupting chemicals and associations with female infertility: A case-control study. *Environ Health.* 2024;2(12):902–911.
32. Domínguez-Liste A, de Haro-Romero T, Quesada-Jiménez R, et al. Multiclass determination of endocrine-disrupting chemicals in meconium: First evidence of Perfluoroalkyl substances in this biological compartment. *Toxics.* 2024;12(1):75.
33. Silva EL, Mínguez-Alarcón L, Coull B, et al. Urinary benzophenone-3 concentrations and ovarian reserve in a cohort of subfertile women. *Fertil Steril.* 2024;122(3):494–503.
34. Fuzak MK, Pollack AZ. Examining the Impact of Environmental Non-Persistent Compounds: Phthalates, BPA, and Benzophenone on Endometriosis. *Semin Reprod Med.* 2024;42(04):274–287.
35. Spinder N, Bergman JE, van Tongeren M, et al. Maternal occupational exposure to endocrine-disrupting chemicals and urogenital anomalies in the offspring. *Hum Reprod.* 2022;37(1):142–151.
36. Joensen UN, Jørgensen N, Thyssen JP, et al. Urinary excretion of phenols, parabens and benzophenones in young men: Associations to reproductive hormones and semen quality are modified by mutations in the Filaggrin gene. *Environ int.* 2018;121:365–374.
37. Jiang Y, Zhao H, Xia W, et al. Prenatal exposure to benzophenones, parabens and triclosan and neurocognitive development at 2 years. *Environ Int.* 2019;126:413–421.
38. Abderrezak K, Dana AA, Mohamed A. Prenatal exposure profiles to Benzophenones and their impacts on thyroid hormones. *Toxicol Lett.* 2025;111746.
39. Fernández-Martínez NF, Rodríguez-Barranco M, Zamora-Ros R, et al. Relationship between exposure to parabens and benzophenones and prostate cancer risk in the EPIC-Spain cohort. *Environ Sci Pollut Res Int.* 2024;31(4):6186–6199.
40. Liu X, Zhan T, Gao Y, et al. Benzophenone-1 induced aberrant proliferation and metastasis of ovarian cancer cells via activated ER α and Wnt/β-catenin signaling pathways. *Environ Pollut.* 2022;292:118370.
41. Mustieles V, Balogh RK, Axelstad M, et al. Benzophenone-3: Comprehensive review of the toxicological and human evidence with meta-analysis of human biomonitoring studies. *Environment international.* 2023;173:107739.
42. Zhu J, Zhang M, Yue Y, et al. Toxic Beauty: Parabens and benzophenone-type UV Filters linked to increased non-alcoholic fatty liver disease risk. *Chemosphere.* 2024;366:143555.
43. Jiang N, Chen Q, Cheng B, et al. P10-03 Associations of Urinary Endocrine-Disrupting Chemicals with Obesity and Lipid Metabolism in Children and Adolescents: The Expanded Chinese National Human Biomonitoring (CNHBM) Project. *Toxicology Letters.* 2025;411:S135.
44. Peinado FM, Pérez-Cantero A, Olivas-Martínez A, et al. Adolescent exposure to benzophenone ultraviolet filters: cross-sectional associations with obesity, cardiometabolic biomarkers, and asthma/allergy in six European biomonitoring studies. *Environ Res.* 2025;121912.
45. Lindberg M, Tammela M, Boström Å, et al. Are adverse skin reactions to cosmetics underestimated in the clinical assessment of contact dermatitis? A prospective study among 1075 patients attending Swedish patch test clinics. *Acta derm venereol.* 2004;84(4):291–295.
46. Giannini CM, Huang B, Chandler DW, et al. The association between sex hormones, pubertal milestones and benzophenone-3 exposure, measured by urinary biomarker or questionnaire. *Int j environ health res.* 2022;32(10):2135–2148.
47. Obanla OR, Ojewumi ME, Ayoola AA, et al. Comparative and experimental study on the properties and potency of synthesized organic and mineral sunscreen moisturizer. *International Journal of Mechanical Engineering and Technology.* 2019;10(01):612–625.

48. Adamson AS, Shinkai K. Systemic absorption of sunscreen: balancing benefits with unknown harms. *JAMA*. 2020;323(3):223–224.
49. Araki SM, Baby AR. New Perspectives on Titanium Dioxide and Zinc Oxide as Inorganic UV Filters: Advances, Safety, Challenges, and Environmental Considerations. *Cosmetics*. 2025;12(2):77.
50. Fu Q, Zheng T, Wan W, et al. Liquid crystal phase behavior of oxalated cellulose nanocrystal and optical films with controllable structural color induced by centripetal force. *Int J Biol Macromol*. 2024;280:135883.
51. Simão CD, Reparaz JS, Wagner MR, et al. Optical and mechanical properties of nanofibrillated cellulose: Toward a robust platform for next-generation green technologies. *Carbohydr Polym*. 2015;126:40–46.
52. Masruchin N, Zendrato HM, Jayalaksmana M, et al. Birefringence Behaviors of Cellulose Nanocrystals under Varied Concentrations, Ultrasound Treatments, and Different Solvents. *IOP Conference Series: Earth and Environmental Science*. 2024;1309(1):012003.
53. Reimer M, Zollfrank C. Cellulose for Light Manipulation: Methods, Applications, and Prospects. *Advanced Energy Materials*. 2021;11(43):2003866.
54. Bacha EG, Demsash HD, Shumi LD, et al. Investigation on reinforcement effects of nanocellulose on the mechanical properties, water absorption capacity, biodegradability, optical properties, and thermal stability of a polyvinyl alcohol nanocomposite film. *Advances in Polymer Technology*. 2022(1):6947591.
55. Sun X, Wu Q, Zhang X, et al. Nanocellulose films with combined cellulose nanofibers and nanocrystals: tailored thermal, optical and mechanical properties. *Cellulose*. 2018;25(2):1103–1115.