
Submit Manuscript | http://medcraveonline.com

Introduction
Thus, there is a need to develop ideal transport system that 

should be designed to control the release of loaded drug to the target 
areas,16 thereby increasing its local concentration, bioavailability 
and prolonging its retention. To overcome these issues, recently, 
silica nanoparticles have generated a significant amount of interest 
because of their intrinsic properties as shown to be biocompatible 
alternatives.17 Based on their characteristic few sophisticated delivery 
systems have been developed and employed using mesoporous silica 
nanoparticles.18 However, these delivery systems have their own 
advantages, but they suffer from their own limitations, such as poor 
chemical or thermal elimination19 and also difficulties in controlling 
targeting and the well-organised release of the drug, as well as rapid 
elimination by the immune system.20

 Keeping this in mind recently we prepared well-like cavity–so 
called ‘yoctowells (1yL=8nm3 that is, 10-24L),’ by two step self-
assembly, firstly covalently bound porphyrin to the silica surface 
and bolaaphiphiles around the base porphyrins.21 For selection of 
porphyrin as a base component has two important advantageous, first 
is it can use as a handle while drug loading and drug release and second 
is penetration of particles in particular cells can be monitored easily 
with fluorescence of base porphyrin. Yoctowells are easy to prepare 
and can be tuned based on application one wishes.22‒27 We have used 
these yoctowells for various applications such as The most fascinating 
property of yoctowells is their ability to induce the formation of well-
filling “nanocrystals” in dilute aqueous solutions, for example cyclic 
edge amphiphiles24 or neurotransmitters.25 Due to yoctowells unique 
rigid and hydrophobic nature have gifted outstanding abilities to 
selectively bind various guests entities. 

Taking advantageous of yoctowell capability to encapsulate drug 
molecule, recently, we have demonstrate the use these hydrophobic 

wells as simple model systems for the encapsulation FDA approved 
anti-cancer Doxorubcin (DOX) biologically active molecules and 
their release was monitored by biological stimuli i.e. pH.27 Typically, 
two step-self assembled yoctowells were firstly functionalised with 
ammonium group produced positive rim at the top of the wells, upon 
addition of DOX 2 molecule, the positive rim used for capping of 
the yoctowells by addition of an anionic-porphyrin 3 by electrostatic 
interaction. After confirmation by UV-vis absorption and fluorescence 
spectroscopy, we then studied controlled release of the DOX and 
capping porphyrin 3 from the yoctowells by pH control. This system 
provide the first report of effectiveness of the sustain release of the 
DOX 2 molecule selectively from the yoctowells, offers prospective 
for development of a new generation of drug-delivery system for 
practical application. However, this developed yoctowell drug-
delivery system relied on non-active silica nanoparticles, and has 
limitations for targeted drug delivery. To overcome this literature 
support our hypothesis to transport systems based on magnetic 
nanoparticles which can be ideal for the controlled release of loaded 
drug to target areas, thereby increasing its local concentration and 
bioavailability, and prolonging its retention. As human tissues are 
transparent to magnetic fields,28 thus use of magnetic field can be a 
good substitute for exact and targeted release of drugs.29

Knowing the capabilities of yoctowells, and the importance of 
targeted delivery of cancer drugs, herein, we transport system on 
magnetic silica nanoparticles and their application for encapsulation 
and pH-controlled release of drug molecules is verified (Figure 1).30‒35 

To demonstrate the process of the responsive mechanised yoctowells, 
mitoxantrone (MTZ) was chosen for the release experiments. MTZ 
is from a member of the anthracycline antibiotic family, and is a 
powerful anticancer drug against different malignancies for example 
malignant tumours, several forms of leukemia, as well as ovarian 
and breast cancer.26 MTZ has major clinical value due to its apparent 
lower risk of cardiotoxic effects, as compared with DOX 2.36‒39
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Abstract

The drug-delivery tool that transport medically active molecules to diseased cells, in a 
precise manner, have grew much consideration in past decades. Supramolecular self-
assembled systems plays an important role in nanotechnology, biotechnology, and 
regenerative medicine.1 Based on self-assembly approach various drug-delivery systems 
have been developed for example polymers,2 micelles,3 vesicles,4 nanoparticles5 and 
vesicular-supported particles.6 Among these developed systems, silica particles based 
delivery tool have become popular as biocompatible alternatives.7 Most sophisticated 
mesoporous silica nanoparticle (MSNs) have widely used8 due to their applicability to 
release drug molecule in controlled in particular cells using internal stimuli, such as pH9 
and enzymes10 or external stimuli such as light,11 redox properties12 and temperature.13 The 
most discovered approaches to controlled drug-release were based on MSN carriers through 
surface functionalisation, with biomolecule responsive gates, pH- or photo-triggered release 
from hollow MSN.14 However, these methods are challenging, and suffer from limitations 
due to the low tissue-penetration-depth of light.15
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Figure 1 Graphical illustration to demonstrate encapsulation of drug 
molecules 2 and capping porphyrin on the top to cover the wells and their 
step-by-step release by manipulation naturally occurring stimulus.

Conclusion
In summary, we demonstrate two novel approaches, first is 

preparation yoctowells on the magnetic silica nanoparticles for targeted 
delivery and reusable applications, and second is the encapsulation 
drug DOX or MTZ and their release by manipulating naturally 
occurring stimuli in vivo, that is, pH. Thus, we believe in future the 
usefulness of the sustained release of the DOX or MTZ molecule 
from yoctowells may provide potential tool for the development of 
a new generation of targeted drug-delivery systems. Thus, designer 
yoctowells, may act as tiny chemical reactors or alternatives in vivo 
drug-delivery systems by manipulating the interactions between drug 
molecules and the walls of yoctowell gaps and/or base porphyrin, and 
are thought to provide a useful supramolecular tool and could open 
new opportunities in the realm for targeted therapies.
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