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In this article, we introduce the concept of modified exponentially convex function
deduce several new integral inequalities for the class of modified exponentially
convex function functions. The idea and techniques used in the paper may stimulate

further research in this fascinating field.
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Introduction

Several branches of mathematical and engineering science have
been developed by using the crucial and significant concepts of
convex analysis. Inequalities presently very active and is a fascinating
field of research. In recent years, a wide class of integral inequalities
is being derived via different concepts of convexity.!'* The extensive
development of research on big data analysis and deep learning
has recently increased the interest in information theory involving
exponentially convex functions. The significance of exponentially
convex function is used to manipulate for statistical learning, sequential
prediction and stochastic optimization,"-? ' and the references therein.

The class of exponentially convex functions was introduces
by Antczak,? Dragomir et al.® and Noor et al.'? It’s natural to unify
these different concepts. Motivated by these facts, Awan et al.’
introduced and investigated another class of convex functions,
which is called exponential convex function and can be viewed as
significantly different from the class introduced by.> *''7 We would
like to emphasize that a class of convex functions which unifies and
naturally distinct from other classes of convex functions is the class of
h-convex functions, introduced by Varosanec.!” In the present paper,
we introduce a new class of exponential convex functions with respect
to an arbitrary nonnegative function /4, which is called modified
exponentially convex function. We have obtained several new
Hermite-Hadamard inequality and related inequalities for modified
exponentially convex function. The techniques and the ideas of this
paper may stimulate further research in this dynamic field.

Preliminaries

We now discuss the new classes of convex functions involving
an arbitrary function 4. Let QR be a convex set in the finite
dimensional Euclidean space R".From now onwards we take
Q=[a,b], unless otherwise specified.

First of all, we recall the following well known concepts and
results.

set QcR"is said
Va,beQ,te[0,1]

Definition 2.1: A4
ta+(1-t)beQ,

to be convex, if

Definition 2.2: A4 function f on the convex set Q is said to be a convex
function, if and only if;

fta+(1-t)b)<tf(@)+(1-0)f(b),  Va,beQ,te[0,1]

We now recall the concept of h-convex function.

Definition 2.3: Lef h: (0, 1) < J > R be a nonnegative function. We

say that f:Q — R is said to be h-convex function, if fis nonnegative,
then

f(ta +(1- t)b) <h@®f)+(1-h)fib), VabeQ,te[0,1]

We now consider class of exponentially convex function, which
are mainly due to Antczak,? Dragomir et al® and Noor et al.'?

Definition 2.4: Let f:Q :[a,bjc R — R is exponentially convex

function, if f’is positive, then®% '

ef(m(l_l)b) <te'@ + (1-1)ef®,

@.1)

We now consider a new class of exponentially convex function
with respect to arbitrary nonnegative functions h is called modified
exponentially convex function function.

a,beQ,t G[O,l:l.

Definition 2.5: Let h: (0, 1) c I - R be a nonnegative function.

A function f:Q — Ris said to be a modified exponentially convex
function, if and only

ef(ta+(1—t)b)

<h(t)e'™® + (1-h(t)e ™, Va,beQ,te[0,1]

(2.2)
1 . .
For t=5, we have Jensen type modified exponentially convex

function function.

f(izb) £(0) L\l f@ _ o)
e <e +h[EJ[e —e ] Va,be Q. 2.3)

We now discuss some new special cases of Definition (2.5).

1. Ifh(t)=tin (2.2), then Definition 2.5 reduces to the Definition 2.4.
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Modified exponential convex functions and inequalities

If h(t) = t* in Definition 2.2, then we have a class of exponentially
s-convex functions.

Definition 2.6: Let s EI:O,]] be a real number. We say that f:Q — R
R is an exponentially s-convex function, if

ef(m+(l—t)b)

<t*e'@ +(1-1)e'®, Va,beQ,te[0,1]

If h(t) = t™ in Definition 2.2, then we have a class of exponentially
s-convex functions.

Definition 2.7. Let s e[O,l] be a real number. We say that f:Q — R
is an exponentially Godunova-Levin type convex function, if

ef(ta+(l—t)b)

<t @+ (1-t)e ™, Va,beQ,te[0,1]

For appropriate and suitable choice of functions h, one can obtain
several new and known classes of convex functions as special cases.
This shows that the concept of modified exponentially convex
function is quite a general and unifying one.

Proposition 2.8: Let f, : Q — R is sequence of functions which point
wise converge to £:Q —>Rand h :(0,1) c J—> R be nonnegative
sequence of functions which point wise converge to h : (0, 1) cJ->R,

so there is ad >0 such that fn is an modified exponentially convex
function function then f is an modified exponentially convex function

for n>¢.

Proof: Given that fn is an modified exponentially convex function
function, then

ef(ta+(l—t)b) f (ta+(1-t)b)

= lim e
n—+ow

< tim (h, (" @+ (1-h,(He"®)
n—>+o0o

<h@®e @+ (1-h(1)e"™®,

which shows f be an modified exponentially convex function
function.
Main results

We now derive Hermite-Hadamard type inequalities for modified
exponentially

convex function function.
Theorem 3.1: Let h: (0,1) cJ —> R be a nonnegative function and
f:Q =[a, b]c R — R be an modified exponentially convex function
function. If f e L[a,b], then

f(@j | b
et 2/ <c—JefWdx <
—a,

of@ 4 of®)

3.1)

Proof: Let f be an modified exponentially convex function
function. Then from (2.3), we have

f X+y
e[ 2 ]Sh(%)e“x)+(1—h[%]]ef®, Vx,y e Q

Integratingtheaboveinequalitywithrespecttozon[0, 1],andusingthe
change of variable technique, x =(1— t)a+tbandy=ta+(1— t)b,
we have
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£ a+b <h l }ef((l—t)aﬂb)dt_'_ 1-h l j‘ef(ta+(1—t)b)dt
2 2 0 2 0

1 1

(3 g, )
=22 [e!™dx + — =L [ef™dx

b-a, b-a ,

b

= L Je"®dx

b-a;
_ }ef(mm-t)b)dt

0

1
<[l h®)e'™ +(1-h(t))e'™ ldt

e +0-nope

f f o)}
—ef® 4 |:e @ _¢ (b)th(t)dt. (3.2
0
1 1
Again, we have [ef(79a )t < @ 4 [ef(b) - ef(‘"‘qjh(t)dt. (3.3)
0 0
Summing up 3.2) and (3.3), we get
jl'ef(t““_‘)b)dt + }ef((H)aﬂb)dt - ?ef(x)dx
0 0 b-a;
fa) , f(b)

< [§] +¢ ) (34)

2
the required result.
Theorem 3.2: Let hyh,:(0,1)cJ—>Rbe two nonnegative
functions and f:Q :[a,b]g R — R be an modified exponentially
convex function and g:Q :[a,b]c Ro>RIf fge L[a,b], then

1 b .
J e' (X)eg(X)dX
b-a,

<ef®e® 4 Q(a, b)}hl(t)hz(t)dt + P(a,b)} h, (t)dt+S(a, b)fh2 (t)dt,
0 0 0

where
P(a,b) = [ef@eg(a) _of@ee® _ ofb)ou@) | of(b)oe) J
Q(a,b) = [ef(a)ega») _ ofb)ge) J

R(a,b) = [ef(b)eg(a) _ ef(b>eg(b>}

Proof: Since f and g are modified exponentially convex function
functions, then we have

eI <y (£)e"@ + (1—hy (t))e™, Va,beQ,te[0,1],
eSO < (1)e5® + (1—h, (t))e*®, Va,beQ,te[0,1]

Multiplying above inequalities, we obtain

ef(aH(l—t)b)eg(aH(l—t)b)
< et | [ef(a)eg(a) _ oM@t _ i) e@ e“b)eg(b)]hl (t)h, (t)

+[ef<a>eg<b> - ef(b)eg(b)}hl (t)+ [ef<b>eg<a> _ ef“’)eg‘b)}hz (t).
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Integrating above inequality over [0, 1] and by using change of

2242

€

b
j’ el a2 qx €

—-a
i f(m(H)b ) (l—t)aﬂb] g[ta+(1—t)b ) (l—t)a+tbj
=e €

variable, we have

2 2 2 2

<ef®et® 4 p(a, b)}hl(t)h2 (t)dt + Q(a, b)}hl(t) dt+R(a, b)}h2 (t)dt,

0 0 0 l f(ta+(1- t)b I—h l ef((l—t)a+lb)
the required result. 2 "2

Corollary 3.1: Iff= g and h,(t)=h,(t)=h(t) in Theorem 3.2, then

. I: 2[1] g(ta+(1-1)b) [1_112 [ljjeg((lt)aﬁb):l
we have a new result ——[e*"®dx 2 2
b-a;
| 1 [7}1 (lj flta+(1-0b) g m+(17|)b)_ef(uﬁ(lﬂ)b)eg((lft)aﬂb}_eg(t:ﬁ(lﬂ)b)ef((lf&]1|+(b):|
<e*™® 4 P(a,b)[h?(t)dt +[Q(a,b) + R(a,b)][ h(t)dt, 2
0 0
1 ta+(1-0)b)_g((1-ta+tb) f((I-t)a+tb) g((1-D)a+tb
Corollary3.2: [fwetake h, (t) = h, (t) = t inTheorem3.2,thenwehavea +h (Ej[ e Jerl(mar) _ f((mhurble((-0ar )J
R 1 Q(a,b) + R(a,b
new result — {ef( Det®ix < ef®e2® gP(a, b)+ % h, (ij|:eg((a+(1—l)b)ef((1—l)a+lb) B ef((l—t)a+tb)eg((1—t)a+lb):| 4+ of((=Da+tb) g((1-Da+ib)
2
Corollary 3.3: If we take h,(t)=h,(t)=t*in Theorem 3.2, then we Integrating above inequality over [0, 1], we have
have a new result
(32 (a (o)
Tef(x)eg(x)dx < of®ge®) 1 Pa,b) + Q(a,b) + R(a,b). < "2)722 Tell’(x)[g(x)fg(a%fx)]dx_'_ 2 2 J-ef(X)[g(aer*X)*f(X)g(X)]dX
b-a, 2s+1 s+1 b-a b-a .
a+b a+b
Theorem 3.3: Let hy,h, :(0,1) = J — R be two nonnegative functions 1 L jef(")g(")dx which give e [ 2 ]eg(T] - 1 lj’ef(x)eg(x)dX
and f:Q= [a,b]c R —> R be an modified exponentially convex as Tda
function and g:Q :[a,b]c R->R.Iffge L[a,b], then h, (l) +h, (lj —2h, (ljhz (lj .
< 2 2 2 2 J-ef(x)[g(a+b—x)—g(x)]dx
)l : |
el2 /g 2)_ jef(x)eg(x)dx
—a, which is the required result.
, (1j+h [1] ok (1)}1 (1) Lemma 3.4: Suppose that f:Q — R is a differentiable exponential
< 2 22 "2)7%2 f £ g(a+b-x) g(x):'d h-convex function on the interior Q° of Q. If ' eL[a,b]is h-convex
- b-a A ’ function, then
— — 1| ﬂ b
Proof: Take atb_ta+{-0b + (-tatt , we have e [ 2 J _Ljef(")dx =
2 2 b-aa
1+t 1+t 1+t 1+t
_ 1 f a+—>b f| —b+—a
b-a, j(l—t)e(z (12, 1+—tb dt+j( t)e el e | (3.5)
4 0 2 2 2
Theorem 3.5: Let f:Q — R be differentiable exponentially h-convex
Sfunction on the interior Q° of Q. If f'e L[a,b:l and |f'|q is h-convex
. [ a+b a+b
function, then we have § et(sz,[a ; bj . “ef(a) . |ef(b)” f,(a ; bj 4k f( ]f,(a er bj

£ a+b b _
e( 2 ]——1 Je"™dx S—b4a

—a,

_;(%) &z(h,t) ,

@)+ ()] ef[¥] g (h,t)+ [|f’(b)|_‘f'(¥jD |ef<">|—ef(¥J |f’(a)|—‘f'[¥]‘] e

Where

& (ht)= i(l—t)h(t)dt, (6  &(ht)=

o-—.—-

(10 () 67
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Proof: Using lemma 3.4 and f is an exponentially h-convex f(ﬂ)
+|1-h(t)]e * ° [h(t)|f’(a)|+(l-h(t)

]

function, we have h(t) e®

+h<t){ A5 ]Mf[zbj sof (232
e

RN
e[Za 2 jf' liaJrH_tb
2 2

1

Similarly, one can have

ef[Tb*Tan, 1+tb+ 1+ta
2 2

k&5
=11l€

of(®

ef[azbjf’[%] + — |+ f’(a)ef[¥J

< { ef[a;bjf'[¥] + h(t)[ ef(b)f’(a ; bj —2 ef[a;b]f'(%) + |f’(b)|ef(a;b]J +h? (t)[|f'(b)| —H%}U[ e ef(a;b)]}
Now
f(¥] %?ef(x)dx < b ; a }(1 - t){ ef(HthHthJf’(HTta +1+Ttb] + ef[itb+n21a]f'(HTtb +1+Tta) }dt
—da 0

ef(:ﬂf,@j}(})@_t)h(t)m+[|ff<b>|—\f'(%]U

function on Q for p,q>1,p " +q " =1, then we have

{5 1 fermgy

b-a,

P ——

(1-t)h? (t)dt}

+|ef(b>H f,[ b ]‘7 4‘ef[“§")f,[a ;b)
asb B <b—a[1j‘§ {[e
*“‘””‘bﬂﬂ2jf’(“"]}%’t>+[ff<b>-f’[a?’)}[ew-;EJ] .

q

-2

q

ef(a;b]f(a+b]

2

q
— | + { f(a) ef(?b)

2

L Ll R R
' (a+b )| r0) f[?bJ Hlle 2 1) +]fwye 2 | =2 2 f(—2)
|f(a)| - £ — ") & (h.t)}, 2 2
a+b | o | el 0 |.a+b] :
Now HECTe ) Ta o) + [ ~le 2| fo)] ‘“T)‘ JE2(h, 0},
(51 b
e —-——[e'™dx L
b—a, where &, and &, are given in (3.6) and (3.7).
Proof: Using lemma 3.4 and the Holder’s inequality, we have
(XIS Lty I,
<baxi(lt){ef[zd ? bjf'[“—thrliajJref[ 272 ]f'[mb+l+taj}dt f(“bj 1 b
4 2 2 2 2 el2)_ [ef®dx

—a;

the required result.
q
Theorem 3.6: Let f:Q — R be differentiable exponentially h-convex b

1
- 1
Sfunction on the interior Q° of Q.Iff" e L[a,b] and |f’ |q is h-convex dt)q

f 1Jr—teu—l;tb —
e [ 22 )f' lLta+1—tb
2 2

—a 1 |—l 1
e (J(1-t)dt) q{f(l—t)
0 0
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et 1= 4
1 f{ 2t _ 1
Ha-0e S ]f (1+tb+l—taj dt)qH T e ] ] e a
0 2 2 Sb;a[ 1 ]P o2 f(a+bj le@e 2] —ofet 2 f(aer]
pil 2 2
q q
ffase ffard
<7 (I(l—t) ) o |ef<*‘>q—e(zj : o A
4 \2 a+b gy @l _|.fSD) a_ b 1
Hf| e Ei(h,0) +|[e e |f (@) g,(h,0)a
1 b |9 b |4 b q b b
a+b |! q a+b | q 1 r(a; q r(%) a+ & £t
{ ) +h(t){\f(a)\ —f(T)‘ Hm) +((j;(1—l)|:e +h(t)|:ef(b) —le } f( f(a+b) o [tvye f(—) ( >f(a+b)
the required result.
q . ath
Theorem 3.7: Let f:Q — R be differentiable modified exponentially +‘f(¥ef<bj I U iy
0

convex function on the interior Q° of Q. If f'e L[a b]and |f’ |q is
=1, then we have

h-convex function on Q for p,q>1,p " +q"
a+b

ef(T] L lj)ef(")dx

b-a;

[h(tutch, t)j+ {ef(”q “le

q
Hf o) -|f

Proof: Using lemma 3.4 and the Holder’s inequality, we have

)‘ ) hz(t)dt}ﬂ

the required result.

£ a+b flj ﬁb fh'—t 1Lta
e[ 2 ]_bl J‘ef(X)d < XI(I 6[2 2 jf![l"'_t H_tbj + [2 2 ]f’(“__tb ﬂaj dt
A, 2 2 2 2
b 1 - 1 t[liuﬂb] 1 1 ! 1 1 f[H—thrlia] 1 1 ! 1
<22, (j(l—t)pdth flet 2 2 f[ia+ibJ dtya+fle 2 f’[ib ia] dt)a
4 0 0 2 2 0 2
1 a+b )9 a+b)|d |
< b—a[#]p j‘ ef{T] +h(t) |ef(a) a_ ;(7)
4 p+1 0
[ a i q 1 f ﬂ £ ﬂ d
f(a;bJ +h() |f(a)|—‘f(a+b)‘ 1 dt)o +| ] e[ ’) +h() |ef(b)|q—e[ )
0
I q [ q L
a+b a+b q
f( > j +hO||f b - f[TJ‘ ] dt)

q
a+b

+

|t@|" - |f

q
a+b

2

;(“’Jf[

)
el

ihzdt};}

q
)
€

+

o 5 o

Theart (1)
]‘ [h*()dt}a +4|le " f[
0

q
+ f(ﬂeﬂb)j
2 0

a+b
RI0)

> }h(t)dt)

Eshisasl

Jq

a+b
2

}h(t)dt)
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1 q

_b-a [LJP ef[azbjf(ﬂj + f(a)ef[

a+b 4
f£(b)|4 1=
+ |e | —le

. ;E“z"Jf(m] .

a+b)[?

O f(T
+ |e( | —le

~—

a+b )" ! <
[f®)|* - f( j‘ [h*dt} e |,
2 0
Now, we derive the following integral inequality for exponential
h-convex function.
Theorem 3.8: Let h:(0,1)cJ—> R be an integrable and non-
h(t)

negative function such that lim,_, (T =kk# Oj. Suppose that

f:Q :[a,b]—> R be a differentiable modified exponentially convex
function function. Then

b b
jef(” dy <kJ [ef(") —ef® de +(x—a)e'@+ (b—x)e'™®. (3.8)
a a

Proof: Let f be an modified exponentially convex function
function. Then

1109 < o0y () €'~ ], vx,yeQ,te[0,1].
This implies that

FH1-0) _of®) ot
LEEE— t < —i ) [ =] (3.9)

Taking limit as t — 0 on both sides of the (3.9), we have

<ef(Y)f’(y),x— y> < k[ef(x) - ef(yq.

Integrating (3.10) with respect to x on [a, b] and dividing by (b —
a), we have

b+a k ¢®
Wry _ ) _of® |4
<e f(}')» 2 y>£ b—a£|:e € X.

(3.10)

Similarly, integrating (3.10) with respect to y on [a, b], we have
lfe“y)f'(y)(x— y)dy < k?[e“*) —ef® ]dy. (3.11)
Now consider

lj)ef(”f’(y)(xf y)dy = lfef(”dy —(x—a)e!@— (b—x)e'®. (3.12)

Substituting the value from (3.12) in (3.11), we have

?ef(”dy < k]j)[ef(") —ef® de +(x—a)e'™+(b—x)e"™®.

a;b]q_2ef(a;'b]f(a.kqu_k‘f(%ef(a)j

Copyright:
©2019 Rashid ecal. S0

90
[h(t)dt)
0

2

This completes the proof.

Corollary 3.4: If h(t) = t, then, under the assumptions of Theorem
3.8,2we have

[Pe'dy <[P [ef(x) - ef(yqdy +(x- a)ef(“) +(b- x)ef(b).

Corollary 3.5: [f we take x = a or x = b, and k #1, then, under the
assumptions of Theorem 3.8, we have

of@ 4 of®
5 .

b
L [e'™dx S—] *k
b-a; 1-k

a+b

Corollary 3.6: If we take x = and k #—1, then, under the

assumptions of Theorem 3.8, we have

b 2t f@) |, f(b)
;jef(")dx S; ke( 2 j+ L )
b-a, 1-k 2

2ab

a+
assumptions of Theorem 3.8, we have

Corollary 3.7: If we take x = and k #—1, then, under the

I LI 1 (ZL?,) f o
b—je ®dx Sﬁ ke 7 +(ae @ 4 be' )) .
—a, +

Remark: From (3.10), we have
f(x)-f(y)= log(l +%<f’(y),x— y>J, x,yeQ, k=0.
One can define, the L-divergence by
(¢6)(0) g 1250501 )] ol 0) ()| 0.

This quantity is often considered as the error approximation and
has played a significant role in the study of Information theory see,
for example.'*

Conclusion

For appropriate and suitable choice of functions h, we obtain
several new and known classes of convex functions as special cases.
we derived the Hermite-Hadamard inequalities hold for modified
exponentially convex function functions (independent of h) and also
calculated some special cases which are new and unifying one.
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