Introduction

In this brief paper, we examine the Universal Parametric Equation as an Alexander Knot. We see that there is a topological invariant of “1” which of course, is equal to the Energy and time in Astrotheology (Figure 1).

![Figure 1 The universal parametric equation.](image)

The Universal Parametric Equation:

\[(x, y) = \sin(t) + 1/3\cos[17t + \pi/3] \sin[17t + \pi/3]\]

Let \[t = 1\]

\[= 1.158^2 + (-7193)^2 = 1.858\]

\[= 1 + \sin 59^0\]

\[\approx \text{Moment.}\]

\[R = \sqrt{\text{Mom.}} = \sqrt{1.858} = 1.363\]

But \(R = 2\)

So \(R = \sqrt{\text{Mom.}} / 2 = 68.15 = 2\sigma\)

Alexander’s polynomials

Reef or granny know

\[x^2 - 2x + 3 - 2/x + 1/x\]

Let \(x = t = 1\)

\[= 1^2 - 2(1) + 3 - 2/1 + 1/1\]

\[= 1\]

In fact, all of Alexander’s Knots result in the same answer -1, including the unknot.

The unknown is a circle. So the universal parametric equation is a knot.

Euler’s formula for polyhedra

\[F - E + V = 2 \Rightarrow R^2 = x^2 + y^2\]

For a circle Face \(F = 2\), Edges \(E = 0\), Vertices \(V = 0\)

\[2 - 0 + 0 = 2 \text{ True!}\]

\[R = \sqrt{2}\]

This is the 45° triangle where \(E = t = 1\)

\[R^2 = x^2 + y^2 = a^2 + b^2 \text{ (Pythagoras)}\]

\[\sqrt{2} + \sqrt{2} = 2\sqrt{2} = 4 = |D|\]

\[a^2 + b^2 = c^2 \Rightarrow 1^2 + 1^2 = c^2\]

\[c = 2 = dM / dt\]

Conclusion

We see that once again Occam’s razor applies this time to Topology and astrotheology.

Acknowledgments

None.

Conflicts of interest

Author declares that there is no conflicts of interest.

References

