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Introduction
Advances in nanomedicine and biomedical materials science 

increasingly depend on the precise design and characterization of 
structures at the micro- and nanoscale. Morphological properties 
such as surface topography, porosity, particle shape, fiber alignment, 
and coating uniformity extend beyond purely structural descriptors, 
as they directly influence biological interactions including protein 
adsorption, cellular adhesion, inflammatory responses, and drug 
release behavior.1–3 For this reason, imaging techniques capable 
of resolving fine structural details play a central role across the 
translational pipeline, from material development and preclinical 
evaluation to manufacturing and quality control.

Among available imaging modalities, scanning electron 
microscopy (SEM) remains one of the most widely used techniques 
for morphological characterization of biomedical materials. Its high 
spatial resolution, large depth of field, and versatility have established 
SEM as a routine tool for the analysis of nanofibrous scaffolds, 
porous matrices, implant surface coatings, pharmaceutical particles, 
and micro- and nano-engineered medical devices.4–6 By enabling 
direct visualization of surface features and structural organization, 
SEM provides insights that are often inaccessible through bulk or 
ensemble-averaged analytical methods.

Despite these advantages, SEM image interpretation in biomedical 
research is still predominantly performed through manual inspection 
by trained experts. Morphological assessments are frequently 
qualitative or semi-quantitative, relying on visual judgment to 
identify structural features, defects, or irregularities. Such evaluations 

are inherently time-consuming and subject to inter- and intra-
observer variability, particularly when analyzing large datasets or 
when morphological differences between samples are subtle.7 These 
limitations pose significant challenges in high-throughput research 
settings and industrial environments, where objective, rapid, and 
reproducible analysis is increasingly required.

In parallel with advances in imaging technologies, artificial 
intelligence (AI) has emerged as a powerful framework for the analysis 
of complex biomedical data. Machine learning (ML), and in particular 
deep learning (DL), has demonstrated strong performance in diverse 
medical imaging domains, including radiology, digital pathology, and 
ophthalmology.8–10 Convolutional neural networks (CNNs), which 
are specifically designed for image-based tasks, have become the 
dominant architecture for visual classification, segmentation, and 
feature extraction. Unlike traditional image analysis approaches that 
rely on handcrafted features, CNNs learn hierarchical representations 
directly from pixel-level data, enabling the identification of complex, 
multiscale patterns.

More recently, DL-based methods have begun to attract attention in 
the context of SEM image analysis. SEM images contain rich textural 
and structural information, making them well suited for CNN-driven 
approaches. An increasing number of studies have reported the use 
of DL models for tasks such as nanostructure classification, surface 
defect detection, particle segmentation, and discrimination between 
biomedical materials based on SEM-derived morphology.11–13 These 
studies suggest that AI-assisted SEM analysis has the potential to 
reduce subjectivity and improve the efficiency and consistency of 
morphological characterization workflows.
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Abstract

Scanning electron microscopy (SEM) is widely used for characterizing the surface 
morphology of nanostructured biomaterials, drug delivery systems, and biomedical 
devices at micro- and nanoscales. Despite its ability to provide high-resolution structural 
information, the interpretation of SEM images remains largely dependent on manual 
analysis, which is time-consuming and susceptible to operator-dependent variability. 
Recent advances in artificial intelligence, particularly deep learning approaches based on 
convolutional neural networks (CNNs), have created new opportunities for automated and 
reproducible analysis of SEM data. This review critically examines recent studies that apply 
deep learning techniques to SEM image analysis in nanomedicine and biomedical materials 
research. Core principles of CNN-based image analysis are briefly introduced, followed 
by an overview of commonly investigated morphological features and classification tasks. 
The review discusses reported strategies for dataset construction, image preprocessing, 
model training, and performance evaluation, highlighting both methodological trends and 
recurring limitations in the literature. Key challenges, including limited dataset sizes, non-
independent data sampling, variability arising from imaging conditions, and issues related 
to model interpretability and generalizability, are also addressed. Finally, the review outlines 
future directions for improving the robustness and translational relevance of AI-assisted 
SEM analysis, with particular emphasis on reproducibility, validation across instruments, 
and potential applications in preclinical research and quality control.
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From a translational perspective, the integration of DL with SEM 
is particularly relevant for nanomedicine and biomedical materials 
development. Automated and reproducible analysis of SEM images 
could support standardized evaluation of implant surfaces, scaffold 
architectures, and drug delivery carriers, thereby contributing to 
manufacturing consistency and quality assurance. In addition, data-
driven approaches may enable more systematic screening of design 
variables, facilitating the optimization of materials intended for 
clinical use.

However, several methodological and practical challenges 
currently limit the broader adoption of DL-assisted SEM analysis. 
SEM image characteristics are highly sensitive to acquisition 
parameters such as accelerating voltage, working distance, detector 
configuration, and sample preparation protocols. Variations across 
instruments and laboratories can introduce domain shifts that degrade 
model performance and restrict generalizability.14 Furthermore, 
many published studies rely on relatively small, highly curated, or 
non-independent datasets, raising concerns related to selection bias, 
overfitting, and limited external validation.

Model transparency and interpretability represent additional 
critical considerations, particularly in biomedical applications. It is 
essential to understand which image features drive model predictions 
and to ensure that performance is not influenced by confounding 
factors such as scale bars, imaging artifacts, or instrument-specific 
signatures. Recent guidelines for AI-based biomedical research 
emphasize the importance of transparent reporting of data sources, 
preprocessing steps, model architectures, and evaluation protocols in 
order to promote reproducibility and trust.15

Given the rapid growth of research at the intersection of SEM, 
deep learning, and nanomedicine, a structured and critical synthesis of 
the literature is timely. The objectives of this review are to:

(i) outline the methodological foundations of deep learning–based 
SEM image analysis;

(ii) summarize SEM-derived morphological features relevant to 
biomedical and nanomedical applications; and

(iii) critically assess current limitations and emerging opportunities 
for robust and translational implementation.

Representative SEM morphology classes and their biomedical 
relevance are summarized in Table 1, while an overview of a typical 
AI-assisted SEM analysis workflow is provided in Figure 1.

Deep learning methodologies applied to SEM 
images 

Data acquisition and dataset construction

The performance and generalizability of deep learning models 
are strongly influenced by the characteristics of the datasets used 
for training and evaluation. In studies involving scanning electron 
microscopy, datasets typically consist of images acquired under 
heterogeneous experimental conditions, including variations 
in magnification, detector type, accelerating voltage, working 
distance, and sample preparation protocols. While such diversity 
can, in principle, promote model robustness, insufficient control or 
documentation of acquisition parameters may introduce confounding 
factors that obscure true morphological learning and negatively affect 
reproducibility.16

In biomedical SEM applications, dataset construction often relies 
on manual curation to ensure acceptable image quality. Images are 

commonly selected based on criteria such as adequate resolution, 
proper focus, and limited presence of imaging artifacts. Samples 
exhibiting severe charging effects, contamination, or excessive noise 
are frequently excluded to facilitate stable model training and to reduce 
the risk of learning spurious correlations.11,12 Although this practice 
improves internal consistency, it may also lead to overly curated 
datasets that do not fully reflect real-world variability encountered 
across laboratories or instruments.

Annotation strategies vary widely across the literature. Labels are 
often assigned based on visual morphology (e.g., fibrous, particulate, 
porous structures) or according to processing- or function-related 
categories, such as coated versus uncoated surfaces. In some cases, 
annotations are derived from expert judgment without explicit 
quantitative criteria, introducing subjectivity and inter-observer 
variability. The lack of standardized labeling conventions remains a 
major limitation and complicates direct comparison of reported model 
performance across studies.

Dataset size and sample independence represent additional 
methodological concerns. Many published studies rely on relatively 
small datasets, often comprising tens to a few hundred SEM images. 
To compensate for limited data, patch-based extraction from larger 
images is frequently employed. While this approach increases the 
number of training samples, it can inadvertently introduce non-
independent data points if patches derived from the same original 
image are distributed across training and testing sets. Such data 
leakage may lead to inflated performance estimates and overoptimistic 
conclusions regarding model generalization. Explicit reporting of 
specimen-level data splitting and dataset composition is therefore 
essential for meaningful evaluation.

Preprocessing and data preparation

Preprocessing is a critical step in ensuring consistency among 
SEM image inputs and enabling reliable deep learning model training. 
Common preprocessing operations include resizing images to uniform 
spatial dimensions and normalizing pixel intensity values to a defined 
range. Although SEM images are intrinsically grayscale, some studies 
retain three-channel representations to maintain compatibility with 
convolutional neural network architectures pretrained on natural 
image datasets.17 While this strategy facilitates transfer learning, it 
does not inherently introduce additional morphological information 
and should be interpreted with caution.

Beyond basic normalization, SEM-specific preprocessing 
considerations are often underreported. Differences in magnification, 
pixel-to-length calibration, and field of view can substantially affect 
feature representation, particularly in texture-dominated classification 
tasks. Inadequate normalization of spatial scale may cause models 
to associate morphology with magnification rather than intrinsic 
structural characteristics. Similarly, frequency-domain biases arising 
from detector configuration or noise filtering can influence learned 
representations and limit cross-instrument applicability.

A persistent methodological issue is the inclusion of image 
elements unrelated to sample morphology, such as scale bars, textual 
annotations, and manufacturer logos. If retained during training, 
these features may serve as unintended shortcuts for classification, 
enabling models to exploit acquisition-specific cues rather than 
genuine morphological differences. This phenomenon can result in 
artificially high performance metrics that fail to reflect true predictive 
capability.18 As a result, careful cropping, masking, or removal of 
non-morphological regions is strongly recommended prior to model 
training.
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CNN architectures and training strategies

A wide range of convolutional neural network architectures has 
been applied to SEM image analysis, encompassing both custom-
designed models and transfer learning–based approaches. Custom 
CNN architectures offer flexibility and reduced computational 
complexity, making them suitable for smaller datasets commonly 
encountered in SEM studies. In contrast, pretrained architectures such 
as ResNet, VGG, and EfficientNet leverage feature representations 
learned from large-scale natural image datasets and may improve 
convergence when appropriately fine-tuned.19,20

However, the substantial domain differences between natural 
images and SEM data warrant careful consideration. SEM images 
are dominated by texture, contrast, and surface topology rather 
than object-centric shapes, which form the basis of many pretrained 
representations. Consequently, transfer learning may yield suboptimal 
feature extraction if early layers are not adequately adapted or if 
domain mismatch is not explicitly addressed. Comparative analyses 
of architecture suitability for SEM-specific tasks remain limited in 
the literature.

Model training is typically conducted using gradient-based 
optimization algorithms such as Adam or RMSprop. Hyperparameters 
including learning rate, batch size, and number of training epochs 
strongly influence convergence behavior and generalization 

performance.21 To mitigate overfitting—particularly in scenarios with 
limited or non-independent data—regularization strategies such as 
dropout, batch normalization, and data augmentation are frequently 
employed. Nevertheless, the effectiveness of these techniques is 
rarely evaluated systematically across studies.

Evaluation practices reported in the literature remain 
heterogeneous. Overall classification accuracy is often presented as a 
primary metric, yet it provides limited insight in multi-class settings 
or in the presence of class imbalance. More informative evaluation 
strategies include class-wise precision and recall, macro-averaged F1-
scores, confusion matrices, and, where possible, external validation 
on independent datasets. The absence of statistical significance testing 
and cross-instrument validation further limits the interpretability and 
comparability of reported results (Table 1).15

Table 1 Summarizes representative SEM-derived morphological 
categories that are frequently reported in nanomedicine and 
biomedical materials research, together with typical application 
domains and associated functional relevance. The classification 
adopted in this review is intentionally morphology-driven rather than 
material- or chemistry-specific. This choice reflects the nature of 
image-based deep learning workflows, which primarily rely on visual 
patterns such as texture, topology, and spatial organization rather than 
compositional information.

Table 1 Representative sem-derived morphological categories commonly investigated in nanomedicine and biomedical materials research, together with typical 
application areas and functional relevance.

SEM morphology Representative applications Biomedical relevance
Nanofibrous structures Tissue engineering scaffolds Cell adhesion, alignment, guidance
Porous architectures Regenerative biomaterials Nutrient diffusion, tissue ingrowth
Coated surfaces Implants, drug-eluting devices Biocompatibility, controlled release
Patterned surfaces Biosensors, cell-instructive substrates Modulation of cell response
Particles / powders Drug delivery systems Dissolution, biodistribution
MEMS / electrode structures Implantable devices Signal stability, device reliability

Nanofibrous and porous structures are grouped according to their 
dominant architectural features, as these morphologies are commonly 
investigated in tissue engineering and regenerative medicine. Although 
these categories are visually distinct at certain magnifications, 
substantial intra-class heterogeneity exists, arising from variations in 
fiber diameter, pore size distribution, and structural anisotropy. Such 
heterogeneity can complicate supervised classification tasks and may 
limit the separability of classes in CNN-based models unless scale and 
imaging conditions are carefully controlled.

Surface-engineered materials, including coated and patterned 
substrates, are treated as separate categories due to their relevance 
in implant technologies and biointerface design. In these systems, 
relatively subtle morphological differences—such as coating continuity, 
pattern fidelity, or edge definition—can have disproportionate effects 
on biological response and long-term functionality. From a deep 
learning perspective, distinguishing meaningful surface features from 
imaging artifacts remains a key challenge.

Particle- and powder-based systems represent an important class of 
pharmaceutical and nanomedicine formulations. In these applications, 
particle size, shape, surface roughness, and aggregation state strongly 
influence dissolution behavior and biodistribution. However, reported 
morphology classes often span wide size ranges and imaging 
magnifications, which can hinder consistent feature learning across 
datasets.

Finally, micro- and nano-fabricated components, including MEMS 
structures and electrode geometries, are presented as a distinct category. 
These systems are increasingly relevant for implantable sensors and 
biomedical electronics, yet their complex geometries and strong 
dependence on imaging parameters can challenge generalization of 
CNN-based approaches across instruments and laboratories.

Overall, the categories summarized in Table 1 should be regarded 
as conceptually useful but not universally separable. Explicit reporting 
of imaging conditions, scale, and quantitative descriptors is essential 
when these morphology classes are used as targets for supervised 
deep learning (Fıgure 1).

Figure 1 presents a conceptual overview of a typical deep learning–
assisted SEM image analysis workflow. The figure is intended as a 
generalized framework rather than a prescriptive pipeline, as specific 
implementations vary widely across studies and applications. The 
workflow begins with SEM image acquisition, a stage at which 
variations in magnification, detector configuration, accelerating 
voltage, and sample preparation protocols can introduce substantial 
variability into the dataset.

This acquisition-related heterogeneity underscores the importance 
of preprocessing, which aims to reduce non-morphological sources 
of variation and to standardize image inputs prior to model training. 
Following preprocessing, convolutional neural network–based models 
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are applied for automated feature learning. Through hierarchical 
representation learning, CNNs extract texture- and topology-related 
features directly from pixel-level data, without reliance on manually 
defined descriptors.

As illustrated in Figure 1, model evaluation constitutes a critical 
intermediate step and extends beyond single summary metrics. Class-

specific performance measures are necessary to assess reliability 
across different morphology categories and to identify systematic 
failure modes. In many published studies, this stage is limited by 
the absence of independent external validation, which restricts 
conclusions regarding generalizability.

Figure 1 Conceptual workflow of deep learning–assisted SEM image analysis, illustrating data acquisition,  preprocessing, CNN-based feature learning, model 
evaluation, and biomedical interpretation.

The final stage of the workflow focuses on interpretation and 
application. At this point, model outputs are linked to material 
characterization, quality assessment, or design optimization tasks. 
For biomedical applications, this step requires careful consideration 
of model interpretability and robustness to ensure that predictions 
reflect true morphological differences rather than acquisition-specific 
artifacts. By explicitly connecting SEM-derived image analysis 
with functional and translational objectives, the workflow in Figure 
1 highlights both the potential and the current limitations of deep 
learning approaches in this domain.

Challenges and limitations of deep learning–
based sem analysis

Despite the encouraging results reported in recent studies, the 
integration of deep learning approaches with SEM image analysis in 
biomedical and nanomedical research is accompanied by a number 
of methodological and translational challenges. Careful consideration 
of these limitations is essential to avoid overinterpretation of model 
performance and to support meaningful deployment in research, 
industrial, or clinical contexts.

One of the most significant challenges arises from variability in 
SEM image acquisition. Differences in accelerating voltage, working 
distance, detector configuration, and sample preparation protocols can 
substantially alter image contrast, texture, and apparent morphology. 
While controlled variability may improve model robustness when 
adequately represented during training, unaccounted differences 
between training and deployment conditions frequently introduce 
domain shifts that degrade performance and limit generalizability 
across instruments or laboratories.16,17 Although preprocessing 
strategies, as outlined in Figure 1, aim to reduce such effects, complete 
normalization across heterogeneous acquisition conditions remains 
difficult to achieve in practice.

Dataset size and class distribution represent additional constraints. 
In biomedical SEM applications, datasets are often limited in scale 
due to the cost, time, and expertise required for image acquisition and 
expert annotation. Small datasets increase susceptibility to overfitting, 
particularly when complex CNN architectures are applied. Moreover, 
class imbalance—commonly encountered in realistic biomedical 
materials datasets—can bias model predictions toward dominant 
categories. In such cases, overall classification accuracy may appear 
high while performance on underrepresented but scientifically or 
clinically relevant classes remains poor.18 Reliance on accuracy as 
a sole performance metric therefore risks masking critical failure 
modes.

Model interpretability constitutes another major limitation, 
especially in translational and medically oriented applications. CNNs 
are frequently characterized as “black-box” models, as the internal 
representations driving their predictions are not inherently transparent. 
For SEM-based biomedical analysis, it is crucial to determine whether 
model decisions are informed by meaningful morphological features 
rather than coincidental patterns. Techniques such as class activation 
mapping, saliency analysis, and gradient-based visualization have 
been proposed to enhance interpretability; however, their application 
to SEM data remains inconsistent and their limitations—particularly 
in texture-dominated images—are not always acknowledged.19

Closely related to interpretability is the risk of models exploiting 
non-morphological visual cues present in SEM images. Elements such 
as scale bars, textual annotations, detector-specific noise patterns, or 
instrument signatures may inadvertently correlate with class labels. 
If these cues are not removed or controlled during preprocessing, 
models may achieve high apparent performance by learning 
acquisition-specific shortcuts rather than genuine morphological 
distinctions. This issue has been increasingly recognized as a source 
of artificially inflated performance and underscores the need for 
rigorous preprocessing and transparent reporting, in line with recent 
guidelines for AI-based biomedical research.15
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Finally, reproducibility and standardization remain unresolved 
challenges within the field. Substantial variation in dataset composition, 
labeling schemes, preprocessing pipelines, model architectures, and 
evaluation protocols complicates direct comparison across studies. 
The lack of publicly available benchmark datasets and standardized 
evaluation frameworks for biomedical SEM image analysis further 
limits objective assessment of methodological progress and hinders 
broader translational adoption.

Clinical and translational ımplications
Despite the methodological challenges discussed above, 

deep learning–assisted analysis of SEM images presents notable 
opportunities for advancing nanomedicine and biomedical materials 
research, particularly at the interface between experimental 
characterization and translational application. By enabling more 
automated, quantitative, and reproducible interpretation of nanoscale 
morphology, AI-driven approaches may help bridge the gap between 
materials design and functional performance assessment.

In the context of implantable medical devices, surface morphology 
is a critical determinant of biological integration, corrosion resistance, 
and long-term biocompatibility. Parameters such as surface 
roughness, coating continuity, and micro- or nanoscale pattern fidelity 
are known to influence osseointegration and host response. CNN-
based analysis of SEM images has the potential to support more 
standardized evaluation of implant surfaces during manufacturing 
and quality control, complementing conventional inspection methods. 
Morphology-oriented classification frameworks, such as those 
summarized in Table 1, may provide a structured means of relating 
SEM-derived features to functional performance indicators relevant 
to preclinical testing and device development. However, the role of 
such approaches should currently be viewed as supportive rather than 
substitutive, pending further validation.

Tissue engineering and regenerative medicine represent another 
area where AI-assisted SEM analysis may offer translational 
value. Scaffold architecture—including fiber orientation, pore size 
distribution, interconnectivity, and surface texture—plays a central 
role in regulating cell adhesion, migration, and tissue maturation. 
Automated analysis of SEM images could facilitate systematic 
comparison of scaffold designs and assist in identifying morphological 
features associated with favorable biological responses. In this 
context, deep learning approaches may function as research tools that 
accelerate iterative design and optimization processes, rather than as 
standalone decision-making systems.

Pharmaceutical and nanomedicine formulations may similarly 
benefit from deep learning–based SEM image analysis. In particulate 
drug delivery systems, particle size, shape, surface morphology, 
and aggregation state strongly influence dissolution behavior, 
bioavailability, and biodistribution. Automated particle detection, 
segmentation, and classification from SEM images could support 
high-throughput formulation screening and enhance process 
understanding. From a translational perspective, these capabilities may 
contribute to improved batch-to-batch consistency and manufacturing 
robustness, particularly for complex nanomedicine products where 
subtle morphological differences can have disproportionate functional 
consequences.

Beyond individual application domains, deep learning–assisted 
SEM analysis has broader implications for regulatory science and 
standardization. Algorithm-driven interpretation of SEM data may 
contribute to more objective and reproducible characterization 

workflows, supporting comparability across studies and manufacturing 
sites. Nevertheless, meaningful regulatory or clinical adoption will 
require rigorous validation, clear definition of intended use, and 
transparent documentation of data provenance, model development, 
and performance limitations. Close collaboration among materials 
scientists, clinicians, and regulatory stakeholders will be essential 
to establish confidence in AI-assisted SEM methodologies and to 
determine their appropriate role within clinical development pipelines 
and regulatory frameworks.

Future perspectives
The integration of deep learning with scanning electron microscopy 

represents a rapidly developing area in nanomedicine and biomedical 
materials research. To date, most reported studies have focused on 
feasibility demonstrations and proof-of-concept applications. Future 
work is expected to expand beyond these initial implementations 
toward more robust, generalizable, and translationally relevant 
frameworks.

One important direction for future research is the incorporation 
of multimodal data. SEM provides detailed surface morphology, 
but biological performance is often governed by a combination 
of structural, mechanical, and chemical properties. Integrating 
SEM data with complementary techniques such as transmission 
electron microscopy (TEM), atomic force microscopy (AFM), 
or energy-dispersive X-ray spectroscopy (EDS) may enable deep 
learning models to jointly analyze morphological, mechanical, and 
compositional information. Multimodal learning strategies could 
therefore support a more comprehensive understanding of structure–
function relationships in complex biomedical materials, particularly 
in systems where morphology alone does not fully explain biological 
outcomes.

Another promising avenue involves the adoption of federated 
and distributed learning approaches. In biomedical research, 
SEM datasets are often fragmented across institutions due to data 
ownership, intellectual property, or regulatory constraints. Federated 
learning enables collaborative model training without centralized 
data sharing by allowing models to learn from decentralized datasets 
while keeping raw images local. This strategy may be particularly 
well suited to SEM applications, where inter-laboratory variability is 
high and access to large, diverse datasets is limited. By leveraging 
distributed data sources, federated approaches could improve model 
generalizability and reduce sensitivity to instrument- or site-specific 
imaging conditions.

Explainable artificial intelligence (XAI) is also expected to play a 
central role in the future adoption of deep learning–based SEM analysis. 
As models become more complex and are applied in translational 
settings, the ability to interpret and validate model predictions will 
be increasingly important. Techniques such as attention mechanisms, 
saliency mapping, and feature attribution methods can provide 
insight into which morphological characteristics influence model 
decisions. Improved interpretability will not only enhance scientific 
understanding but also support confidence in AI-assisted analysis for 
downstream biomedical and regulatory applications.

Standardization represents another critical challenge and 
opportunity. The absence of widely accepted benchmark datasets, 
annotation guidelines, and evaluation protocols currently limits 
objective comparison between studies. Community-driven efforts 
to develop well-curated, publicly available SEM image repositories 
with standardized morphological labels could substantially accelerate 
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progress in the field. Such benchmarks would support fair assessment 
of algorithmic performance and promote reproducibility across 
research groups.

Finally, advances in computational efficiency and deployment 
strategies are likely to expand real-world applicability. The 
development of lightweight neural network architectures and edge 
computing solutions may enable near-real-time SEM image analysis 
directly at the point of acquisition, such as in manufacturing facilities 
or research laboratories. These developments could reduce analysis 
time, lower computational costs, and facilitate integration of AI-
assisted SEM analysis into routine biomedical workflows.

Collectively, these emerging directions suggest that deep learning–
based SEM analysis is poised to evolve from exploratory research 
toward more mature, standardized, and impactful applications. 
Continued interdisciplinary collaboration among materials scientists, 
data scientists, clinicians, and regulatory stakeholders will be essential 
to ensure that future developments are both scientifically rigorous and 
translationally meaningful.

Conclusions
This review has examined the expanding role of deep learning–

based analysis of scanning electron microscopy images in 
nanomedicine and biomedical materials research. While SEM remains 
a cornerstone technique for nanoscale morphological characterization, 
conventional analysis workflows are often constrained by subjectivity, 
limited scalability, and variability in expert interpretation. Deep 
learning approaches, particularly convolutional neural networks, offer 
a compelling alternative by enabling automated, quantitative, and 
reproducible extraction of morphological information from complex 
SEM datasets.

By adopting a morphology-oriented classification framework 
(Table 1) and outlining a generalized AI-assisted SEM analysis 
pipeline (Figure 1), this review illustrates how deep learning can 
provide a unifying analytical paradigm across diverse biomedical 
material systems. Existing studies demonstrate that CNN-based 
models are capable of distinguishing and interpreting SEM images of 
fibrous architectures, particulate systems, porous scaffolds, surface-
modified materials, and micro- and nano-fabricated devices. These 
findings highlight the potential utility of AI-assisted SEM analysis in 
both exploratory research and translational settings.

At the same time, several challenges continue to limit widespread 
adoption. Variability in image acquisition conditions, limited dataset 
sizes, class imbalance, and persistent concerns regarding model 
interpretability and reproducibility must be addressed to ensure robust 
and reliable deployment. Addressing these issues will require careful 
experimental design, transparent reporting practices, and alignment 
with emerging standards for AI-based biomedical research.

Future directions
Future developments in deep learning–assisted SEM analysis 

are expected to expand both methodological sophistication and 
translational relevance. One important direction involves the 
integration of SEM data with complementary imaging and analytical 
modalities. The combination of SEM with techniques such as 
transmission electron microscopy, atomic force microscopy, or 
spectroscopic methods may allow deep learning models to jointly 
analyze morphology, composition, and mechanical properties, 
enabling a more comprehensive understanding of structure–function 
relationships in biomedical materials.11,12

Explainable artificial intelligence is likely to play a central role 
in this evolution. As deep learning models move closer to clinical 
and regulatory use, interpretability becomes essential. Methods that 
provide insight into feature importance or activation patterns can 
help researchers and clinicians assess whether model predictions are 
driven by biologically meaningful morphological characteristics. 
Such transparency will be critical for building trust in AI-assisted 
analysis and for supporting regulatory acceptance.13

Data-related considerations will also shape future progress. The 
development of large, well-annotated, and publicly accessible SEM 
image repositories would facilitate benchmarking, improve cross-
study comparability, and enhance generalizability across laboratories 
and imaging platforms. In parallel, federated learning strategies offer 
a promising solution for collaborative model development without 
centralized data sharing, addressing privacy and intellectual property 
concerns while increasing dataset diversity.14

Advances in computational efficiency and model deployment are 
expected to further enhance real-world applicability. Lightweight 
neural network architectures and optimized inference pipelines may 
enable near–real-time SEM image analysis in manufacturing and 
clinical laboratory environments. Such capabilities could support on-
site quality control, rapid material assessment, and iterative design 
optimization.

In the longer term, the integration of deep learning with SEM 
has the potential to transform nanoscale characterization from a 
largely qualitative practice into a data-driven, standardized, and 
clinically informed discipline. Achieving this transition will require 
sustained interdisciplinary collaboration among materials scientists, 
data scientists, clinicians, and regulatory experts to ensure that 
methodological advances translate into meaningful biomedical and 
clinical impact.

This review has examined the growing role of deep learning–based 
analysis of SEM images in nanomedicine and biomedical materials 
research. SEM remains a cornerstone technique for nanoscale 
morphological characterization, yet traditional analysis approaches 
are limited by subjectivity, scalability constraints, and variability in 
expert interpretation. The application of convolutional neural networks 
offers a powerful alternative, enabling automated, quantitative, and 
reproducible extraction of morphological information from complex 
SEM datasets.

By organizing SEM images into morphology-driven categories 
(Table 1) and outlining a general AI-assisted analysis workflow 
(Figure 1), this review highlights how deep learning can serve as a 
unifying framework across diverse biomedical applications. Recent 
studies demonstrate that CNN-based models can effectively classify 
and interpret SEM images of fibers, particles, porous structures, 
coated surfaces, and microfabricated devices, underscoring their 
potential utility in both research and translational contexts.

At the same time, significant challenges remain. Variability in 
image acquisition, limited dataset sizes, class imbalance, and issues 
of interpretability and reproducibility must be addressed before 
widespread adoption can be achieved. Careful experimental design, 
transparent reporting, and adherence to emerging AI reporting 
standards are essential to ensure scientific rigor and clinical relevance.

Looking forward, the integration of multimodal data, explainable 
AI techniques, and federated learning paradigms is expected to further 
enhance the robustness and translational value of AI-assisted SEM 
analysis. As these methodologies mature, they have the potential to 
reshape how nanoscale imaging data are interpreted and applied, 
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ultimately contributing to more efficient material design, improved 
quality control, and accelerated translation of nanotechnologies into 
clinical practice.
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