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Abstract

The present manuscript exhibits a simple analytical model for the evaluation of the Einstein
Relation(ER) of a disordered semiconductor having band-tail in energy spectrum as well
as density-of-states (DOS) functions, through the presence of exponential and error
functional behavior with respect to Normalized energy(E/m,), demonstrates a complex
functions, containing both real as well as imaginary terms of different Fermi-Integrals (FIs)
and their derivatives. Their module provides an oscillatory function of[n,ne,kBT:l . The
total ER, over the entire energy regions (00 > E > —0) of the band-tail curve is described
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as Cumulative Effects denoted a complex value. On the other band, the same ER for the

positive and negative energy region of the band of the band-tail curves are known as the
Distributive Effects in the band-zone and tail zone, respectively. The distributive effects
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are real and positive values. The Cumulative effect is a sum of the two distributive effects

which has no mathematical justification. These contradictions are systematically explained

with the proper justification in the manuscript.
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Introduction

In the context of current advanced technologies, reliable theories
clucidating the electronic phenomena, such as created in devices,
like homojunction, heterojunction, bipolar and field- effect decides,
solar cells with degenerately doped and uniform structures are highly
important in the field of solid-state electronics.'® With the advent
of MBE, MOCVD, PLL and other experimental techniques for the
development of doped semiconductor materials;”® the impact of
energy spectrum and the density- of- states (DOS) functions are of
paramount importance. It has been well established that the charge
transport phenomenon in heavily doped disordered semiconductor
are not fully characterized by the conventional current-continuity
equation.”!? In a semiconductor, the doping concentration (Ni) that
satisfies the relation for heavily doped case,f aD.Ni” 3) > l.Oj],\!where
a, is the Bohr’s radius of impurity state.'” The calculations of the
Fermi-energy (E,) and the Fermi-Integrals (FIs) in heavily doped cases
are emerging as a challenging area of research and development.'> To
the best of our knowledge, the study of the Fls in energy-spectrum
and the density -of-states function with tail have not been made as yet
in literatures.!®'* It was reported recently15 that the FI of the (DOS)
functions in a degenerately doped disordered semiconductor; showing
band-tail in energy spectrum as well as in (DOS) functions, through
the presence of exponential and error functional behavior with respect
to (E/m,); [where (E) is the electron-energy and (n ), the impurity
screening potential]; demonstrates a complex functions, containing
both real as well as imaginary terms of different (FIs). Their module
provides an oscillatory function and a phase angle of the functions of
[n,ne,k BT] , where 1 is the reduced Fermi-energy, T is the absolute
temperature and kj is the Boltzmann constant.

Understanding the diffusion co-efficient (D) and the mobility (p),
one has attributed to considerable attention®!° due to its significance
in device applications. Many attempts have been made to derive
at a simple relation between (D) and (p) ratio (i.e.DMR); also
widely known as Einstein relation (ER) for the case of a disordered
semiconductor. Possible simple model for (DMR) as suggested in
literatures,'*'® are thermodynamically, independent of scattering
mechanisms. The diffusivity-mobility ratio was more accurate than
the individual relationships for diffusivity and mobility."

Among the various models, proposed for (DMR) the most
important recent works that had been carried out by Roichman &
Nessler,* Copuroglu & Mehmetoglu,'” and Atanu Das & Arif Khan."
In; the (ER), in the low density limit, is given by D/p=k,T/|e],
calculated for a Gaussian density —of- States function (having not
a tail),and also valid for organic semiconductors and few other
amorphous semiconductors. Further, their model was valid for the
energy distributions, smaller compared to the Fermi-energy (E)),
when the Fermi-Dirac distribution is approximated to a Boltzmann-
distribution function. In' authors provided a simple analytical
model for the evaluation of (ER) for disordered semiconductor with
exponential distribution of the tail-states. The proposed analytical
method was based on the binomial expansion of the (FD) distribution
function (FD) or Fermi-functions and the square root of the energy
band-states. In authors have calculated numerically the (ER), for
heavily doped semiconductors exhibiting band gap narrowing.'” The
numerical calculations have shown that DMR are dependent on a
host of semiconductor parameters including the temperature, carrier
degeneracy etc.

In our earlier work,” we showed for the first time, the (DOS)
functions, having tails through the presence of the exponential and
error functions along with the tails in the energy spectrum. Their
module provides an oscillatory function and phase angle of a function
of n =E;/KgT, the reduced Fermi energy. Further, we made no
alteration of the FD distribution as in® as well as binomial expansion
of the FD.!* Therefore, we might conclude that the above calculations
of the DMR were not exact enough. An exact equation of the ER
should be made without considering any approximation to the (DOS)
tail calculations as well as the FD distribution functions. Taking the
aforesaid issues into account, present study aims to provide an useful
general analytical model, based on the complex Fermi-Integrals
FlIs derived in for the evaluations of the ER is a heavily doped
semiconductor.'?

Theory and basic formulae

In the limit of non-degeneracy, satisfying the relation
[002 < (aDNi”3) < 1-0} ' the Einstein relation ER can be written

as:'?
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D/p=KgT/|e (1)
where, D denotes diffusivity of the semiconductor

T is the temperature in absolute degree, Kyis the Boltzmann
constant and the electron mobility (u),|e| is the electron charge.
Mukherjee?'*> and Co-workers proposed a new generalized form
of ER for the disordered semiconductor. This is also known as the
Diffusivity-Mobility Ratio (DMR). This relation of DMR is valid for
all scattering mechanisms and all the conditions of in homogeneity at
uniform temperature. The ER/ DMR as defined for a non-degenerately
doped semiconductor is given as the ratio:'

D, kgT
n :ﬁ[ﬁ/z(n)/ﬁvz(n)} 2)

My

E . . .
where, 1 :ﬁ, is the reduced Fermi-energy (E;) and Fj(n)is

B
the Fermi-integrals (Fls) of order (j) with j=1/2 and j= -1/2. It might

be noted that Eq. (1) can be obtained from Eq.(2) in the limit, when
n—0.

Analytical evaluation of the general (er) of a
degenerately doped dis-ordered semiconductor with
band-tail

It has been seen ecarlier’® that the (FIs) are complex in nature
of degenerately doped disordered semiconductors. More over the
derived energy-spectrum as well as the (DOS) functions possesses
tails; containing error functions and the exponential function of (E/
n,)- The parameter n_ reflected the width of the conduction band —tail.
The tail generally extended within forbidden band.

Therefore, the new generalized form of DMR of a degenerately
doped semiconductor with band-tail are given for: Np

— -1
(D/n),. =1‘|%|T ﬁD.[%mJ 3)

Where, ND has two parts: real (ND, ) and imaginary (ND, )
represent to

ND = ND, + ND, (4)
L — -l — !
ONp _ 8ND1 . 8ND2 )
o on on

Following'® we have:

NDl
—55 =D (MMe,kgT (6)
[(kBT)3/2‘| %R( B )
= Real function of the degenerately doped (FI).
And
_Nox _|_ip K.T 7
O (nne.k5T) ™)
(ksT) m
© =8, —exp(—n).S, (8)
Where
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DII _ Imaginary part of the degenerately doped (FI) with
m

2
i=v-1.

From Eqn.4, we find: the following'"

Total carrier concentration, ED (00 > E > —0) ,over the entire zone
of energy (E) = [Partial carrier concentration, N:Dl(oo >E>0,) over
the positive energy region or zone] + [partial carrier concentration,

Np 5 (0_ > E >—o0) over the negative energy region or zone] (9)

Now, Npis the total FI over the entire energy (E) ie
(0>E2-0)= [N_D] is the total FI over the positive energy(E) region

ie (0>E>0,)+[N, 5 is the total FI over the negative energy region
ie (0_>E>-0)](10)
Differentiating Eqn. (10) with respect to 1, on both side,

we find _ — —

ON ON

ONp _9p, 9T, a1
on on on

Therefore, from Eqns. (3)-(5), we have

(D/w) ,, = Total (DMR)

— -1
kT OND
el on
_kyT| Moy +No, (12)
e| 6ND1 4 6ND2
671 an

From Eqns (6), (7) and (12), we have

(D1R+iDIIm]
_ksT 12 21 (13)
|e| 0D—R éD—/Im
+1

an on
Therefore, we find from Eqn.(13) that

(D/w) ,, = Total (DMR) or total Einstein Relation (ER) of a
degenerately doped with band-tailing conditions of a parabolic band
semiconductor is a complex value.

T
= W[A(n,ne,kBT)J
Taking the module of (D/p)

(o=
M |

le
with

(14
o from Eqn(14), we may write:

{[\/Az (nme,ksT)+ B? (n.me,kpT) } * Cos[a(n,ne,kBT)]}

(15)

a=Tan™' [ B(n,ne,ksT)/ A(n,ne,kyT)]in radian It might be

noticed that the unit of [2] DT]| is volt and the angle a is determined

n
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in Radian.

From Eqns.(6), we find

[B]—%T. Np, m;?l (valid for(eo > E >0,)) (16)
1 -1
oD—R
kT plpl 2
= |e| D2R. on

= a real and positive value.

Similarly, from Eqn.(7), we can show

-1
—— [ ON

[C]_k|L|T. NDz{WD]] (valid over (0_>E>-0)

€

[ oiD,Im )"

iD,Im,| —2—

kyT
d | 3 on

oD, Im\ "

= D,Im Z
lel | 5 o

amn

=a real and positive value

Therefore, we designate [B]:k'i{NDl..ai(NDz)'l}as the
M

&

“Distributive effect” over the energy region (0>E>0,) (ie, the
Band-zone (BZ))

Similarly, we may write:
kgT|5— 0 — Y il g »
[C]=— Np,.——(Np,)™ | as the “Distributive effect” over
el on
the energy region (0 _>E>-0) (i.e, the Tail-zone (TZ).

From Eqn.(14), we get the Total (DMR) as the “Cumulative Effect”
over the entire energy region i.e, (c0>E> -0), we may designate it as
[A] and in general “A” is complex value.

Therefore, we can observe from Eqns, (13), (14), (16) and (17) that
[A] is a complex value [Cumulative Effect]

[B] is a Real and positive value [Distributive effect]

[C] is a Real and positive value [Distributive effect] (18)
Therefore, we can write Eqn(18) as

[A]#[B]+[C] (19)

(i.e, Total “Cumulative Effect” # the sum of the two “Distributive
effect”

From Eqn.(19), we find that it might be a contradictory statement
of a physical system, of degenerately Doped with band-tailing
semiconductor.

The physics of the contradiction could be given as under
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The Fermi-Dirac (FD) distribution for ND, , the energy(E) is valid
from i.e (0>E>0,) (BZ)

The Fermi-Dirac (FD) distribution for ND, , the energy(E) is
valid from i.e , (0 >E>-00),(TZ)

In order to demonstrate the above (i.e Eqn (19)) phenomena, we
have drawn a Figure 1 with different colors to distinguish the various
effects.

(A) Total (DMR) covers the entire energy region i.e, (c0>E> -c0),
covered by the solid band-tail curve: carriers are distributed as Yellow
and Violet color region [Cumulative Effect].

(B)Total (DMR) over the positive energy region i.e, (cc>E>0,)
indicated by dotted curve: carriers are distributed in Yellow and Green
color region, this zone is named as Band-zone (BZ) and the effect is
[Distributive effect].

(C) Total (DMR) cover the negative energy region i.e, (0 >E>-
o),indicated by solid curve: that is extended in the band-tail region:
here, carriers are distributed as violet color region, This zone is named
as Tail-zone (TZ) and the effect is [Distributive effect].

Now, Eqn.(19) can also be proved from Figure 1 in the following
way:

Figure 1 shows that the “Green color carriers lie outside the solid
Band-Tail curve and within the dotted curve regions. Here, This
carriers the physically do not exist. So, we designate Green color zone
as the (FmZ) (i.e, forbidden mobility carrier zone) where the carrier
mobility is imaginary.
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Figure | Color graphs are plotted for (a) Normalized Density —of- states
(DOS) function against the normalized energy (E/ 77e); when the semiconductor
is not heavily doped (Dotted line) [Yellow + Green].

(b) Normalized Density —of- states (DOS) function curve with Band-Tail,
denoted by solid thick curve, against normalized energy(E/ ne); [Yellow +
Violet] color for the case, semiconductor is headily doped.

We have seen from above discussion that Eqn(19) is a contradiction,
mathematically.

Also, in Figure 1, the Green color zone i.e (Fmz) is a contradiction
of a physical system. Similarly, from physics point view, we have
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discussed above the existence of the contradiction based on the Fermi-
Dirac distribution functions for ND, valid for (:0>E>0,) and ND,
valid for (0 >E>-0).

Results and discussion
From Fig.1, we can draw the following points:-

1. Color graphs are plotted for normalized Density-of-States (DOS)
function, (indicated by the dotted line), against normalized energy,
when the semiconductor is not heavily doped. In this case, the
mobile carriers are shown by [yellow+Green] colors region and
the mobility of the carrier are [Real and positive value]. In this
case, no-tail is present, as shown. This is called as the Band-zone
(B2).

2. When the semiconductor is degenerately doped, the normalized
(DOS) function curve is denoted by the solid-thick curve,
including the tail curve. In this case, Tail is present along with
the (DOS) one. The mobile carriers are shown by [violet] color
region. Here, the mobility is real and positive and the zone is
named as Tail-zone (TZ).

3. But because of tailing, the [Green] color zone does not enclosed
within the solid curve, rather enclosed within solid and dotted
curves. So, in this region, carrier mobility do not exist physically,
i.e., the carrier mobility is an imaginary value. Hence, we might
denote it as the (FmZ) = Forbidden mobility zone; i.e, the zone
where the mobility could be imaginary

In Figure 2a, we have plotted the module of complex (DMR),
‘[(D / p)DT (n, MNe» kBT)] against (n), for (n,) =0.01 eV and T=4.2K,
using Eqns (13) and (14).
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Figure 2a Variations of Module of Complex (DMR), | (D/p) | DT in volts
against 1 with heavily doped case at T=4.2K and ne= 0.01 eV; when 1 varies
from 10-3 to 100.

For complex (DMR), the “Data” that required in Eqn.13, are
provided from Table 1 for various values of n. Finally, in Table 2, , the
module of | |(D / u)|DT (n, MNe» kBT)| in volts] are calculated against 1,

as well as the phase angle, in [oc(n, MNe» kBT)J (radian). Thus “Data”

obtained from Table 2, were plotted in Figure 2a for various values of
n with n, =0.01 eV and T=4.2K. Similar plots are made in Figure 2b,
against 1, with n  =0.05 eV and T=4.2K in order to observe the effect
of n, on |DMR|.

Table I Comparative result of Fermi-Integral functions obtained by computer calculations

Real Functions

Imaginary Functions

n=EyKgT
= D, (n.neKgT 0 i [ } d
N =0.01eV %R( 1) —{ D1, (nneK,T) tby (e, T) | D1, (nmeK,T)
—R —Im
T=42K 2 2 2
1.0x10° 0.036397 0.0008227 14.505143 0.0030341
5.0x107 0.032393 -0.003395 14.501133 0.00672
1.0x102 0.027335 -0.0087601 14.496171 0.0112797
5.0x10° -0.013054 -0.0537988 14.458448 0.0458812
1.0x10" -0.0742894 -0.1159625 14.416017 0.0846497
5.0%10" -0.8165663 -0.8913279 14224525 0.2549007
1.0x10° -2.4426024 -2.5690713 14.198433 0.2681601

Our results, |(D / p)| against 1 are of decreasing trend unlike [3, 7,
and 16] in magnitude. Also, our report which was a complex value,
having phase angle a(n, 1, kgT) and module values |(D/ u)|DT
against n; their results were only and positive values [3,10, 19].

In Figure 3, we plotted the phase angle, a.(n, n,, kT) against n;
whenn, =0.01 eV and T=4.2K. The Eqn.(15) was used for calculating
a(n, N, kgT) in Table 2. It could be inferred from Figure 3, that at

1= 1.0x10%, the value of o (n,n,,kT) reached to minimum value of =
-0.05 radian. Eqn.(15) concluded that (i) when |(X(T], MNe» kBT)| -0,
the imaginary component, |B(n, MNe» kBT)| -0 | i.e vanishes.

(i) When |0L(n, MNe> kBT)|—>maXimum, the real component
of DMR vanished. This corresponds to the value of n—1.0. In
the intermediate values of m between 1.0x107 to 1.0, the angle
a(n, N, kpT) has definite value, as indicated in Figure 3.
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Figure 2b Variations of Module of Complex (DMR), | (D/u) | DT in volts
against 1 with heavily doped case at T=4.2K and ne= 0.05 eV; when 1 varies
from 10-3 to 100.
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Figure 3 Variations of the phase angle, a (1, ne, kBT) (in Rad) between real
and imaginary parts of complex |[(D/w)]_DT | (n, ne, kBT) in volt against 1 for
ne=0.01 eV and T=4.2K.

Table 2 Comparative values of complex (Einstein ratio) of a degenerately
doped semiconductor with band tail

n=E;KgT D .
1. =0.0leV ‘(EJDT (n.me,KgT) involt a(n,ne,KBT) in Rad.
T=4.2K
Computed from data Given in table-1
1.0x10° 1.6737246 0.26228808
5.0x107 0.697946447 -0.471937
1.0x107 0.368183658 -0.662195371
5.0x107 0.074175186 -0.863603178
1.0x10"! 0.036423126 -0.935081707
5.0x10" 0.005575 -1.2349097
1.0x10° 0.002023205 -1.296427157
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Conclusion

We have demonstrated the effect of disordered density-of-states
(DOS) functions on the complex Diffusivity-Mobility Ratio (DMR)
for a semiconductor. The approach is general and relies on the energy
spectrum and its corresponding (DOS) function having tails. The
newly derived analytical expression for the complex (DMR) were
based on both real and imaginary (FIs) and their derivatives for a
disordered semiconductors. It was shown analytically via the phase
angle, (x(n, ., k BT) , when the real and imaginary components were
vanished. In the intermediate values of 1 between 1.0x107 to 1.0,
the phase angle o has some definite value, showing the existence of
comples(DMR). Figure 2b shows that for the higher degree of heavy
doping with n, = 0.05 eV, the magnitude of |(D / u)|DT (n,ne,kBT) is
higher than Figure 2a, where n, = 0.01 eV.
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