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Introduction
The Superconductor-Normal transition is one of the most exciting 

research areas in condensed matter physics. Superconductivity was 
discovered in the Leiden laboratories by H. K. Onnes in 1911,1 when 
he observed that the electrical resistivity of mercury dropped at an 
unmeasurably low value at a transition temperature of 4cT K

. The microscopic theory that explains the underlying mechanism 
was finally formulated in 1957 by Bardeen, Cooper and Schrieffer 
(BCS).2,3 In 1986-1987, however, new superconducting materials 
were designed in which the transition temperature was found to be 
significantly larger than what was expected from the BCS theory.4,5 

In particular, in conventional superconductors the highest known 
transition temperature is 23.2cT K= in 3Nb Ge , while in the high- cT  
oxides the observed transition temperature was in the 30cT K= range 
in 1986 in the Ba-La-Cu-O system,4 and 90cT K  in the following 
year in the Y-Ba-Cu-O system.5 The discoveries of low and high 
temperature superconductors as well as the formulation of the BCS 
theory have been awarded with the Nobel prize in Physics in 1913,6 in 
19877 and in 1972,8, respectively.

One of the most remarkable consequences of Superstring Theory9,10 
has been the AdS/CFT correspondence,11 which was later extended 
to gauge/gravity duality.12 The main idea is that a strongly coupled 
conformal field theory in d dimensions can be understood by solving 
a weakly coupled gravitational system in 1d +  dimensions. The 
aforementioned equivalence raises the hope and the expectation that 
strongly coupled condensed matter systems may be explained from 
black hole physics. The original conjecture posits an equivalence 
between type IIB string theory on 5 5AdS S×  and a supersymmetric 

4=  Yang-Mills ( )SU N  theory in (1+3) dimensions. There are 
at least two arguments pointing to this kind of equivalence: First 
symmetry counting, namely a conformal theory in ( )1 3+  dimensions 
has 15 degrees of freedom, while anti-de Sitter in ( )1 4+  dimensions 
has the isometries of ( )1,4SO   with 15 generators. In addition, a stuck 
of N  parallel D3-branes13,14 can be viewed in two different ways as 
follows: From the one hand it naturally supports a four-dimensional 
supersymmetric gauge field theory based on SU(N) gauge group with

4=  supersymmetric generators.15 On the other hand the stuck of 

D-branes generates a gravitational field which in the near-horizon 
limit becomes 5 5AdS S× .15 

High- cT  superconductivity cannot be described by the BCS 
theory, and it is one of the most enigmatic areas of condensed matter 
physics. The pioneer works of16,17 in 2008 marked the birth of the 
field of holographic superconductors, and by now it is a very active 
one. For reviews see e.g.18,19 To build holographic superconductors 
the minimal ingredients are a) gravity with a negative cosmological 
constant, b) the Maxwell potential Aµ  and c) an electrically charged 
massive scalar field.15 However, in principle the electromagnetic 
theory may be a non-linear one (NLE), such as Born-Infeld (BI) or the 
so called Einstein-power-Maxwell (EpM).

A special attention is devoted to NLE, which has a long history 
and it has been studied over the years in several different contexts. 
Maxwell’s classical theory is based on a system of linear equations, but 
when quantum effects are taken into account, the effective equations 
become non-linear. The first models go back to the 30’s when Euler 
and Heisenberg obtained QED corrections,20 while Born and Infeld 
obtained a finite self-energy of point-like charges.21 Furthermore, a 
straightforward generalization of Maxwell’s theory leads to the so 
called Einstein-power-Maxwell (EpM) theory,22‒27 described by a 
Lagrangian density of the form ( ) qF F= , where F is the Maxwell 
invariant, and q is an arbitrary rational number. This class of theories 
maintain the nice properties of conformal invariance in any number 
of space time dimensionality D if / 4q D= . Finally, assuming 
appropriate non-linear electromagnetic sources, which in the weak 
field limit are reduced to the standard Maxwell’s linear theory, one 
can generate a new class of solutions (Bardeen-like solutions,28 see 
also29) to Einstein’s field equations,30‒37 which on the one hand have a 
horizon, and on the other hand their curvature invariants, such as the 
Ricci scalar R , are regular everywhere, as opposed to the standard 
Reissner-Nordström solution.38

Holographic superconductors in the presence of EpM have been 
studied e.g. in39‒41 for 4D ≥  (see also42‒44 for works on holographic 
superconductors in the Einstein-Gauss-Bonnet gravity in higher 
dimensions), and in the presence of BI in45‒53 In the present work 
we wish to build one-dimensional holographic superconductors 
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Abstract

In the framework of the gauge/gravity duality, and in particular of the  correspondence, we 
study one-dimensional superconductors analysing the dual (1+2)-dimensional gravity in 
the presence of the Einstein-power-Maxwell non linear electrodynamics. In the probe limit 
we compute the critical temperature of the transition as a function of the mass of the scalar 
field. The computation is performed analytically employing the Rayleigh-Ritz variational 
principle. The comparison with the (1+3)-dimensional Einstein-Maxwell theory for two-
dimensional superconductors is made as well. 
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in the presence of EpM NLE, which to the best of our knowledge 
has not been done yet, with a twofold goal. On the one hand to fill a 
gap in the literature, and on the other hand, upon comparison to the 

4D =  Einstein-Maxwell theory, to see how the dimensionality of the 
system affects the critical temperature of the condensate. Our work 
is organized as follows: In the next section we present the model and 
the field equations, while the critical temperature of the transition is 
discussed in section 3, where our numerical results are shown. Finally, 
we conclude in the last section.

Model and field equations

We consider a gravitational system described by the action 

                                    3 / 4q =                                (1)

 setting 8 1G = , where the gravitational part GS  consists of 
the Einstein-Hilbert term with a negative cosmological constant 

2
3Ë 1 / l= − , while the matter part MS  consists of the (non-linear) 

electromagnetic theory and a massive charged scalar field with mass 
m. The covariant derivative Dµ  and the Maxwell’s invariant F are 
given by 

                              D ieAµ µ µ= ∂ −                                 (2) 

                                 F F F µν
µν=                                    (3)  

                           F A Aµν µ ν ν µ= ∂ − ∂                                  (4)

 where Aµ  is the Maxwell potential, and e is the electric charge 
of the scalar field.

In the following we consider the EpM theory ( ) q
EMF Fβ= −

, with 3 / 4q =  for which the electromagnetic stress-energy tensor 
is traceless. What is more, we work in the probe limit neglecting 
the back reaction of the matter fields on the geometry. At least for 
temperatures close to the transition temperature this should be a 
good approximation. Therefore, in the following we consider a 
fixed gravitational background, which is no other than the Bañados-
Teitelboim-Zanelli (BTZ) black hole54,55 

           ( )2 2 1 2 2 2( )ds f r dt f r dr r dx−= − + +                  (5)

 with the metric function (setting the Newton’s constant ) 8G=1 
given by 

                       ( )
2

2 2
2 H

rf r M r r
l

= − + = −                (6)

 where the mass of the black hole M  and the event horizon Hr  are 
related via Hr l M= .

Varying the action with respect to the scalar field and the Maxwell 
potential we obtain the following field equations (we set the electric 
charge e=1) for ( )rψ  and ( ) ( )0A r rφ≡  

            
2 2

2
1 0r

rr r
f m
f r ff

φψ ψ ψ
  

+ + + − =       
                   (7)

 

                 
2 1/2

7/4
16 ( )2 0
3( 2)

r r
rr r f

φ ψ φ φφ
β

+ − =
−

                                      (8)

 subjected to the following boundary conditions: At the event 
horizon, Hr r→  

                                    ( ) 0Hrφ =                                        (9) 

                            ( ) ( )2
2  H

H r H
rr r

m
ψ ψ=

                  
 (10)

 while at the boundary, r →∞  the solutions are required to behave 
like 

                                   
r rλ λ
ψ ψψ − +

− +
∼ +                                  (11)

 

                                      
2

r
ρφ µ∼ −                                (12)

 where the power λ+  is given by  

                                         
21 1 mλ± = ± +                                  (13)

 and we may choose either 0ψ− =  or 0ψ+ = . The quantities 
µ  and ρ  are interpreted as the chemical potential and the energy 
density, respectively. In the following we set 0ψ− =  and work with 
λ+ .
Study of the critical temperature: Analytical results

Since the scalar field plays the role of the order parameter in phase 
transitions, above the critical temperature the scalar field vanishes, 
and the equation for φ  takes the simple form 

                                       2 0r
rr r

φφ + =                                 (14)

 The solution that satisfies both the differential equations and the 
boundary conditions has the simple form 

                               ( )
2

1 H

H

rr
r r
ρφ  = − 

                   
 (15)

 If we define /Hz r r=  and 2( / )Hrξ ρ= , the solution takes the 
form 

                                 ( ) ( )1Hz r zφ ξ= −                                (16)

 Next, the equation for the scalar field becomes 

 
2 2 2 2

4 4 2
1 ( )z H H

zz z
f m r r zA
f z z f z f

φψ ψ ψ ψ
    

+ + − = −             
         (17)

 where from now on we use  as the independent variable instead 
of r . Taking into account the boundary condition for the scalar field 
at the boundary, 0z → , we set 

                                   ( ) ( )z z F zλψ =                            (18)

 with some function that satisfies the conditions ( )0 1F =  and 
( )0 0zF = . Then we obtain the following equation for ( )F z  

                    
2

2(1 )zz zF AF BF F
z

ξ
− + + =

+
          (19)

 with the coefficients ( ) ( ),A z B z  given by 

               ( ) 2
1 2 1 2

1
A z

z z
λ = − − − 

                              (20) 

 

          

( ) ( )
( )2

2 22 2

1 2 1
11

mB z
z zz zz z

λ λ λ−  = − + − − −
              (21)
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 To solve in an analytical way the boundary value problem of the 
form 

 ( )( ) ( ) ( ) ( ) ( )2'zp z F q z F z w z F zξ− + =  (22)

 in the range 0 1z≤ ≤ , where 2ξ  is the eigenvalue, and 
( ) ( ) ( ), ,w z p z q z  are given functions, we try a test function ( )  ;F z a  

with some unknown parameter a that minimizes the expression56 

 

                                                                                   (23)

 In our case we use as a test function ( ) 21F z az= − , and it is 

easy to verify that the functions ( ) ( ) ( ), ,w z p z q z  are given by the 
following expressions 

                      ( ) ( )2 2 11p z z z λ−= −                                     (24)

 

                            ( ) ( )
2(1 )

p z
w z

z
=

+
                              (25)

 

                               ( ) ( ) ( )q z p z B z=                                 (26)

 Upon minimization of the expression above at *a , we determine 
the pair of values of ( )*, mina ξ , and finally the critical temperature is 
given by the corresponding Hawking temperature of the BTZ black 
hole 

                                    2
4

H
H

rT
π

=                                (27)

 or 

                                  1/22c
min

T ρ
πξ

=                               (28)

 Considering a scalar field mass in the range 21 0m− ≤ ≤ , the 
power λ+  takes values in the range 1 2λ+≤ ≤ . In Table 1 we show 
the critical temperature (for 1ρ = ) for several different values of 
λ+ . In the same table we also show cT  for the (1+3)-dimensional 
Einstein-Maxwell theory. For better visualization, we show our results 
graphically in Figure 1 and 2, and for a comparison we show them 
together in the same plot, Figure 3. We also show the fitting curves, 

( ) 0.660.111 /y x x=  for the EpM case, and ( ) 0.810.206 /y x x=  

for the Maxwell case. We see that the critical temperature of one-
dimensional superconductors is lower than cT  of two-dimensional 
superconductors.

Figure  1 Critical temperature (in units of ρ ) as a function of λ+  in the 
3, 3 / 4D q= =  case. The dashed curve corresponds to the fitting curve 

0.660.111 /y x= .

Figure  2 Critical temperature (in units of 1/2ρ ) for different values of λ+  
in the 4, 1D q= =  case. The dashed curve corresponds to the fitting curve 

0.810.206 /y x= .

Figure  3 Comparison between 1D superconductors in the presence of 
EpM non-linear electrodynamics, and 2D superconductors in the presence of 
Maxwell’s linear theory.

Critical temperature (for 1ρ = ) for different values of λ+  for the 
EpM theory (second column) and Maxwell’s theory (third column).  

Power λ+
cT  (EpM) cT  (Maxwell)

.00 0.111964 -

.05 0.108324 -

.10 0.104964 -

.15 0.101854 -

.20 0.0989643 -

.25 0.0963727 -

.30 0.0937587 -

.35 0.0914047 -

.40 0.0891954 -

.45 0.0871174 -

.50 0.085159 0.150713

.55 0.0833099 -

1 2 1 2
2 0 0

1 2
0

( )[ (z a)'] ( )[ ( ; )]( )
[w(z) (z;a)]

p z F q z F z aa
F

ξ ∫ + ∫
=

∫
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Power λ+
cT  (EpM) cT  (Maxwell)

.60 0.0815606 0.142141

.65 0.0799032 -

.70 0.0783302 0.134672

.75 0.0768351 -

.80 0.075412 0.128097

.85 0.0740555 -

.90 0.0727609 0.122262

.95 0.0715239 -

.00 0.0703404 0.117042

.10 - 0.112343

.20 - 0.108087

.30 - 0.104212

.40 - 0.100666

.50 - 0.0974083

.60 - 0.0944027

.70 - 0.0916196

.80 - 0.0890341

.90 - 0.0866247

.00 - 0.0843729

Conclusion
We have studied one-dimensional superconductors analysing the 

dual (1+2)-dimensional gravitational system in the presence of non-
linear electrodynamics. In particular, we have considered the Einstein-
Power-Maxwell theory for  3 / 4q =  that corresponds to a traceless 
electromagnetic tensor. We have studied the critical temperature of 
the transition in the probe limit analytically employing the Reyleigh-
Ritz variational principle. The critical temperature as a function of the 
mass of the scalar field has been obtained, and the comparison with 
the (1+3)-dimensional case of the Einstein-Maxwell theory has been 
made as well.
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