
Submit Manuscript | http://medcraveonline.com

Introduction
Several branches of mathematical and engineering science have 

been developed by using the crucial and significant concepts of 
convex analysis. Inequalities presently very active and is a fascinating 
field of research. In recent years, a wide class of integral inequalities 
is being derived via different concepts of convexity.1–19 The extensive 
development of research on big data analysis and deep learning 
has recently increased the interest in information theory involving 
exponentially convex functions. The significance of exponentially 
convex function is used to manipulate for statistical learning, sequential 
prediction and stochastic optimization,1, 2, 14 and the references therein.

The class of exponentially convex functions was introduces 
by Antczak,2 Dragomir et al.6 and Noor et al.12 It’s natural to unify 
these different concepts. Motivated by these facts, Awan et al.3 
introduced and investigated another class of convex functions, 
which is called exponential convex function and can be viewed as 
significantly different from the class introduced by.2, 6, 11, 17 We would 
like to emphasize that a class of convex functions which unifies and 
naturally distinct from other classes of convex functions is the class of 
h-convex functions, introduced by Varosanec.19 In the present paper, 
we introduce a new class of exponential convex functions with respect 
to an arbitrary nonnegative function h, which is called modified 
exponentially convex function. We have obtained several new 
Hermite-Hadamard inequality and related inequalities for modified 
exponentially convex function. The techniques and the ideas of this 
paper may stimulate further research in this dynamic field.

Preliminaries
We now discuss the new classes of convex functions involving 

an arbitrary function h. Let Ω ⊂  be a convex set in the finite 
dimensional Euclidean space n. From now onwards we take

a,b ,Ω =    unless otherwise specified. 

First of all, we recall the following well known concepts and 
results.

Definition 2.1: A set nΩ ⊂  is said to be convex, if 
( )ta 1 t b , a,b , t 0,1+ − ∈Ω ∀ ∈Ω ∈  

Definition 2.2: A function f on the convex set Ω is said to be a convex 
function, if and only if,

( )( )f ta 1 t b tf (a) (1 t)f(b), a,b , t 0,1+ − ≤ + − ∀ ∈Ω ∈  

We now recall the concept of h-convex function.

Definition 2.3: Let ( )h : 0,  1 J⊆ →  be a nonnegative function. We 
say that f :Ω→  is said to be h-convex function, if f is nonnegative, 
then 

( )( )f ta 1 t b h(t)f(a) (1 h(t))f(b), a,b , t 0,1 .+ − ≤ + − ∀ ∈Ω ∈  

We now consider class of exponentially convex function, which 
are mainly due to Antczak,2 Dragomir et al6 and Noor et al.12 

Definition 2.4: Let f : a,bΩ = ⊂ →      is exponentially convex 

function, if ‘f’ is positive, then2, 6, 12

( )( )f ta 1 t b f (a) f (b)e te (1 t)e a,b , t, 0,1 .+ − ∈Ω ∈+ −   ≤              (2.1)

We now consider a new class of exponentially convex function 
with respect to arbitrary nonnegative functions h is called modified 
exponentially convex function function.

Definition 2.5: Let ( )h : 0,  1 J⊆ →  be a nonnegative function. 
A function f :Ω→  is said to be a modified exponentially convex 
function, if and only

( )( )f ta 1 t b f (a) f (b)e h(t)e (1 h(t a,b , t 0 1 ., ,))e+ − ∈Ω ∈≤ − ∀  +  
     
                                                                                                        (2.2)

For 1t ,
2

= we have Jensen type modified exponentially convex 

function function.
a bf

f (b) f (a) f (b)2 a,b1e e h e e ,
2

.
+ 

 
     ≤ + − ∀   

∈Ω                   (2.3)

We now discuss some new special cases of Definition (2.5).

1.	 If h(t)=t in (2.2), then Definition 2.5 reduces to the Definition 2.4.
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If 8h(t) t=  in Definition 2.2, then we have a class of exponentially 
s-convex functions.

Definition 2.6: Let s 0,1∈    be a real number. We say that f :Ω→ 

R is an exponentially s-convex function, if

( )( )f ta 1 t b f (a) f (b8 )8e e (1 )t t a,b , t ,, 0e 1 .+ − ∈Ω ∈≤ + ∀  −

If 8h(t) t−= in Definition 2.2, then we have a class of exponentially 
s-convex functions.

Definition 2.7. Let s 0,1∈  be a real number. We say that f :Ω→ 

is an exponentially Godunova-Levin type convex function, if 

( )( ) 8 8f ta 1 t b f (a) f (b)e e (1 )t t a,b , t 0,1e , .+ − − − ∈Ω ∈+ − ∀  ≤

For appropriate and suitable choice of functions h, one can obtain 
several new and known classes of convex functions as special cases. 
This shows that the concept of modified exponentially convex 
function is quite a general and unifying one.

Proposition 2.8: Let nf :Ω→  is sequence of functions which point 

wise converge to f :Ω→  and ( )nh : 0,1 J R⊆ →  be nonnegative 
sequence of functions which point wise converge to ( )h : 0,  1 J ,⊆ → 

so there is a 0φ >  such that fn is an modified exponentially convex 
function function then f is an modified exponentially convex function 
for n ≥ φ .

Proof: Given that fn is an modified exponentially convex function 
function, then

( )( ) ( )( )f ta 1 t b f ta 1 t bn

n
e lim e+ − + −

→+∞
=

( f (a) f (b)
n nn

lim h (t)e (1 h (t)e )
→+∞

≤ + −

( )f (a) f (b)h(t)e 1 h(t) e ,≤ + −

which shows f be an modified exponentially convex function 
function. 

Main results
We now derive Hermite-Hadamard type inequalities for modified 

exponentially

convex function function.

Theorem 3.1: Let ( )h : 0,1 J R⊆ →  be a nonnegative function and 
f : a,  b R R  Ω = ⊂ → be an modified exponentially convex function 

function. If f L a,b ,∈    then
a b f (a) f (b)f b

f (x)2

a

1 e ee e dx
b a 2

+ 
 
  +

≤ ≤∫
−

                                              (3.1)

Proof: Let f be an modified exponentially convex function 
function. Then from (2.3), we have

x yf
f (x) f (y)2 1 1e h e 1 h e , x, y

2 2

+ 
 
      ≤ + − ∀ ∈Ω    

    

Integrating the above inequality with respect to t on [0, 1], and using the 
change of variable technique, ( ) ( )x 1  t a tb and y ta 1  t b,= − + = + −  
we have

1 1
f ((1 t) a tb) f (ta (1 t) b)

0 0

a b 1 1f h e dt 1 h e dt
2 2 2

− + + − +     ≤ + −∫ ∫      
      

b b
f (x) f (x)

a a

1 1h 1 h
2 2e dx e dx

b a b a

   −   
   = +∫ ∫
− −

b
f (x)

a

1 e dx
b a

= ∫
−

1
f (ta (1 t) b)

0
e dt+ −= ∫

( )
1

f (a) f (b)

0
h(t)e 1 h(t) e dt ≤ + −∫    

1
f (b) f (a) f (b)

0
e e e h(t)dt. = + − ∫  	  (3.2) 

Again, we have 
1 1

f ((1 t) a tb) f (a) f (b) f (a)

0 0
e dt e e e h(t)dt.− +  ≤ + −∫ ∫     (3.3)

Summing up (3.2) and (3.3), we get 

( )( )1 1 bf 1 t a tbf (ta (1 t) b) f (x)

0 0 a

1e dt e dt e dx
b a

− ++ − + =∫ ∫ ∫
−

f (a) f (b)e e ,
2
+

≤ 		                                                        (3.4)
 
the required result.

Theorem 3.2: Let ( )1 2h ,h : 0,1 J⊆ →  be two nonnegative 

functions and f : a,bΩ = ⊆ →     be an modified exponentially 

convex function and g : a,bΩ = ⊂ →     If f g L a,b ,∈    then 
b

f (x) g(x)

a

1 e e dx
b a ∫−

1 1 1
f (b) g(b)

1 2 1 2
0 0 0

e e Q(a,b) h (t)h (t)dt P(a,b) h (t)dt S(a,b) h (t)dt,≤ + + +∫ ∫ ∫

where
f (a) g(a) f (a) g(b) f (b) g(a) f (b) g(b)

f (a) g(b) f (b) g(b)

f (b) g(a) f (b) g(b)

P(a,b) e e e e e e e e ,

Q(a,b) e e e e ,

R(a,b) e e e e .

 = − − + 
 = − 
 = − 

Proof: Since f and g are modified exponentially convex function 
functions, then we have

( ) ( )f (at (1 t) b) f (a) f (b)
1 1e h t e (1 h t )e , a,b , t 0,1 ,+ − ≤ + − ∀ ∈Ω ∈  

( ) ( )g(at (1 t) b) g(a) g(b)
2 2e h t e (1 h t )e , a,b , t 0,1 .+ − ≤ + − ∀ ∈Ω ∈  

Multiplying above inequalities, we obtain 
f(at (1 t) b) g(at (1 t) b)e e+ − + −

( ) ( )f(b) g(b) f(a) g(a) f(a) g(b) f(b) g(a) f(b) g(b)
1 2e e e e e e e e e e h t h t ≤ + − − + 

( ) ( )f(a) g(b) f(b) g(b) f(b) g(a) f(b) g(b)
1 2e e e e h t e e e e h t .   + − + −   
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Integrating above inequality over [0, 1] and by using change of 

variable, we have 
b

f (x) g(x)

a

1 e e dx
b a ∫−

1 1 1
f (b) g(b)

1 2 1 2
0 0 0

e e P(a,b) h (t)h (t)dt Q(a,b) h (t)dt R(a,b) h (t)dt,≤ + + +∫ ∫ ∫

the required result.

Corollary 3.1: If f = g and ( ) ( ) ( )1 2h t h t h t= = in Theorem 3.2, then 

we have a new result
b

2f (x)

a

1 e dx
b a ∫−

1 1
2f (b) 2

0 0
e P(a,b) h (t)dt [Q(a,b) R(a,b)] h(t)dt,≤ + + +∫ ∫

Corollary 3.2: If we take ( ) ( )1 2h t h t t= =  in Theorem 3.2, then we have a 

new result
b

f (x) g(x) f (b) g(b)

a

1 1 Q(a,b) R(a,b)e e dx e e P(a,b) .
b a 3 2

+
≤ + +∫

−

Corollary 3.3: If we take ( ) ( ) 8
1 2h t h t t= = in Theorem 3.2, then we 

have a new result
b

f (x) g(x) f (b) g(b)

a

1 1 Q(a,b) R(a,b)e e dx e e P(a,b) .
b a 2s 1 s 1

+
≤ + +∫

− + +

Theorem 3.3: Let ( )1 2h ,h : 0,1 J⊆ →  be two nonnegative functions 

and f : a,bΩ = ⊂ →     be an modified exponentially convex 

function and g : a,bΩ = ⊂ →     . If f g L a,b ,∈     then

a b a bf g b
f (x) g(x)2 2

a

1e e e e dx
b a

+ +   
   
    − ∫

−

1 2 1 2 b f (x) g(a b x) g(x)

a

1 1 1 1h h 2h h
2 2 2 2 e dx,

b a
+ − −  

       + −       
       ≤ ∫

−

Proof: Take a b ta (1 t)b (1 t)a tb ,
2 2 2
+ + − − +

= + we have

a b a bf g
2 2e e
+ +   

   
   

ta (1 t) b (1 t) a tb ta (1 t) b (1 t) a tbf g
2 2 2 2e e

+ − − + + − − +   + +   
   =

( ) ( )ta (1 t) b (1 t) a tbf f
1 1

1 1h e 1 h e
2 2

+ − − +     ≤ + −     
      

( ) ( )ta (1 t) b (1 t) a tbg g
2 2

1 1h e 1 h e
2 2

+ − − +     × + −     
      

( ) ( ) ( ) ( ) ( ) ( )ta (1 t) b ta (1 t) b ta (1 t) b (1 t) a tb ta (1 t) b (1 t) a tbf g f g g f
1 2

1 1h h e e e e e e
2 2

+ − + − + − − + + − − +     = − −         

( ) ( ) ( ) ( )ta (1 t) b (1 t) a tb (1 t) a tb (1 t) a tbf g f g
1

1h e e e e
2

+ − − + − + − +   + −     

( ) ( ) ( ) ( ) ( ) ( )ta (1 t) b (1 t) a tb (1 t) a tb (1 t) a tb (1 t) a tb (1 t) a tbg f f g f g
2

1h e e e e e e
2

+ − − + − + − + − + − +   + − +     

Integrating above inequality over [0, 1], we have

1 2
2f (x) g(x) g(a b x)

1 2 bb f (x) g(a b x) f (x)g(x)

aa

1 1h h
2 2 dx
b a

1 1h h
2 2 e dxe
b a

 − + −     + − −

      
              +≤

−
∫∫ −

b
f (x)g(x)

a

1 e dx,
b a

∫+
−

which give 
a b a bf g b

f (x) g(x)2 2

a

1e e e e dx
b a

+ +   
   
    − ∫

−

1 2 1 2 b f (x) g(a b x) g(x)

a

1 1 1 1h h 2h h
2 2 2 2 e dx,

b a
+ − −  

       + −       
       ≤ ∫

−

which is the required result.

Lemma 3.4: Suppose that f : RΩ→ is a differentiable exponential 
h-convex function on the interior oΩ of Ω . If f L a,b′∈    is h-convex 
function, then

a b bf f (x)2

a

1 e dxe
b a

+ 
 
  ∫− =

−

( ) ( )
1 t 1 t 1 t 1 tf a b f b a1 1

2 2 2 2

0 0

b a 1 t 1 t 1 t 1 t1 t e f a b dt 1 t e f b a dt .
4 2 2 2 2

+ + + +   + +   
   

 − + + + +    ′ ′× − + + − +∫ ∫        
                              (3.5)

Theorem 3.5: Let f : RΩ→ be differentiable exponentially h-convex 
function on the interior oΩ  of Ω . If f L a,b′∈     and f q′  is h-convex 
function, then we have

a bf b
f (x)2

a

1 b ae e dx
b a 4

+ 
 
  −

− ≤∫
−

a b a bf f
f (a) f (b)2 2a b a b a be f e e f _ 4 e f

2 2 2

+ +   
   
   

 + + +       ′ ′ ′× + +             

( ) ( ) ( ) ( ) ( ) ( )
a b a b a bf f f

f (b) f (a)2 2 2
1 2

a b a bf a f b e h, t f b _ f e e f a f e e h, t ,
2 2

+ + +     
     
     

       + +          ′ ′ ′ ′ ′ ′+ + ξ + − − − ξ                             

Where

( ) ( ) ( )
1

1
0

h, t 1 t h t dt,ξ = −∫ 		                              (3.6) ( ) ( ) ( )
1

2
2

0
h, t 1 t h t dt.ξ = −∫ 		                                         (3.7)
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Proof: Using lemma 3.4 and f is an exponentially h-convex 
function, we have

1+t 1+tf a+ b
2 2 1+ t 1+ te f a + b

2 2

 
 
   ′ 

 

( ) ( ) ( ) ( )
a+bf

f(a) 2 a + b£ h t e + 1- h(t) e h t f a + 1- h t f
2

 
 
 

         ′ ′                 

( ) ( ) ( )
a+b a+bf f

f(a)2 2 a + b a + b= e + h t e - e f + h t f a - f
2 2

   
   
   

           ′ ′ ′                     

( ) ( ) ( ) ( ) ( ) ( )
a+b a+b a+b a+bf f f ff a f a22 2 2 2a + b a + b a + b a + b£ e f + h t e f - 2 e f + f a e + h t f a - f e - e

2 2 2 2

       
       
       

                ′ ′ ′ ′ ′ ′                          

Similarly, one can have

1+t 1+tf b+ a
2 2 1+ t 1+ te f b + a

2 2

 
 
   ′ 

 

( ) ( ) ( ) ( ) ( ) ( )
a b a b a b a bf f f ff b f b22 2 2 2a b a b a b a be f h t e f 2 e f f b e h t f b f e e

2 2 2 2

+ + + +       
       
       

     + + + +           ′ ′ ′ ′ ′ ′≤ + − + + − −                          

Now

( )
a b 1 t 1 t 1 t 1 tf f a b f b ab 1

f (x)2 2 2 2 2

a 0

1 b a 1 t 1 t 1 t 1 te e dx 1 t e f a b e f b a dt
b a 4 2 2 2 2

+ + + + +     + +     
     

 − + + + +    ′ ′− ≤ − + + +∫ ∫     −      

( ) ( ) ( ) ( ) ( ) ( )
a b a bf f1 f b2 2

0

a b a bf a f b e f 1 t h t dt f b f e e
2 2

+ +   
   
   

   + +      ′ ′ ′ ′ ′+ + − + − − ∫                

( ) ( ) ( ) ( )
a bf 1f a 22

0

a bf a f e e 1 t h t dt
2

+ 
 
 

  +    ′ ′− − −∫           

( ) ( )
a b a bf ff a f b2 2b a a b a b a be f e e f 4 e f

4 2 2 2

+ +   
   
   

 − + + +       ′ ′ ′= × + + −              

( ) ( ) ( ) ( )
a b a bf f

f (b)2 2
1

a b a bf a f b e f h, t f b _ f e e
2 2

+ +   
   
   

   + +      ′ ′ ′ ′ ′+ + ξ + −              

( ) ( ) ( )}
a bff a 2

2
a bf a f e e h, t ,

2

+ 
 
 

  +   ′ ′− − ξ         

Now

 a bf b
f (x)2

a

1e e dx
b a

+ 
 
  − ∫

−

( )
1 t 1 t 1 t 1 ta b b a1

f f2 2 2 2

0

b a 1 t 1 t 1 t 1 t1 t e f b a e f b a dt
4 2 2 2 2

+ + + +   + +   
   

 − + + + +    ′ ′≤ × − + + +∫     
     

the required result.

Theorem 3.6: Let f : RΩ→ be differentiable exponentially h-convex 
function on the interior oΩ of .Ω If f L a,b′∈     and f  q′ is h-convex 

function on Ω  for 1 1p,q 1,p q 1,− −> + = then we have

a bf b
f (x)2

a

1e e dx
b a

+ 
 
  − ∫

−

q q qp a b a b a b1 f f fq 2 2 2b a 1 a b a be f f (a)e 2 e f
4 2 2 2

+ + +     −
     
     

 − + +      ≤ + −            

q q qa b a b a bf ( ) f ( ) f ( )
2 2 2a b a be f ( ) f (b)e 2 e f ( )

2 2

+ + + 
+ + + + −   

q 1q qa bq f ( ) qf (b) f (b) q2
1 2

a b a bf ( e ) ] (h, t)) [ e e ][ f (b) f ( ) ] (h, t)} ],
2 2

++ +
+ ξ + − − ξ

where 1ξ  and 2ξ are given in (3.6) and (3.7).

Proof: Using lemma 3.4 and the Holder’s inequality, we have

a bf b
f (x)2

a

1e e dx
b a

+ 
 
  − ∫

−

)
q1 1 t 1 t 11 f a b1 1

q 2 2 q
0 0

b a 1 t 1 t( (1 t)dt) (1 t) e f a b dt
4 2 2

+ − − + 
 

− + −   ′≤ × − − +∫ ∫    
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)
q1 t 1 t 1f b a1

2 2 q
0

1 t 1 t(1 t) e f b a dt
2 2

+ − + 
 

+ −  ′+ − + ∫  
  

q q1 a b a b1 f f1 qq f (a)2 2

0

b a 1 ( (1 t) e h(t) e e
4 2

+ +   −
   
   

 
−    ≤ − + −∫         

)
1 q qq q a b a b1q f ( ) q f ( )q f (b)2 2

0

a b a bf ( ) h(t) f (a) f ( ) dt ( (1 t) e h(t) e e
2 2

+ +    + +     + − + − + −∫            

the required result.

Theorem 3.7: Let f : RΩ→ be differentiable modified exponentially 
convex function on the interior oΩ  of .Ω  If f L a,b′∈   and f  q′ is 
h-convex function on Ω for 1 1p,q 1,p q 1,− −> + = then we have

a bf b
f (x)2

a

1e e dx
b a

+ 
 
  − ∫

−

q q q1 a b a b a bf f fp 2 2 2b a 1 a b a be f f (a)e 2 e f
4 p 1 2 2

+ + +     
     
     

 
  − + +    ≤ + −      +         

) )
qq qa b 1q f ( ) qf (a) f (a) 2 q3 4

a b a bf e (h, t) e e f (a) f( ) (h, t)
2 2

+   + +     + ξ + − − ξ           

q q qa b a b a bf ( ) f ( ) f ( )
2 2 2a b a be f( ) f (b)e 2 e f( )

2 2

+ + + 
+ + + + −   

q 1q qa b1 1q f ( ) qf (b) f (b) 2 q2

0 0

a b a bf e h(t)dt(h, t) e e f (b) f( ) h (t)dt} ,
2 2

+   + +     + + − −∫ ∫           

Proof: Using lemma 3.4 and the Holder’s inequality, we have

the required result. 

a b 1 t 1 t 1 t 1 tf f a b f b ab 1
f (x)2 2 2 2 2

a 0

1 b a 1 t 1 t 1 t 1 te e dx (1 t) e f a b e f b a dt
b a 4 2 2 2 2

+ + + + +     + +     
     

 − + + + +    ′ ′− ≤ × − + + +∫ ∫     −      

) )
q q1 1 t 1 t 1 t 1 t1 1f a b f b a1 1 1pp 2 2 2 2q q

0 0 0

b a 1 t 1 t 1 t 1 t(1 t) dt e f a b dt e f b a dt
4 2 2 2 2

+ + + +   + +   
   

  
 − + + + +      ′ ′≤ × − + + +∫ ∫ ∫      

         

q q1 a b a bf f1p qf (a)2 2

0

b a 1 e h(t) e e
4 p 1

+ +   
   
   

      −   ≤ + − ∫    +        

)
q qq q a b a b1 f f1 qf (b)2 2q

0

a b a bf h(t) f (a) f dt e h(t) e e
2 2

+ +   
   
   

    + +        + − + + −∫                    

)
1

q q
qqa b a bf h(t) f (b) f dt

2 2

  + +      + −             

)

q q q1 a b a b a b qf f f 1p f (a)2 2 2

0

b a 1 a b a b a be f f (a)e 2 e f f e h(t)dt
4 p 1 2 2 2

+ + +     
     
     

  − + + +        ≤ + − + ∫         +             

}
qqa b q a b1f f1q qf (a) 22 2q

0

a b a be e f (a) f h (t)dt e f
2 2

+ +   
   
   

   + +      + − − +∫               

)
q qa b a b qf f 1

f (b)2 2

0

a b a bf (b)e 2 e f f e h(t)dt
2 2

+ +   
   
   

 
+ +    + − + ∫         

}
qa b q 1f 1q qf (b) 22 q

0

a be e f (b) f h dt
2

+ 
 
 

 
+  + − − − ∫       
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)

q q q1 a b a b a b qf f f 1p f (a)2 2 2

0

b a 1 a b a b a be f f (a)e 2 e f f e h(t)dt
4 p 1 2 2 2

+ + +     
     
     

  − + + +        = + − + ∫         +             

}
q 1a b qf 1q qqf (b) 22

0

a be e f (a) f h dt
2

+ 
 
 

   +    + − − ∫         

)
q q qa b a b a b qf f f 1

f (b)2 2 2

0

a b a b a be f f (b)e 2 e f f e h(t)dt
2 2 2

+ + +     
     
     

  + + +       + + − + ∫                 

}
q 1a b qf 1q qf (b) 2 q2

0

a be e f (b) f h dt ,
2

+ 
 
 

   +    + − − ∫          

Now, we derive the following integral inequality for exponential 
h-convex function.

Theorem 3.8: Let h : (0,1) J⊆ →  be an integrable and non-

negative function such that t 0
h(t)lim k;k 0 .

t→
 = ≠ 
 

Suppose that 

f : a,bΩ = →    be a differentiable modified exponentially convex 
function function. Then

b b
f (y) f (x) f (y) f (a) f (b)

a a
e dy k e e dy (x a)e (b x)e . ≤ − + − + −∫ ∫               (3.8)

Proof: Let f be an modified exponentially convex function 
function. Then

f (tx (1 t) y) f (y) f (x) f (y)e e h(t) e e , x, y , t [0,1].+ −  ≤ + − ∀ ∈Ω ∈ 

This implies that
f (tx (1 t) y) f (y)

f (x) f (y)e e h(t) e e .
t t

+ − −  ≤ −  		               (3.9)

Taking limit as t → 0 on both sides of the (3.9), we have

f (y) f (x) f (y)e f (y),x y k e e . ′ − ≤ −  		              (3.10)

Integrating (3.10) with respect to x on [a, b] and dividing by (b − 
a), we have

b
f (y) f (x) f (y)

a

b a ke f (y), y e e dx.
2 b a
+  ′ − ≤ −∫  −

		

Similarly, integrating (3.10) with respect to y on [a, b], we have
b b

f (y) f (x) f (y)

a a
e f (y)(x y)dy k e e dy. ′ − ≤ −∫ ∫   		             (3.11)

Now consider
b b

f (y) f (y) f (a) f (b)

a a
e f (y)(x y)dy e dy (x a)e (b x)e .′ − = − − − −∫ ∫            (3.12)

Substituting the value from (3.12) in (3.11), we have

( ) ( )
b b

f (y) f (x) f (y) f (a) f (b)

a a
e dy k e e dy x a e b x e . ≤ − + − + −∫ ∫  

This completes the proof.

Corollary 3.4: If h(t) = t, then, under the assumptions of Theorem 
3.8,12 we have

( ) ( )b bf (y) f (x) f (y) f (a) f (b)
a ae dy e e dy x a e b x e . ≤ − + − + −∫ ∫  

Corollary 3.5: If we take x = a or x = b, and k 1,≠  then, under the 
assumptions of Theorem 3.8, we have

f (a) f (b)b
f (x)

a

1 1 k e ee dx .
b a 1 k 2

 + +
≤∫  

− −   

Corollary 3.6: If we take a bx
2
+

= and k 1,≠ −  then, under the 

assumptions of Theorem 3.8, we have

( )

a b f (a) f (b)fb
f (x) 2

a

1 1 e ee dx ke .
b a 1 k 2

+ 
 
 

  + ≤ +  ∫   − −   

Corollary 3.7: If we take 2abx
a b

=
+

 and k 1,≠ −  then, under the 

assumptions of Theorem 3.8, we have

( ) ( )
2abfb

f (x) f (a) f (b)a b

a

1 1e dx ke ae be .
b a 1 k

 
 + 

 
 ≤ + +∫  − +
 

Remark: From (3.10), we have

( ) ( ) 1f x f y log 1 f (y),x y , x, y , k 0.
k

 ′− ≥ + − ∈Ω ≠ 
 

One can define, the L-divergence by 

( ) ( )( ) ( )( ) ( ) ( ) ( )( ) ( )( )1T f x / f y : log 1 f y f x f y f x f y , k 0.
k

   + ∇φ − − φ − φ ≠     

This quantity is often considered as the error approximation and 
has played a significant role in the study of Information theory see, 
for example.14

Conclusion
For appropriate and suitable choice of functions h, we obtain 

several new and known classes of convex functions as special cases. 
we derived the Hermite-Hadamard inequalities hold for modified 
exponentially convex function functions (independent of h) and also 
calculated some special cases which are new and unifying one.
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