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Introduction
In the present article we consider seventh order boundary value 

problem of the following form:
(7) ( )  ( , ),     ,u x f x u a x b= < < (1.1)

Subject to the boundary conditions
(3)( )  , '( )  , "( )  , ( )  4,1 2 3u a u a u a u aα α α= = = =

1 2 3
     ( )  ,  '( )  "( )      ,u b u b and u bβ β β= = =

Where
1

α , 2α , 3α , 4α , 1β , 2β , and 3β are real constant.

The problems in physical sciences can be modeled mathematically 
and formulated by differential equations. The problems in engineering 
sciences deal with the formulation and solution of higher order 
differential equation. The higher order differential equation and 
boundary value problem studied and discussed in.1 In particular 
seventh order boundary value problems arise in mathematical 
modeling of induction motors with two rotor circuits.2 To ensure the 
existence and uniqueness of the solution of the problem (1.1), we 
presume the smoothness of the forcing function ( ), f x u . However for 
the detail discussion on the existence and uniqueness of the solution of 
higher order differential equations and corresponding BVPs, we can 
refer.3 In the present article, we concerned with numerical solution of 
reference problem instead of the analytical solution. In the literature 
on the numerical solutions of BVPs, several numerical methods 
have been reported for seventh order boundary value problems. We 
can list some of them for instance Variational Iteration Method,4 
Variation of Parameters Method,5 Differential Transformation 
Method,6 Reproducing Kernel Space,7 Collocation Method using 
Sextic B- Splines,8 Homotopy Analysis Method,9 Optimal Homotopy 
Asymptotic Method10 and references there in. Some advance numerical 
techniques for numerical solution of boundary value problems have 
been reported in the literature. These techniques are very satisfactory 
and yield a highly accurate numerical solution. Hence, the purpose 
of this article is to incorporate these advancements in developing 
numerical technique for numerical solution of seventh order 
boundary value problems (1.1). So we incorporated the those ideas 
in developing an accurate and convergent finite difference method for 
numerical solution of seventh order boundary value problem by split- 

ting method, a system of boundary value problems. We hope that 
others may find the proposed method as an improvement in numerical 
technique to those existing techniques for the seventh order boundary 
value problems in the literature. We shall present our work in this 
article as follows: In Section 2 the finite difference method, in Section 
3 the derivation of the proposed finite difference method. In Section 
4, the convergence analysis of the proposed method under appropriate 
condition. The numerical experiment on model problems and short 
discussion on numerical results are presented in Section 5. A summary 
on the overall development and performance of the proposed method 
are presented in Section 6.

The difference method

Let us assume problem (1.1) posses solution and it will be ( )u x
such that

(4) ( )  ( ),      u x v x a x b= < < (2.1)

And the boundary conditions are

1 2 1 2
( )  ,  '( )  ,  ( )   '( ) u a u a u b and u bα α β β= = = =

Where augment function ( )v x is regular and differentiable in [a, 
b]. Further we have following third order boundary value problem,

(3) ( )  ( , ),     v x f x u a x b= < < (2.2)

And the boundary conditions are
(3)"( )  , ( )    "( )  3 3 3u a u a and u bα α β= = =

To incorporate these boundary conditions, let us define
(4)( –)  ( ) "( )v x u x u xλ= (2.3)

Where λ is coupling constant and  λ∈ (0, 1). So we get problems 
(2.1)-(2.3), a system of boundary value problems by splitting method 
from problem (1.1). Thus the seventh order boundary value problem 
(1.1) has been transformed into a sys- tem of boundary value 
problems (2.1)-(2.3). Solving numerically problem (1.1) is equivalent 
to solve numerically system of problems (2.1)-(2.3). We partition 
the interval [a,b] in which the solution of problem (1.1) is desired to 
introduce finite number of mesh points. In these subintervals mesh 
points    ......  10 1 2a x x x x bN≤ < < < < ≤+  are generated by using 
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uniform step length such that ,  0,1,2, .....,  1x a ih i Ni= + = + . We wish 
to determine the numerical solution ( )u x of the problem (1.1) at 
these mesh points xi . We denote the numerical approximation of 
( )u x and ( )( ), f x u x respectively by ui and fi at these mesh point

,  1,2, ....., x x i Ni= = . Also the boundary value problem (1.1) replaced 
by the system of boundary value problems (2.1)-(2.3) may be written 
as under

( ) 4 ,u i
i

υ=  (2.4)

( ) 3 fi
i

υ =

At these node ,  0, ..,  1x x i Ni= = + . Following the ideas in,11,12 
we propose our finite difference method for a numerical solution of 
problem (2.4),

( ) ( )
4

–2 –2 –' 13 –1 ,1–1 1 901 1–
'u u

i i
hu u h ii ii i υ υ υ

 
+ = + + +

 +
+ (2.5)

( ) ( )' 4 ' '
4

–3 – – –1 ,1 –1 160–1 1
hu u h ii i u u u

i i i
iυ υ

 
+ =  +

+
+

 
+ + (2.6)

( )
3       

–3 4 – –3 ,–1 11       6
1h f fi i i ii iυ υ υ+ = ++ =+ (2.7)

( )
3       

–3 3 –3 ,–2 –1 1 1     
2
  2

ih f fi i i i Niυ υ υ+ + ≤+ ≤+

If the source function ( ), f x u  in problem (1.1) is linear then the 
system of equations (2.5)-(2.7) will be linear otherwise we will obtain 
nonlinear system of equations.

Derivation of the difference method

In this section we outline the derivation of the proposed method, 
we have followed the same approach as given in.11,12 Let us write a 
linear combination of solution ( )u x , ( )ju x and ( )v x at nodes 1xx± ,and 
xi ,

( ) ( )41 1    02 1 1 1 0 2 1 2 1 0 1 1
j ja u a u a u h b u i b u i h c v c v c vi i i i i i+ + + + + − + + + =+ − + −  

						      (3.1)

where –0 0a c  are constants to be determined. To determine these 
constants, we expanding each term on the left hand side of (3.1) in 
Taylor series about the point xi . Using method of undetermined 
coefficients, compare the coefficients of hp, p = 0, 1, .., 7 on both side 
we get a system of equations. Solving this system of equations, we get

( ) 1 13 1, , , , , , , 2, 2,4,1, 1, ,2 1 0 2 1 2 0 1 90 90 90
a a a b b c c c  = − − − − − 

 
(3.2)

On substitution of these constants 0 0a c−  from (3.1) into (3.2) and 
simplify, we have

( ) ( )
4

' '2 1( 3 0  1 1 1 11 1 90
)hv v v h v v v tuu ui i i i i i ii i− + − + − − + + + =− + + −+ −

	
						            

(3.3)

Where ,  1tu ii = , .., N is local truncation error and equal to 
( )8
819

30240
h

ui− . Similarly we can derive the following equations

4
' '( ) ( )3   1 1 1 11 ( )1 60

,hu h v v tuu ui i i i ii iu− − + + − − ++ − + −+ − (3.4)

Where local error 'tui  is equal to ( )5 7 , 1,..,
504
h i Nui− = and 

3
'3 2      11 14 (3f ) ,11 6 i

hv h tv ivv v fi ii i ii− − − − + =− ++ + +− (3.5)

3
3 3     ( 3f  2 i2 1 )i 11 2

,hv fiv v v tv Ni i i i i− + − − − ++ + ≤ ≤− − +

Where local truncation error tvi are respectively equal to 

( )5 53 , 1
20
h ivi− = and ( )5 5 ,2 i

2
h Nvi− ≤ ≤ .

Thus by neglecting the local error terms in (3.3)-(3.5), we will 
get our proposed difference method for the numerical solution of the 
problem (1.1). Moreover we are getting the numerical value of the 
derivative of the solution of the problem (1.1) as a byproduct of the 
method. Sometimes we need it which otherwise get approximated.

Convergence analysis

In this section we will discuss the convergence of the method 
proposed in section

Thus for the discussion of convergence let us consider following 
test equation.

( )( ) ( )7 , ,      x f x u a x bu = < < (4.1)

( ) ( ) ( ) ( )( )3" ,1, " 2 3 4u a a u a u auα α α α= = = =

( ) ( ) ( )  "1, " 2 3u a b and u auβ β β= = =

Let’s be the approximate solution of difference method (2.4-2.5) 
for numerical solution of the problem (4.1), we can write this in the 
matrix form

=Js Rh 	 (4.2)

where J is coefficient matrix, , ,  
Tju u vs =  

  
 and 

  , ,1 2 3
TRh rh rh rh  = . These matrix are

( )

( )

( )

( )

3
   – –30 2 3 – – –2

3             0
        –3 3 3             2
                  4

3 – 13 1 2 60

3'3 2 30 0 1 26
4

3 1 2 060

,3 2

1

1 –3 1 32

h

h f f

h f f

h NhN fN

h f f

hh

rh rh

h
fN

N

υ

β β υ
υ λβ

υ υ

α α υ

 
 + + +
 
 

    
+ +

+

+ +
+ + + +


 

= 
 
 
 
  
 
 
 


+

 ×





1N





 
 
 
 


 

 +



– –
1 1 1                0

,   , '   ,    ,
                 

1 1 14
2 – 11

4
2 1 2 09

2

1

90 1

0

v u u
N N NN N N

h

r

h N

hh

h

N

α α υ
υ υ υ

υ υ υ

β β υ

 
 
 
       

     = = =     
     
     + +

 
 
  +

+ +
+

 
 
 

  



And let us define the coefficients matrix J in terms of block matrix

https://doi.org/10.15406/oajs.2019.03.00126


Solving numerically a seventh order boundary value problem by splitting coupled finite difference method 34
Copyright:

©2019 Pandey

Citation: Pandey PK. Solving numerically a seventh order boundary value problem by splitting coupled finite difference method. Open Access J Sci. 
2019;3(1):32‒36. DOI: 10.15406/oajs.2019.03.00126

1,1

2,3

1,2 1,3

2,1 2,2

3,1 3,2 3,3

           

            
           

              
           

C C C

C C C

C C C 3 3

J

N N

 
 
 
 =  
 
 
 
 

 

   





   

 





Where

1,1 1,2

   –1               0 0   1                0
–1    2    –1 –1     0    1 

                                
         –1       2     –1      
0                –1        2

2

2 ,C C h

N N

 
 
 
 = =
 
 
 
  ×

     

    –1      0   1 
0               –1        

,

0 N N

 
 
 
 
 
 
 
  ×

13  1                0
1      1 3    1 4 –3

–                
90

        1       1 3    1 
0                1       1

, 1, 21,3 2,1

 3

C C C

N

h
h

N

 
 
 
 = =
 
 
 
  ×

  

4  1                0
1      4    1 

– 3
               

        1        4    1 
0                1     

, 2,3 1,2602

4

2

 

,

  

h
C h C C

N N

 
 
 
 = =
 
 
 
  ×

  

4   –1               0
–3      3     –1
1       –3       3      –1

  
                      
        1       –3       3       –1 
0                 –1       3   

,

  

3,

3

3

 

C

N N

 
 
 
 
 =
 
 
 
 
  ×

   

and matrices ( )3,1 N N×
C  and ( )3,2 N N×C  depend on forcing 

function ( ), f x u . These matrices are well defined. The exact solution 

 , ,
Tj 

 
=


S U U V  of the difference method (2.4-2.5) will satisfy the 

following equation

= +JS Rh T 	 (4.3)

Where   [ ; ', ]TT tu tu tv= is truncation error and will be defined as,

( )

( )

( )

( )

( )

( )

( )

5 5
8 78 7

8 8

5

3
12019

1 1 530240 504 5
, ' , 22

8 819 19
530240 302401 1

                      
    

2 1

 

h
h h

u u
h

tu tu tv

h h
u uN N hN N

N N

υ

υ

υ

 
 

     
     
     
     = = =     
     
     
   × ×   

  ×

 



Let us define an error function the difference between approximate 
and exact solution of the difference method (2.4-2.5) i.e. E = s .. S. . 
To introduce and calculate so defined error function let subtract (4.3) 
from (4.2), we will obtain following error equation

 = −JE T 	 (4.4)

Thus from (4.4), we observe that the convergence of the proposed 
method depends on the properties of coefficients matrix J. We will 
prove under appropriate as- sumptions that the coefficient matrix 
J is invertible. Let us test the inevitability of coefficient matrix J. 
The diagonal matrices C1,1, C2,2 and C3,3 of matrix J have different 
structure. The matrix C1,1 is invertible.13 Matrix C2,2 is strictly 
diagonally dominant so it will invertible. For matrix C3,3, we have 
to rely on computation of explicit inverse. Let explicit inverses of 

3,3
1   ( ) ,3,3 ,C be k N NC i j
− = × where

( )
( )
( ) ( )( )

                                        
2 ( 1) 2

, i  j    

2  1 1 , ,   

 N22
,

( 1
    

) 1
, j  1, N

2

i N N j

N Nki j
N N j

j

k N kN jN j

 + + ≤
− −

− −
− − −

≤
 += 

≤−
 +

 		

						                  

(4.5)

( ) ( ) ( )( )
( )

( )( )( )
( )

24 ( 2)(2 1) 2 2 2 8
,232 1

, 2(2 3 2) ( ) 2 1 2 2
,28

2
      

2

2 2
       

21

  

N N N N j N N j N

NkN j
N N N N N j N N

N

Nj

j N j


+ − − − + +


 += 
 + + +

− −
≤

− +
<

+ − −
 +

( ) ( )( )
( )

( ) ( )( )
( )

3 2 2 2 2 2
,22 1

1, 3 2 2

2
      

2
 

2
       

2 2 2
,22 1 .

2

N N N j N N j N

N
k

N

N j
N N N j N j N

j

N j
N

 − + − − + −
 +

= −  − − +

−
≤

− + −
<

+

 +

Thus from (4.5) we can verify that matrix C3,3 is invertible. Let us 
define following terms,14 

1 1 ,  2, 3      ,        ,  1, 2,1,2,..., 1 1,3
up max low maxA A k A A kk j k jk kk k j k jk kkυυ − −= = = == − = +   

( ) ( )
*

* 1       1 . 2 3 1 2
up lowM and Mk kk kυ υ∏ ∏= + = +≤ ≤ ≤ ≤

Let us assume

* *
* * 1          1,2,3 ,

maxM M M M and Cp p p
−< + =  

Then matrix J is invertible14 and moreover

* *

*1 *M  .* *
MM

J
M M M M

− ≤
+ −

  (4.6)

Thus from (4.4) and (4.6), we have

* *

*1 *M  TJ       * *
MM

E T
M M M M

− ≤
+ −

      (4.7)

It is easy to prove that
**M

* *
* *

MM

M M M M+ −
is finite. Thus  E  is 

bounded. Also it is easy to prove  E  tends to zero as 0h → .So we 
can conclude that finite difference method (2.5-2.7) converge. The 
order of the convergence of the difference method (2.5-2.7) is at least

( )2O h .

Numerical results

To test the computational efficiency of method (2.5-2.7), we have 
considered four model problems. In each model problem, we took 
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uniform step size h. In Table 1 and Table 2, we have shown M AEU 
and M AEV the maximum absolute error in the solution u(x) and 
derivatives of solution v(x) of the problems (1.1) for different values 
of N. We have used the following formulas in computation of MAEU 
and MAEV:

( )       1
max u x uii NE iMA U = −≤ ≤

( )   '     1
max u x vi iiE NMA V = −≤ ≤

We have used Gauss Seidel iterative method to solve linear system 
of equations (2.5-2.7). All computations were performed on a Windows 
2007 Ultimate operating system in the GNU FORTRAN environment 
version 99 compiler (2.95 of gcc) on Intel Core i3-2330M, 2.20 GHz 
PC. The solutions are computed on N nodes and iteration is continued 
until either the maximum difference between two successive iterates 
is less than 10−6 or the number of iteration reached 103.

Problem 1 The model linear problem given by

( ) ( ) ( )235 12 2 e(7) ( ) xp ,    0     1 u x x x x xu x = − − + + < <

Subject to boundary conditions

( ) ( )(0) 1,  '(0)  0         , "  ,0 1, '" 0 3u u u u= = = − = −

( ) ( ) ( )(1) 0,  '(1)  ex  p 1    " 1 4 exp 1 u u and u= = −−=

The analytical solution of the problem is ( )  (1 ) exp( )u x x x x−=
. The MAEU and MAEV computed by method (2.5-2.7) for coupling 
constant C = .40199 and different values of N are presented in Table 1.
Table 1 Maximum absolute error (Problem 1)

N

32 64 128

MAEU .28539286(-2) .14184146(-5) .55249515(-7)

MAEV .10026446(-1) .32737342(-4) .99397312(-5)

Problem 2 The model linear problem given by

( ) ( ) ( ) ( )( ) ( )2' 2  3 8 exp exp 2 ,    0   1(7) (   )  u x u x x x x xx x xu + − + + − − <= <

Subject to boundary conditions

( ) ( )(0) 1,  '(0)  0       2  , " 0 1, '" 0  ,u u u u= = = − =

( ) ( ) ( ) ( )(1)  2 exp 1 ,   ' 1  exp 1     " 1  = 0.u u and u= − = − −

The analytical solution of the problem is ( )  (1 ) exp( ).u x x x x−−=
The MAEU and MAEV computed by method (2.4-2.5) for coupling 
constant C =:4099 and different values of N are presented in Table 2. 
Table 2 Maximum absolute error (Problem 2)

N

16 32 64

MAEU .10952180(-3) .11572996(-6) .97807437(-7)

MAEV .44546052(-3) .30212423(-5) .56484023(-5)

The numerical results obtained in numerical experiment on 
considered model problems are satisfactory. The error in numerical 
result decreases as step size h decreases. In our result, we have 
estimated the value of the coupling constant by guess and simulation. 
However accurate value of the coupling constant may possible 

increase the accuracy of the method. If we do not take an appropriate 
coupling constant then in this situation proposed method may not 
converge. We get numerical approximation of the fist derivative of 
solution of problem as a byproduct the proposed method (2.5-2.7).

Conclusion
In the present article, we have developed the numerical solutions 

of seventh order differential equations and corresponding boundary 
value problem by method of finite differences and splitting. We 
transformed the problem into system of problems by introducing a 
smooth augment function. The system of problems at nodal points 
x = xi, i = 1, 2.., N reduced to a system of algebraic equations (2.5- 
2.7). The system of algebraic equations is linear if source function f 
(x, u) is linear otherwise nonlinear. The propose method in numerical 
experiments has shown its performance; also we get numerical 
approximation of first derivative of the solution as an intermediate 
result. In future work, we shall work with an improvement in present 
idea. Work in this direction is in progress.
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