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Scanning electron microscopy (SEM) is widely used for characterizing the surface
morphology of nanostructured biomaterials, drug delivery systems, and biomedical
devices at micro- and nanoscales. Despite its ability to provide high-resolution structural
information, the interpretation of SEM images remains largely dependent on manual
analysis, which is time-consuming and susceptible to operator-dependent variability.
Recent advances in artificial intelligence, particularly deep learning approaches based on
convolutional neural networks (CNNs), have created new opportunities for automated and
reproducible analysis of SEM data. This review critically examines recent studies that apply
deep learning techniques to SEM image analysis in nanomedicine and biomedical materials
research. Core principles of CNN-based image analysis are briefly introduced, followed
by an overview of commonly investigated morphological features and classification tasks.
The review discusses reported strategies for dataset construction, image preprocessing,
model training, and performance evaluation, highlighting both methodological trends and
recurring limitations in the literature. Key challenges, including limited dataset sizes, non-
independent data sampling, variability arising from imaging conditions, and issues related
to model interpretability and generalizability, are also addressed. Finally, the review outlines
future directions for improving the robustness and translational relevance of Al-assisted
SEM analysis, with particular emphasis on reproducibility, validation across instruments,
and potential applications in preclinical research and quality control.
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are inherently time-consuming and subject to inter- and intra-
observer variability, particularly when analyzing large datasets or
when morphological differences between samples are subtle.” These
limitations pose significant challenges in high-throughput research
settings and industrial environments, where objective, rapid, and
reproducible analysis is increasingly required.

Introduction

Advances in nanomedicine and biomedical materials science
increasingly depend on the precise design and characterization of
structures at the micro- and nanoscale. Morphological properties
such as surface topography, porosity, particle shape, fiber alignment,
and coating uniformity extend beyond purely structural descriptors,
as they directly influence biological interactions including protein
adsorption, cellular adhesion, inflammatory responses, and drug

In parallel with advances in imaging technologies, artificial
intelligence (AI) has emerged as a powerful framework for the analysis

release behavior.!? For this reason, imaging techniques capable
of resolving fine structural details play a central role across the
translational pipeline, from material development and preclinical
evaluation to manufacturing and quality control.

Among available imaging modalities, scanning electron
microscopy (SEM) remains one of the most widely used techniques
for morphological characterization of biomedical materials. Its high
spatial resolution, large depth of field, and versatility have established
SEM as a routine tool for the analysis of nanofibrous scaffolds,
porous matrices, implant surface coatings, pharmaceutical particles,
and micro- and nano-engineered medical devices.*® By enabling
direct visualization of surface features and structural organization,
SEM provides insights that are often inaccessible through bulk or
ensemble-averaged analytical methods.

Despite these advantages, SEM image interpretation in biomedical
research is still predominantly performed through manual inspection
by trained experts. Morphological assessments are frequently
qualitative or semi-quantitative, relying on visual judgment to
identify structural features, defects, or irregularities. Such evaluations

of complex biomedical data. Machine learning (ML), and in particular
deep learning (DL), has demonstrated strong performance in diverse
medical imaging domains, including radiology, digital pathology, and
ophthalmology.®'® Convolutional neural networks (CNNs), which
are specifically designed for image-based tasks, have become the
dominant architecture for visual classification, segmentation, and
feature extraction. Unlike traditional image analysis approaches that
rely on handcrafted features, CNNs learn hierarchical representations
directly from pixel-level data, enabling the identification of complex,
multiscale patterns.

More recently, DL-based methods have begun to attract attention in
the context of SEM image analysis. SEM images contain rich textural
and structural information, making them well suited for CNN-driven
approaches. An increasing number of studies have reported the use
of DL models for tasks such as nanostructure classification, surface
defect detection, particle segmentation, and discrimination between
biomedical materials based on SEM-derived morphology.""!* These
studies suggest that Al-assisted SEM analysis has the potential to
reduce subjectivity and improve the efficiency and consistency of
morphological characterization workflows.
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From a translational perspective, the integration of DL with SEM
is particularly relevant for nanomedicine and biomedical materials
development. Automated and reproducible analysis of SEM images
could support standardized evaluation of implant surfaces, scaffold
architectures, and drug delivery carriers, thereby contributing to
manufacturing consistency and quality assurance. In addition, data-
driven approaches may enable more systematic screening of design
variables, facilitating the optimization of materials intended for
clinical use.

However, several methodological and practical challenges
currently limit the broader adoption of DL-assisted SEM analysis.
SEM image characteristics are highly sensitive to acquisition
parameters such as accelerating voltage, working distance, detector
configuration, and sample preparation protocols. Variations across
instruments and laboratories can introduce domain shifts that degrade
model performance and restrict generalizability.'* Furthermore,
many published studies rely on relatively small, highly curated, or
non-independent datasets, raising concerns related to selection bias,
overfitting, and limited external validation.

Model transparency and interpretability represent additional
critical considerations, particularly in biomedical applications. It is
essential to understand which image features drive model predictions
and to ensure that performance is not influenced by confounding
factors such as scale bars, imaging artifacts, or instrument-specific
signatures. Recent guidelines for Al-based biomedical research
emphasize the importance of transparent reporting of data sources,
preprocessing steps, model architectures, and evaluation protocols in
order to promote reproducibility and trust.'

Given the rapid growth of research at the intersection of SEM,
deep learning, and nanomedicine, a structured and critical synthesis of
the literature is timely. The objectives of this review are to:

(i) outline the methodological foundations of deep learning—based
SEM image analysis;

(i) summarize SEM-derived morphological features relevant to
biomedical and nanomedical applications; and

(iii) critically assess current limitations and emerging opportunities
for robust and translational implementation.

Representative SEM morphology classes and their biomedical
relevance are summarized in Table 1, while an overview of a typical
Al-assisted SEM analysis workflow is provided in Figure 1.

Deep learning methodologies applied to SEM
images

Data acquisition and dataset construction

The performance and generalizability of deep learning models
are strongly influenced by the characteristics of the datasets used
for training and evaluation. In studies involving scanning electron
microscopy, datasets typically consist of images acquired under
heterogeneous experimental conditions, including variations
in magnification, detector type, accelerating voltage, working
distance, and sample preparation protocols. While such diversity
can, in principle, promote model robustness, insufficient control or
documentation of acquisition parameters may introduce confounding
factors that obscure true morphological learning and negatively affect
reproducibility.'®

In biomedical SEM applications, dataset construction often relies
on manual curation to ensure acceptable image quality. Images are
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commonly selected based on criteria such as adequate resolution,
proper focus, and limited presence of imaging artifacts. Samples
exhibiting severe charging effects, contamination, or excessive noise
are frequently excluded to facilitate stable model training and to reduce
the risk of learning spurious correlations.'"!* Although this practice
improves internal consistency, it may also lead to overly curated
datasets that do not fully reflect real-world variability encountered
across laboratories or instruments.

Annotation strategies vary widely across the literature. Labels are
often assigned based on visual morphology (e.g., fibrous, particulate,
porous structures) or according to processing- or function-related
categories, such as coated versus uncoated surfaces. In some cases,
annotations are derived from expert judgment without explicit
quantitative criteria, introducing subjectivity and inter-observer
variability. The lack of standardized labeling conventions remains a
major limitation and complicates direct comparison of reported model
performance across studies.

Dataset size and sample independence represent additional
methodological concerns. Many published studies rely on relatively
small datasets, often comprising tens to a few hundred SEM images.
To compensate for limited data, patch-based extraction from larger
images is frequently employed. While this approach increases the
number of training samples, it can inadvertently introduce non-
independent data points if patches derived from the same original
image are distributed across training and testing sets. Such data
leakage may lead to inflated performance estimates and overoptimistic
conclusions regarding model generalization. Explicit reporting of
specimen-level data splitting and dataset composition is therefore
essential for meaningful evaluation.

Preprocessing and data preparation

Preprocessing is a critical step in ensuring consistency among
SEM image inputs and enabling reliable deep learning model training.
Common preprocessing operations include resizing images to uniform
spatial dimensions and normalizing pixel intensity values to a defined
range. Although SEM images are intrinsically grayscale, some studies
retain three-channel representations to maintain compatibility with
convolutional neural network architectures pretrained on natural
image datasets."” While this strategy facilitates transfer learning, it
does not inherently introduce additional morphological information
and should be interpreted with caution.

Beyond basic normalization, SEM-specific preprocessing
considerations are often underreported. Differences in magnification,
pixel-to-length calibration, and field of view can substantially affect
feature representation, particularly in texture-dominated classification
tasks. Inadequate normalization of spatial scale may cause models
to associate morphology with magnification rather than intrinsic
structural characteristics. Similarly, frequency-domain biases arising
from detector configuration or noise filtering can influence learned
representations and limit cross-instrument applicability.

A persistent methodological issue is the inclusion of image
elements unrelated to sample morphology, such as scale bars, textual
annotations, and manufacturer logos. If retained during training,
these features may serve as unintended shortcuts for classification,
enabling models to exploit acquisition-specific cues rather than
genuine morphological differences. This phenomenon can result in
artificially high performance metrics that fail to reflect true predictive
capability.’® As a result, careful cropping, masking, or removal of
non-morphological regions is strongly recommended prior to model
training.
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CNN architectures and training strategies

A wide range of convolutional neural network architectures has
been applied to SEM image analysis, encompassing both custom-
designed models and transfer learning—based approaches. Custom
CNN architectures offer flexibility and reduced computational
complexity, making them suitable for smaller datasets commonly
encountered in SEM studies. In contrast, pretrained architectures such
as ResNet, VGG, and EfficientNet leverage feature representations
learned from large-scale natural image datasets and may improve
convergence when appropriately fine-tuned.'*?

However, the substantial domain differences between natural
images and SEM data warrant careful consideration. SEM images
are dominated by texture, contrast, and surface topology rather
than object-centric shapes, which form the basis of many pretrained
representations. Consequently, transfer learning may yield suboptimal
feature extraction if early layers are not adequately adapted or if
domain mismatch is not explicitly addressed. Comparative analyses
of architecture suitability for SEM-specific tasks remain limited in
the literature.

Model training is typically conducted using gradient-based
optimization algorithms such as Adam or RMSprop. Hyperparameters
including learning rate, batch size, and number of training epochs
strongly influence convergence behavior and generalization
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performance.?’ To mitigate overfitting—particularly in scenarios with
limited or non-independent data—regularization strategies such as
dropout, batch normalization, and data augmentation are frequently
employed. Nevertheless, the effectiveness of these techniques is
rarely evaluated systematically across studies.

Evaluation practices reported in the literature remain
heterogeneous. Overall classification accuracy is often presented as a
primary metric, yet it provides limited insight in multi-class settings
or in the presence of class imbalance. More informative evaluation
strategies include class-wise precision and recall, macro-averaged F1-
scores, confusion matrices, and, where possible, external validation
on independent datasets. The absence of statistical significance testing
and cross-instrument validation further limits the interpretability and
comparability of reported results (Table 1).'

Table 1 Summarizes representative SEM-derived morphological
categories that are frequently reported in nanomedicine and
biomedical materials research, together with typical application
domains and associated functional relevance. The classification
adopted in this review is intentionally morphology-driven rather than
material- or chemistry-specific. This choice reflects the nature of
image-based deep learning workflows, which primarily rely on visual
patterns such as texture, topology, and spatial organization rather than
compositional information.

Table | Representative sem-derived morphological categories commonly investigated in nanomedicine and biomedical materials research, together with typical

application areas and functional relevance.

SEM morphology

Representative applications

Biomedical relevance

Nanofibrous structures Tissue engineering scaffolds

Porous architectures Regenerative biomaterials
Coated surfaces

Patterned surfaces
Particles / powders Drug delivery systems

MEMS / electrode structures Implantable devices

Implants, drug-eluting devices
Biosensors, cell-instructive substrates

Cell adhesion, alignment, guidance
Nutrient diffusion, tissue ingrowth
Biocompatibility, controlled release
Modulation of cell response
Dissolution, biodistribution

Signal stability, device reliability

Nanofibrous and porous structures are grouped according to their
dominant architectural features, as these morphologies are commonly
investigated in tissue engineering and regenerative medicine. Although
these categories are visually distinct at certain magnifications,
substantial intra-class heterogeneity exists, arising from variations in
fiber diameter, pore size distribution, and structural anisotropy. Such
heterogeneity can complicate supervised classification tasks and may
limit the separability of classes in CNN-based models unless scale and
imaging conditions are carefully controlled.

Surface-engineered materials, including coated and patterned
substrates, are treated as separate categories due to their relevance
in implant technologies and biointerface design. In these systems,
relatively subtlemorphological differences—suchas coating continuity,
pattern fidelity, or edge definition—can have disproportionate effects
on biological response and long-term functionality. From a deep
learning perspective, distinguishing meaningful surface features from
imaging artifacts remains a key challenge.

Particle- and powder-based systems represent an important class of
pharmaceutical and nanomedicine formulations. In these applications,
particle size, shape, surface roughness, and aggregation state strongly
influence dissolution behavior and biodistribution. However, reported
morphology classes often span wide size ranges and imaging
magnifications, which can hinder consistent feature learning across
datasets.

Finally, micro- and nano-fabricated components, including MEMS
structures and electrode geometries, are presented as a distinct category.
These systems are increasingly relevant for implantable sensors and
biomedical electronics, yet their complex geometries and strong
dependence on imaging parameters can challenge generalization of
CNN-based approaches across instruments and laboratories.

Overall, the categories summarized in Table 1 should be regarded
as conceptually useful but not universally separable. Explicit reporting
of imaging conditions, scale, and quantitative descriptors is essential
when these morphology classes are used as targets for supervised
deep learning (Figure 1).

Figure 1 presents a conceptual overview of a typical deep learning—
assisted SEM image analysis workflow. The figure is intended as a
generalized framework rather than a prescriptive pipeline, as specific
implementations vary widely across studies and applications. The
workflow begins with SEM image acquisition, a stage at which
variations in magnification, detector configuration, accelerating
voltage, and sample preparation protocols can introduce substantial
variability into the dataset.

This acquisition-related heterogeneity underscores the importance
of preprocessing, which aims to reduce non-morphological sources
of variation and to standardize image inputs prior to model training.
Following preprocessing, convolutional neural network—based models
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are applied for automated feature learning. Through hierarchical
representation learning, CNNs extract texture- and topology-related
features directly from pixel-level data, without reliance on manually
defined descriptors.

As illustrated in Figure 1, model evaluation constitutes a critical
intermediate step and extends beyond single summary metrics. Class-

SEM Image
Acquisition

Preprocessing
Learning

CNN-Based Feature
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specific performance measures are necessary to assess reliability
across different morphology categories and to identify systematic
failure modes. In many published studies, this stage is limited by
the absence of independent external validation, which restricts
conclusions regarding generalizability.

Model Evaluation Interpretation & Application

» Feature Extraction

» Magpnification & Detector
* Sample Preparation
* Raw SEM Images

» Resizing & Normalization
* Noise Reduction
» Artifact Removal

¢ Image Classification

Material
Assessment
: Accuracy . ;
ke JL_' Biomedical
Confusion Insights
| Matrix Y
ali
 Accuracy Metrics g:nt:z

= Confusion Matrix
« Precision & Recall

Figure |1 Conceptual workflow of deep learning—assisted SEM image analysis, illustrating data acquisition, preprocessing, CNN-based feature learning, model

evaluation, and biomedical interpretation.

The final stage of the workflow focuses on interpretation and
application. At this point, model outputs are linked to material
characterization, quality assessment, or design optimization tasks.
For biomedical applications, this step requires careful consideration
of model interpretability and robustness to ensure that predictions
reflect true morphological differences rather than acquisition-specific
artifacts. By explicitly connecting SEM-derived image analysis
with functional and translational objectives, the workflow in Figure
1 highlights both the potential and the current limitations of deep
learning approaches in this domain.

Challenges and limitations of deep learning—
based sem analysis

Despite the encouraging results reported in recent studies, the
integration of deep learning approaches with SEM image analysis in
biomedical and nanomedical research is accompanied by a number
of methodological and translational challenges. Careful consideration
of these limitations is essential to avoid overinterpretation of model
performance and to support meaningful deployment in research,
industrial, or clinical contexts.

One of the most significant challenges arises from variability in
SEM image acquisition. Differences in accelerating voltage, working
distance, detector configuration, and sample preparation protocols can
substantially alter image contrast, texture, and apparent morphology.
While controlled variability may improve model robustness when
adequately represented during training, unaccounted differences
between training and deployment conditions frequently introduce
domain shifts that degrade performance and limit generalizability
across instruments or laboratories.'®!” Although preprocessing
strategies, as outlined in Figure 1, aim to reduce such effects, complete
normalization across heterogeneous acquisition conditions remains
difficult to achieve in practice.

Dataset size and class distribution represent additional constraints.
In biomedical SEM applications, datasets are often limited in scale
due to the cost, time, and expertise required for image acquisition and
expert annotation. Small datasets increase susceptibility to overfitting,
particularly when complex CNN architectures are applied. Moreover,
class imbalance—commonly encountered in realistic biomedical
materials datasets—can bias model predictions toward dominant
categories. In such cases, overall classification accuracy may appear
high while performance on underrepresented but scientifically or
clinically relevant classes remains poor.!* Reliance on accuracy as
a sole performance metric therefore risks masking critical failure
modes.

Model interpretability constitutes another major limitation,
especially in translational and medically oriented applications. CNNs
are frequently characterized as “black-box™ models, as the internal
representations driving their predictions are not inherently transparent.
For SEM-based biomedical analysis, it is crucial to determine whether
model decisions are informed by meaningful morphological features
rather than coincidental patterns. Techniques such as class activation
mapping, saliency analysis, and gradient-based visualization have
been proposed to enhance interpretability; however, their application
to SEM data remains inconsistent and their limitations—particularly
in texture-dominated images—are not always acknowledged."

Closely related to interpretability is the risk of models exploiting
non-morphological visual cues present in SEM images. Elements such
as scale bars, textual annotations, detector-specific noise patterns, or
instrument signatures may inadvertently correlate with class labels.
If these cues are not removed or controlled during preprocessing,
models may achieve high apparent performance by learning
acquisition-specific shortcuts rather than genuine morphological
distinctions. This issue has been increasingly recognized as a source
of artificially inflated performance and underscores the need for
rigorous preprocessing and transparent reporting, in line with recent
guidelines for Al-based biomedical research.!®
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Finally, reproducibility and standardization remain unresolved
challenges within the field. Substantial variation in dataset composition,
labeling schemes, preprocessing pipelines, model architectures, and
evaluation protocols complicates direct comparison across studies.
The lack of publicly available benchmark datasets and standardized
evaluation frameworks for biomedical SEM image analysis further
limits objective assessment of methodological progress and hinders
broader translational adoption.

Clinical and translational implications

Despite the methodological challenges discussed above,
deep learning—assisted analysis of SEM images presents notable
opportunities for advancing nanomedicine and biomedical materials
research, particularly at the interface between experimental
characterization and translational application. By enabling more
automated, quantitative, and reproducible interpretation of nanoscale
morphology, Al-driven approaches may help bridge the gap between
materials design and functional performance assessment.

In the context of implantable medical devices, surface morphology
is a critical determinant of biological integration, corrosion resistance,
and long-term biocompatibility. Parameters such as surface
roughness, coating continuity, and micro- or nanoscale pattern fidelity
are known to influence osseointegration and host response. CNN-
based analysis of SEM images has the potential to support more
standardized evaluation of implant surfaces during manufacturing
and quality control, complementing conventional inspection methods.
Morphology-oriented classification frameworks, such as those
summarized in Table 1, may provide a structured means of relating
SEM-derived features to functional performance indicators relevant
to preclinical testing and device development. However, the role of
such approaches should currently be viewed as supportive rather than
substitutive, pending further validation.

Tissue engineering and regenerative medicine represent another
area where Al-assisted SEM analysis may offer translational
value. Scaffold architecture—including fiber orientation, pore size
distribution, interconnectivity, and surface texture—plays a central
role in regulating cell adhesion, migration, and tissue maturation.
Automated analysis of SEM images could facilitate systematic
comparison of scaffold designs and assist in identifying morphological
features associated with favorable biological responses. In this
context, deep learning approaches may function as research tools that
accelerate iterative design and optimization processes, rather than as
standalone decision-making systems.

Pharmaceutical and nanomedicine formulations may similarly
benefit from deep learning—based SEM image analysis. In particulate
drug delivery systems, particle size, shape, surface morphology,
and aggregation state strongly influence dissolution behavior,
bioavailability, and biodistribution. Automated particle detection,
segmentation, and classification from SEM images could support
high-throughput formulation screening and enhance process
understanding. From a translational perspective, these capabilities may
contribute to improved batch-to-batch consistency and manufacturing
robustness, particularly for complex nanomedicine products where
subtle morphological differences can have disproportionate functional
consequences.

Beyond individual application domains, deep learning—assisted
SEM analysis has broader implications for regulatory science and
standardization. Algorithm-driven interpretation of SEM data may
contribute to more objective and reproducible characterization
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workflows, supporting comparability across studies and manufacturing
sites. Nevertheless, meaningful regulatory or clinical adoption will
require rigorous validation, clear definition of intended use, and
transparent documentation of data provenance, model development,
and performance limitations. Close collaboration among materials
scientists, clinicians, and regulatory stakeholders will be essential
to establish confidence in Al-assisted SEM methodologies and to
determine their appropriate role within clinical development pipelines
and regulatory frameworks.

Future perspectives

The integration of deep learning with scanning electron microscopy
represents a rapidly developing area in nanomedicine and biomedical
materials research. To date, most reported studies have focused on
feasibility demonstrations and proof-of-concept applications. Future
work is expected to expand beyond these initial implementations
toward more robust, generalizable, and translationally relevant
frameworks.

One important direction for future research is the incorporation
of multimodal data. SEM provides detailed surface morphology,
but biological performance is often governed by a combination
of structural, mechanical, and chemical properties. Integrating
SEM data with complementary techniques such as transmission
electron microscopy (TEM), atomic force microscopy (AFM),
or energy-dispersive X-ray spectroscopy (EDS) may enable deep
learning models to jointly analyze morphological, mechanical, and
compositional information. Multimodal learning strategies could
therefore support a more comprehensive understanding of structure—
function relationships in complex biomedical materials, particularly
in systems where morphology alone does not fully explain biological
outcomes.

Another promising avenue involves the adoption of federated
and distributed learning approaches. In biomedical research,
SEM datasets are often fragmented across institutions due to data
ownership, intellectual property, or regulatory constraints. Federated
learning enables collaborative model training without centralized
data sharing by allowing models to learn from decentralized datasets
while keeping raw images local. This strategy may be particularly
well suited to SEM applications, where inter-laboratory variability is
high and access to large, diverse datasets is limited. By leveraging
distributed data sources, federated approaches could improve model
generalizability and reduce sensitivity to instrument- or site-specific
imaging conditions.

Explainable artificial intelligence (XAI) is also expected to play a
central role in the future adoption of deep learning—based SEM analysis.
As models become more complex and are applied in translational
settings, the ability to interpret and validate model predictions will
be increasingly important. Techniques such as attention mechanisms,
saliency mapping, and feature attribution methods can provide
insight into which morphological characteristics influence model
decisions. Improved interpretability will not only enhance scientific
understanding but also support confidence in Al-assisted analysis for
downstream biomedical and regulatory applications.

Standardization represents another critical challenge and
opportunity. The absence of widely accepted benchmark datasets,
annotation guidelines, and evaluation protocols currently limits
objective comparison between studies. Community-driven efforts
to develop well-curated, publicly available SEM image repositories
with standardized morphological labels could substantially accelerate
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progress in the field. Such benchmarks would support fair assessment
of algorithmic performance and promote reproducibility across
research groups.

Finally, advances in computational efficiency and deployment
strategies are likely to expand real-world applicability. The
development of lightweight neural network architectures and edge
computing solutions may enable near-real-time SEM image analysis
directly at the point of acquisition, such as in manufacturing facilities
or research laboratories. These developments could reduce analysis
time, lower computational costs, and facilitate integration of Al-
assisted SEM analysis into routine biomedical workflows.

Collectively, these emerging directions suggest that deep learning—
based SEM analysis is poised to evolve from exploratory research
toward more mature, standardized, and impactful applications.
Continued interdisciplinary collaboration among materials scientists,
data scientists, clinicians, and regulatory stakeholders will be essential
to ensure that future developments are both scientifically rigorous and
translationally meaningful.

Conclusions

This review has examined the expanding role of deep learning—
based analysis of scanning electron microscopy images in
nanomedicine and biomedical materials research. While SEM remains
a cornerstone technique for nanoscale morphological characterization,
conventional analysis workflows are often constrained by subjectivity,
limited scalability, and variability in expert interpretation. Deep
learning approaches, particularly convolutional neural networks, offer
a compelling alternative by enabling automated, quantitative, and
reproducible extraction of morphological information from complex
SEM datasets.

By adopting a morphology-oriented classification framework
(Table 1) and outlining a generalized Al-assisted SEM analysis
pipeline (Figure 1), this review illustrates how deep learning can
provide a unifying analytical paradigm across diverse biomedical
material systems. Existing studies demonstrate that CNN-based
models are capable of distinguishing and interpreting SEM images of
fibrous architectures, particulate systems, porous scaffolds, surface-
modified materials, and micro- and nano-fabricated devices. These
findings highlight the potential utility of Al-assisted SEM analysis in
both exploratory research and translational settings.

At the same time, several challenges continue to limit widespread
adoption. Variability in image acquisition conditions, limited dataset
sizes, class imbalance, and persistent concerns regarding model
interpretability and reproducibility must be addressed to ensure robust
and reliable deployment. Addressing these issues will require careful
experimental design, transparent reporting practices, and alignment
with emerging standards for Al-based biomedical research.

Future directions

Future developments in deep learning—assisted SEM analysis
are expected to expand both methodological sophistication and
translational relevance. One important direction involves the
integration of SEM data with complementary imaging and analytical
modalities. The combination of SEM with techniques such as
transmission electron microscopy, atomic force microscopy, or
spectroscopic methods may allow deep learning models to jointly
analyze morphology, composition, and mechanical properties,
enabling a more comprehensive understanding of structure—function
relationships in biomedical materials.''?
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Explainable artificial intelligence is likely to play a central role
in this evolution. As deep learning models move closer to clinical
and regulatory use, interpretability becomes essential. Methods that
provide insight into feature importance or activation patterns can
help researchers and clinicians assess whether model predictions are
driven by biologically meaningful morphological characteristics.
Such transparency will be critical for building trust in Al-assisted
analysis and for supporting regulatory acceptance.'

Data-related considerations will also shape future progress. The
development of large, well-annotated, and publicly accessible SEM
image repositories would facilitate benchmarking, improve cross-
study comparability, and enhance generalizability across laboratories
and imaging platforms. In parallel, federated learning strategies offer
a promising solution for collaborative model development without
centralized data sharing, addressing privacy and intellectual property
concerns while increasing dataset diversity.'

Advances in computational efficiency and model deployment are
expected to further enhance real-world applicability. Lightweight
neural network architectures and optimized inference pipelines may
enable near—real-time SEM image analysis in manufacturing and
clinical laboratory environments. Such capabilities could support on-
site quality control, rapid material assessment, and iterative design
optimization.

In the longer term, the integration of deep learning with SEM
has the potential to transform nanoscale characterization from a
largely qualitative practice into a data-driven, standardized, and
clinically informed discipline. Achieving this transition will require
sustained interdisciplinary collaboration among materials scientists,
data scientists, clinicians, and regulatory experts to ensure that
methodological advances translate into meaningful biomedical and
clinical impact.

This review has examined the growing role of deep learning—based
analysis of SEM images in nanomedicine and biomedical materials
research. SEM remains a cornerstone technique for nanoscale
morphological characterization, yet traditional analysis approaches
are limited by subjectivity, scalability constraints, and variability in
expert interpretation. The application of convolutional neural networks
offers a powerful alternative, enabling automated, quantitative, and
reproducible extraction of morphological information from complex
SEM datasets.

By organizing SEM images into morphology-driven categories
(Table 1) and outlining a general Al-assisted analysis workflow
(Figure 1), this review highlights how deep learning can serve as a
unifying framework across diverse biomedical applications. Recent
studies demonstrate that CNN-based models can effectively classify
and interpret SEM images of fibers, particles, porous structures,
coated surfaces, and microfabricated devices, underscoring their
potential utility in both research and translational contexts.

At the same time, significant challenges remain. Variability in
image acquisition, limited dataset sizes, class imbalance, and issues
of interpretability and reproducibility must be addressed before
widespread adoption can be achieved. Careful experimental design,
transparent reporting, and adherence to emerging Al reporting
standards are essential to ensure scientific rigor and clinical relevance.

Looking forward, the integration of multimodal data, explainable
Al techniques, and federated learning paradigms is expected to further
enhance the robustness and translational value of Al-assisted SEM
analysis. As these methodologies mature, they have the potential to
reshape how nanoscale imaging data are interpreted and applied,
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ultimately contributing to more efficient material design, improved
quality control, and accelerated translation of nanotechnologies into
clinical practice.
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