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Introduction
In the context of current advanced technologies, reliable theories 

elucidating the electronic phenomena, such as created in devices, 
like homojunction, heterojunction, bipolar and field- effect decides, 
solar cells with degenerately doped and uniform structures are highly 
important in the field of solid-state electronics.1–6 With the advent 
of MBE, MOCVD, PLL and other experimental techniques for the 
development of doped semiconductor materials;7,8 the impact of 
energy spectrum and the density- of- states (DOS) functions are of 
paramount importance. It has been well established that the charge 
transport phenomenon in heavily doped disordered semiconductor 
are not fully characterized by the conventional current-continuity 
equation.9,10 In a semiconductor, the doping concentration (Ni) that 
satisfies the relation for heavily doped case, ( )1/3

Da .Ni 1.0 ,> 
 

 where 
aD is the Bohr’s radius of impurity state.11 The calculations of the 
Fermi-energy (Ef) and the Fermi-Integrals (FIs) in heavily doped cases 
are emerging as a challenging area of research and development.12 To 
the best of our knowledge, the study of the FIs in energy-spectrum 
and the density -of-states function with tail have not been made as yet 
in literatures.10–14 It was reported recently15 that the FI of the (DOS) 
functions in a degenerately doped disordered semiconductor; showing 
band-tail in energy spectrum as well as in (DOS) functions, through 
the presence of exponential and error functional behavior with respect 
to (E/ηe); [where (E) is the electron-energy and (ηe), the impurity 
screening potential]; demonstrates a complex functions, containing 
both real as well as imaginary terms of different (FIs). Their module 
provides an oscillatory function and a phase angle of the functions of 

e B, ,k Tη η   , where η is the reduced Fermi-energy, T is the absolute 
temperature and Bk is the Boltzmann constant.

Understanding the diffusion co-efficient (D) and the mobility (µ), 
one has attributed to considerable attention3,10 due to its significance 
in device applications. Many attempts have been made to derive 
at a simple relation between (D) and (µ) ratio (i.e.DMR); also 
widely known as Einstein relation (ER) for the case of a disordered 
semiconductor. Possible simple model for (DMR) as suggested in 
literatures,16–18 are thermodynamically, independent of scattering 
mechanisms. The diffusivity-mobility ratio was more accurate than 
the individual relationships for diffusivity and mobility.19

Among the various models, proposed for (DMR) the most 
important recent works that had been carried out by Roichman & 
Nessler,3 Copuroglu & Mehmetoglu,10 and Atanu Das & Arif Khan.19 
In,3 the (ER), in the low density limit, is given by e/ µ / ,D T= Bk  
calculated for a Gaussian density –of- States function (having not 
a tail),and also valid for organic semiconductors and few other 
amorphous semiconductors. Further, their model was valid for the 
energy distributions, smaller compared to the Fermi-energy (Ef), 
when the Fermi-Dirac distribution is approximated to a Boltzmann-
distribution function. In10 authors provided a simple analytical 
model for the evaluation of (ER) for disordered semiconductor with 
exponential distribution of the tail-states. The proposed analytical 
method was based on the binomial expansion of the (FD) distribution 
function (FD) or Fermi-functions and the square root of the energy 
band-states. In authors have calculated numerically the (ER), for 
heavily doped semiconductors exhibiting band gap narrowing.19 The 
numerical calculations have shown that DMR are dependent on a 
host of semiconductor parameters including the temperature, carrier 
degeneracy etc.

In our earlier work,20 we showed for the first time, the (DOS) 
functions, having tails through the presence of the exponential and 
error functions along with the tails in the energy spectrum. Their 
module provides an oscillatory function and phase angle of a function 
of f B E / K T,η =  the reduced Fermi energy. Further, we made no 
alteration of the FD distribution as in3 as well as binomial expansion 
of the FD.10 Therefore, we might conclude that the above calculations 
of the DMR were not exact enough. An exact equation of the ER 
should be made without considering any approximation to the (DOS) 
tail calculations as well as the FD distribution functions. Taking the 
aforesaid issues into account, present study aims to provide an useful 
general analytical model, based on the complex Fermi-Integrals 
FIs derived in for the evaluations of the ER is a heavily doped 
semiconductor.15

Theory and basic formulae
In the limit of non-degeneracy, satisfying the relation 

( )1/3
D0.02  a Ni 1.0 , < 

 ≤ 11 the Einstein relation ER can be written 
as:12
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Abstract

The present manuscript exhibits a simple analytical model for the evaluation of the Einstein 
Relation(ER) of a disordered semiconductor having band-tail in energy spectrum as well 
as density-of-states (DOS) functions, through the presence of exponential and error 
functional behavior with respect to Normalized energy(E/ηe), demonstrates a complex 
functions, containing both real as well as imaginary terms of different Fermi-Integrals (FIs) 
and their derivatives. Their module provides an oscillatory function of e B, ,k Tη η   . The 
total ER, over the entire energy regions ( E )∞ > ≥ −∞ of the band-tail curve is described 
as Cumulative Effects denoted a complex value. On the other band, the same ER for the 
positive and negative energy region of the band of the band-tail curves are known as the 
Distributive Effects in the band-zone and tail zone, respectively. The distributive effects 
are real and positive values. The Cumulative effect is a sum of the two distributive effects 
which has no mathematical justification. These contradictions are systematically explained 
with the proper justification in the manuscript.
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BD / µ K T / e=  (1)

where, D denotes diffusivity of the semiconductor 

T is the temperature in absolute degree, BK is the Boltzmann 
constant and the electron mobility (µ), e  is the electron charge. 
Mukherjee21,22 and Co-workers proposed a new generalized form 
of ER for the disordered semiconductor. This is also known as the 
Diffusivity-Mobility Ratio (DMR). This relation of DMR is valid for 
all scattering mechanisms and all the conditions of in homogeneity at 
uniform temperature. The ER/ DMR as defined for a non-degenerately 
doped semiconductor is given as the ratio:12

( )n B
1/2 1 2

n

D k T F ( ) / F
e − = η η µ

 (2)

where, f

B

F ,
k T

η =  is the reduced Fermi-energy ( )fE  and jF ( )η is 

the Fermi-integrals (FIs) of order (j) with j=1/2 and j= -1/2. It might 
be noted that Eq. (1) can be obtained from Eq.(2) in the limit, when 
η→0.

Analytical evaluation of the general (er) of a 
degenerately doped dis-ordered semiconductor with 
band-tail

It has been seen earlier15 that the (FIs) are complex in nature 
of degenerately doped disordered semiconductors. More over the 
derived energy-spectrum as well as the (DOS) functions possesses 
tails; containing error functions and the exponential function of (E/ 
ηe,). The parameter ηe, reflected the width of the conduction band –tail. 
The tail generally extended within forbidden band.

Therefore, the new generalized form of DMR of a degenerately 
doped semiconductor with band-tail are given for: DN

		

( )
1

B
DDT

k T NDD / N .
e

−  ∂ µ =    ∂η   

 	 (3)

Where, ND has two parts: real ( 1ND ) and imaginary ( 2ND ) 
represent to

		  1 2ND ND ND= + 			       (4)

1 11
D DD 1 2

N NN
− −−     ∂ ∂ ∂     = +        ∂η ∂η ∂η       

		      (5)

Following15 we have:

		
( )

( )D1
13/ e
2

B2 R
B

, ,k T
N

D
k T

 
  η η=
  

	    (6)

 = Real function of the degenerately doped (FI). 

And

	
( )

( )D2
13/2 em
2B

BI
, ,k TN iD

k T

 
  =
 

η η
 

	      (7)

	 ` 1 2....S exp( ).S= − −η  			   (8)

Where

1 Im
2

D = Imaginary part of the degenerately doped (FI) with 

i 1= − .

From Eqn.4, we find: the following15

Total carrier concentration, D EN ( )∞ > ≥ −∞ ,over the entire zone 

of energy (E) = [Partial carrier concentration, D 1
N ( E 0 )+∞ > ≥  over 

the positive energy region or zone] + [partial carrier concentration,

D 2
N (0 _ E )> ≥ −∞  over the negative energy region or zone]  (9)

Now, DN is the total FI over the entire energy (E) i.e

D 1
( ) [NE∞ > ≥ −∞ = is the total FI over the positive energy(E) region 

i.e D 2
[E N0( )+ +∞ > ≥ is the total FI over the negative energy region 

i.e (0 _ E )> ≥ −∞ ] (10)

Differentiating Eqn. (10) with respect to η, on both side,

we find
D DD 1 2

N NN ∂ ∂∂
= +

∂η ∂η ∂η
 (11)

Therefore, from Eqns. (3)-(5), we have
(D/µ) DT = Total (DMR)

		

1

Bk T NDN D.
e

−  ∂ =    ∂η   

 

		

D DB 1 2

D D1 2

N Nk T
N Ne

η η

 
 + =  ∂ ∂

+ 
∂ ∂  

 		  (12)

From Eqns (6), (7) and (12), we have

	       
1 1
2 2B

D R iD Im
k T . 1 1e D R D / Im

2 2i

    +   
  =

 ∂ ∂ 
+ ∂η ∂η 

		      (13)

Therefore, we find from Eqn.(13) that

(D/µ) DT = Total (DMR) or total Einstein Relation (ER) of a 
degenerately doped with band-tailing conditions of a parabolic band 
semiconductor is a complex value.

		
( )B

B
k T A , e,k T

e
 = η η   	 (14)

Taking the module of (D/µ) DT, from Eqn(14), we may write:

( ) ( ) ( ){ }2 2B
B B B

D k TDT A , e,k T B , e,k T * Cos , e,k T
e

     == η η + η η α η η     µ 
	

	
						      (15)
with

( ) ( )1
B BTan B , e,k T / A , e,k T−  α = η η η η  in radian It might be 

noticed that the unit of D DT
 
 µ 

 is volt and the angle α is determined 
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in Radian. 

From Eqns.(6), we find
1

DB 1
D1

Nk TB . N . (valid for( E 0 ))
e

−

+

  ∂  = ∞ > ≥     ∂η   

 	(16)

 

1

B

1D Rk T 1 2D R.
e 2

−  ∂  
 =  
 ∂η     

 

 = a real and positive value.

Similarly, from Eqn.(7), we can show

1

DB 1
D2

Nk TC . N .
e

−  ∂  =     ∂η   

 (valid over ( >E≥-∞) 

1
1

B 2
1
2

iD Im
k T . i D Im.

e

− ∂   
=   ∂η  

   

 

 

1
1

B 2
1
2

D Im
k T D Im

e

− ∂   
=   ∂η  

   

 (17)

= a real and positive value

Therefore, we designate 1B
D D1 2

k TB N .. (N )
e

− ∂
=     ∂η 

as the 

“Distributive effect” over the energy region ( E 0 )+∞ > ≥  (i.e, the 
Band-zone (BZ))

Similarly, we may write: 
1B

D D2 2
k TC N .. (N )

e
− ∂

=     ∂η 
as the “Distributive effect” over 

the energy region ( >E≥-∞) (i.e, the Tail-zone (TZ).

From Eqn.(14), we get the Total (DMR) as the “Cumulative Effect” 
over the entire energy region i.e, (∞>E≥ -∞), we may designate it as 
[A] and in general “A” is complex value.

Therefore, we can observe from Eqns, (13), (14), (16) and (17) that

 [A] is a complex value [Cumulative Effect]

 [B] is a Real and positive value [Distributive effect]

 [C] is a Real and positive value [Distributive effect] (18)

Therefore, we can write Eqn(18) as

[A] ≠ [B] + [C] (19)

(i.e, Total “Cumulative Effect” ≠ the sum of the two “Distributive 
effect”

From Eqn.(19), we find that it might be a contradictory statement 
of a physical system, of degenerately Doped with band-tailing 
semiconductor.

The physics of the contradiction could be given as under 

The Fermi-Dirac (FD) distribution for 1ND , the energy(E) is valid 
from i.e (∞>E≥0+) (BZ)

 The Fermi-Dirac (FD) distribution for 2ND , the energy(E) is 
valid from i.e , (0->E≥-∞),(TZ)

In order to demonstrate the above (i.e Eqn (19)) phenomena, we 
have drawn a Figure 1 with different colors to distinguish the various 
effects.

(A)	 Total (DMR) covers the entire energy region i.e, (∞>E≥ -∞), 
covered by the solid band-tail curve: carriers are distributed as Yellow 
and Violet color region [Cumulative Effect].

(B)Total (DMR) over the positive energy region i.e, (∞>E≥0+) 
indicated by dotted curve: carriers are distributed in Yellow and Green 
color region, this zone is named as Band-zone (BZ) and the effect is 
[Distributive effect].

(C) Total (DMR) cover the negative energy region i.e, (0->E≥-
∞),indicated by solid curve: that is extended in the band-tail region: 
here, carriers are distributed as violet color region, This zone is named 
as Tail-zone (TZ) and the effect is [Distributive effect].

Now, Eqn.(19) can also be proved from Figure 1 in the following 
way:

Figure 1 shows that the “Green color carriers lie outside the solid 
Band-Tail curve and within the dotted curve regions. Here, This 
carriers the physically do not exist. So, we designate Green color zone 
as the (FmZ) (i.e, forbidden mobility carrier zone) where the carrier 
mobility is imaginary.

Figure 1 Color graphs are plotted for (a) Normalized Density –of- states 
(DOS) function against the normalized energy (E/ ηe); when the semiconductor 
is not heavily doped (Dotted line) [Yellow + Green].
(b) Normalized Density –of- states (DOS) function curve with Band-Tail, 
denoted by solid thick curve, against normalized energy(E/ ηe); [Yellow + 
Violet] color for the case, semiconductor is headily doped.

We have seen from above discussion that Eqn(19) is a contradiction, 
mathematically.

Also, in Figure 1, the Green color zone i.e (Fmz) is a contradiction 
of a physical system. Similarly, from physics point view, we have 
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discussed above the existence of the contradiction based on the Fermi-
Dirac distribution functions for 1ND valid for (∞>E≥0+) and 2ND
valid for (0->E≥-∞).

Results and discussion
From Fig.1, we can draw the following points:-

1.	  Color graphs are plotted for normalized Density-of-States (DOS) 
function, (indicated by the dotted line), against normalized energy, 
when the semiconductor is not heavily doped. In this case, the 
mobile carriers are shown by [yellow+Green] colors region and 
the mobility of the carrier are [Real and positive value]. In this 
case, no-tail is present, as shown. This is called as the Band-zone 
(BZ).

2.	 When the semiconductor is degenerately doped, the normalized 
(DOS) function curve is denoted by the solid-thick curve, 
including the tail curve. In this case, Tail is present along with 
the (DOS) one. The mobile carriers are shown by [violet] color 
region. Here, the mobility is real and positive and the zone is 
named as Tail-zone (TZ).

3.	 But because of tailing, the [Green] color zone does not enclosed 
within the solid curve, rather enclosed within solid and dotted 
curves. So, in this region, carrier mobility do not exist physically, 
i.e., the carrier mobility is an imaginary value. Hence, we might 
denote it as the (FmZ) ≡ Forbidden mobility zone; i.e, the zone 
where the mobility could be imaginary

In Figure 2a, we have plotted the module of complex (DMR), 
( ) ( )e BDTD / µ ,  ,  k Tη η   against (η), for (ηe) =0.01 eV and T=4.2K, 

using Eqns (13) and (14).

Figure 2a Variations of Module of Complex (DMR), │ (D/µ) │DT in volts 
against η with heavily doped case at T=4.2K and ηe= 0.01 eV; when η varies 
from 10-3 to 100.

For complex (DMR), the “Data” that required in Eqn.13, are 
provided from Table 1 for various values of η. Finally, in Table 2, , the 
module of [ ( ) ( )DT e BD / µ ,  ,  k Tη η│ in volts] are calculated against η, 
as well as the phase angle, in ( )e B,  ,  k Tα η η   (radian). Thus “Data” 
obtained from Table 2, were plotted in Figure 2a for various values of 
η with ηe =0.01 eV and T=4.2K. Similar plots are made in Figure 2b, 
against η, with ηe =0.05 eV and T=4.2K in order to observe the effect 
of ηe on DMR .

Table 1 Comparative result of Fermi-Integral functions obtained by computer calculations

 

f / B

e

E K T
0.01eV

T 4.2K

η =

η =

=

Real Functions Imaginary Functions

  ( )1 BR
2

D , e,K Tη η
  ( )1 BR

2

D , e,K T
n

 ∂
η η 

∂   
 ( )1 BIm

2

i D , e,K T η η    ( )1 BIm
2

D , e,K T
n

 ∂
η η 

∂   

1.0×10-3 0.036397 0.0008227 14.505143 0.0030341

5.0×10-3 0.032393 -0.003395 14.501133 0.00672

1.0×10-2 0.027335 -0.0087601 14.496171 0.0112797

5.0×10-2 -0.013054 -0.0537988 14.458448 0.0458812

1.0×10-1 -0.0742894 -0.1159625 14.416017 0.0846497

5.0×10-1 -0.8165663 -0.8913279 14.224525 0.2549007

1.0×100 -2.4426024 -2.5690713 14.198433 0.2681601

Our results, ( )D / µ against η are of decreasing trend unlike [3, 7, 
and 16] in magnitude. Also, our report which was a complex value, 
having phase angle ( )e B,  ,  k Tα η η  and module values ( )

DT
D / µ

against η; their results were only and positive values [3,10, 19].

In Figure 3, we plotted the phase angle, ( )e B,  ,  k Tα η η  against η; 
when ηe =0.01 eV and T=4.2K. The Eqn.(15) was used for calculating 
( )e B,  ,  k Tα η η  in Table 2. It could be inferred from Figure 3, that at 

η≈ 1.0×10-3, the value of ( )e B, ,k Tα η η  reached to minimum value of ≈ 
-0.05 radian. Eqn.(15) concluded that (i) when ( )e B,  ,  0k T ,α η η →  
the imaginary component, ( )e B,  ,B 0 k Tη η → │i.e vanishes.

(ii) When ( )e B,  ,  k Tηα η →maximum, the real component 
of DMR vanished. This corresponds to the value of η→1.0. In 
the intermediate values of η between 1.0×10-3 to 1.0, the angle 
( )e B,  ,  k Tα η η  has definite value, as indicated in Figure 3.
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Figure 2b Variations of Module of Complex (DMR), │ (D/µ) │DT in volts 
against η with heavily doped case at T=4.2K and ηe= 0.05 eV; when η varies 
from 10-3 to 100.

Figure 3 Variations of the phase angle, α (η, ηe, kBT) (in Rad) between real 
and imaginary parts of complex |[(D/µ)]_DT | (η, ηe, kBT) in volt against η for 
ηe= 0.01 eV and T=4.2K.

Table 2 Comparative values of complex (Einstein ratio) of a degenerately 
doped semiconductor with band tail

     

Computed from data   Given in table-1

1.0×10-3 1.6737246 0.26228808

5.0×10-3 0.697946447 -0.471937

1.0×10-2 0.368183658 -0.662195371

5.0×10-2 0.074175186 -0.863603178

1.0×10-1 0.036423126 -0.935081707

5.0×10-1 0.005575 -1.2349097

1.0×100 0.002023205 -1.296427157

Conclusion
We have demonstrated the effect of disordered density-of-states 

(DOS) functions on the complex Diffusivity-Mobility Ratio (DMR) 
for a semiconductor. The approach is general and relies on the energy 
spectrum and its corresponding (DOS) function having tails. The 
newly derived analytical expression for the complex (DMR) were 
based on both real and imaginary (FIs) and their derivatives for a 
disordered semiconductors. It was shown analytically via the phase 
angle, ( )e B,  ,  k Tα η η , when the real and imaginary components were 
vanished. In the intermediate values of η between 1.0×10-3 to 1.0, 
the phase angle α has some definite value, showing the existence of 
comples(DMR). Figure 2b shows that for the higher degree of heavy 
doping with ηe = 0.05 eV, the magnitude of ( ) ( )e BDT

D / µ , ,k Tη η is 
higher than Figure 2a, where ηe = 0.01 eV.
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