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AI is shocking for its amazing effects of imaging processing, video 
generation, voice recognition, and text processing. It is surprising 
that it can accept natural language, i.e., you can type sentences in 
your mother tongue. Then, the AI model can answer you all kinds 
of questions, from knowledge to programming, from everyday life 
questions to professional questions, from values to CIF files (CIF is 
a file format proposed by the International Union for Crystallography 
to archive and distribute crystal structure information of materials, 
including chemical formulas, unit cell parameters, space groups, 
atomic coordinates, position occupancies, etc.) What AI can do for 
materials science and engineering? AI models mainly including 
machining learning models and deep learning models have been 
widely used as surrogates for quantum mechanics, density functional 
theory (DFT) and molecular dynamics (MD) to predict the properties 
of isolated molecules, bulk solids, and materials interface, and 
for finite element method (FEM) to simulate the physical fields in 
structures or parts during preparation, fabrication, and service period 
regardless at the nano-scale or continuum-scale.2-4 Graph Neural 
Networks (GNNs) are a new class of machine learning models 
especially well-suited to the crystal structures and molecules with 
graph-network representations of atoms (nodes) and bonds (edges) in 
materials science. Google DeepMind developed graph networks for 
materials exploration (GNoME) which tweaked the composition of 
known materials to come up with 2.2 million potential compounds.5

What AI can do more? The Large Language Models (LLMs) 
enable the AI models to communicate with people by natural 
languages. Beyond that, they can deal with multi-modal inputs, 
such as image, video, text, voice, etc. The LLMs owns the language 
reasoning capability, such as understanding and action on natural 
language instructions, generation of simulation scripts from textual 
queries, interpretation of scientific visualizations, and forming logical 
inferences about atomic-level mechanisms. In materials area, the 
LLMs can reason through user prompts to select suitable materials 
(e.g., Nb Mo or BCC W), generate accurate LAMMPS input files, 
and infer the appropriate energy minimization strategies based on 
simulation goals—mimicking human-like scientific reasoning.6 

In latest two years, AI gets into AI agent era. An AI agent is a 
system that autonomously performs tasks by designing workflows with 
available tools with LLMs as its core. What differentiates AI agents 
from traditional LLMs is the use of tools and the ability to design a plan 
of action. The tools available to an agent can include external datasets, 
web searches and application programming interfaces (APIs). They 
use the advanced natural language processing techniques of LLMs to 

comprehend and respond to user inputs step-by-step and determine 
when to call on external tools.7 Materials-specific domain knowledge 
and tools can be integrated with LLMs to form Material AI agents. 
The domain knowledge can be literatures and references. Recently 
knowledge graphs are widely used to enhance the domain knowledge 
representation. For LLM-driven agents can bridge the gap between 
natural language and domain-specific simulations to accelerate alloy 
discovery. AI-driven language models—such as BERT, GPT, and 
their domain-adapted variants like MatBERT and SciBERT—are 
increasingly capable of extracting, interpreting, and synthesizing 
this hidden knowledge at scale. LLMs can generalize across different 
materials by drawing analogies and inferences, relation extraction, and 
table parsing. LLMs equipped with retrieval-augmented generation 
(RAG) or hybrid knowledge architectures can access and interpret 
embedded numerical outputs (e.g., thermal profiles, von Mises stress 
plots, microstructure evolution maps) across multiple scales.8

AI agents incorporate not just software but also hardware tools 
such as furnace, robots, testing devices. Thus, AI agents may perform 
the whole process of a discovery of new materials and provide real 
substance. Autonomous labs (AL) or self-driving labs (SDL) can be 
established.9-11 For example, A-Lab, an autonomous laboratory for 
the solid-state synthesis of inorganic powders. This platform uses 
computations, historical data from the literature, machine learning 
(ML) and active learning to plan, drives robotics to do experiments, 
and interpret the outcomes of experiments. Over 17 days of 
continuous operation, the A-Lab realized 41 novel compounds from 
a set of 58 targets including a variety of oxides and phosphates that 
were identified using large-scale ab initio phase-stability data from the 
Materials Project and Google DeepMind.9 Li12 developed the CARGO 
system, combining ML and robotics to synthesize horizontally aligned 
carbon nanotube arrays, test the specimens by Raman spectroscopy, 
scanning electron microscopy (SEM), and atomic force microscopy 
(AFM). The obtained carbon nanotube significantly outperformed the 
traditional catalysts. 

The trend of AI agents is multi-agent system or agent of agents with 
the integration of agents. A multi-agent system (MAS) coordinates 
multiple  artificial intelligence (AI) agents  to work collectively to 
perform tasks.7 For instance, AtomAgents, a multimodal multiagent 
AI framework designed to automate the discovery and optimization 
of metallic alloys with superior mechanical properties. The system 
leverages a group of specialized AI agents—a planner, coder, image 
analyst, and simulation agent—each powered by advanced GPT-4-
based LLMs and coordinated through the AutoGen framework.13

Material Sci & Eng. 2025;9(2):89‒90. 89
©2025 Kang. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits 
unrestricted use, distribution, and build upon your work non-commercially.

AI for materials
Volume 9 Issue 2 - 2025

 
School of Materials Science and Engineering, Key Laboratory for 
Advanced Materials Processing Technology, Tsinghua University, 
China

Correspondence: Jinwu Kang, School of Materials Science and 
Engineering, Key Laboratory for Advanced Materials Processing 
Technology, Tsinghua University, China, Tel 8610-62784537(0)

Received: December 8, 2025 | Published: December 08, 2025

Material Science & Engineering International Journal 

Editorial Open Access

Today, artificial intelligence (AI) is almost for everything, such as 
AI for science, AI for life, AI for manufacturing, etc. AI for materials 
is also a hot topic although the contents are not clearly defined. AI 
is penetrating into almost every corner of materials science and 
engineering, i.e, materials discovery and design, materials property 
prediction, high-throughput materials screening, experiment 
optimization, autonomous experimentation, modeling of material 
structure and evolution, and so on.1
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Although AI and LLMs have faced some criticism and questioning, 
such as hallucinations, poor interpretability, insufficient domain 
expertise, failure to fully meet user requirements, and high operational 
costs, etc. But, it should be clarified that the current problem is that the 
LLMs and LLM agents are undervalued usually because of the users’ 
disappointment and overly optimistic perceptions for AI and LLMs. 
Fundamentally, the true capabilities and untapped potential of LLMs 
and agents remain largely underappreciated and unexplored. A key 
bottleneck lies in the scarcity of interdisciplinary experts who possess 
both deep AI proficiency and solid domain knowledge in science 
and engineering fields. Thus, educational reforms are imperative to 
cultivate a new generation of professionals with integrated expertise 
in AI, basic science, and applied technology. Only through such 
interdisciplinary training can we unlock the extraordinary potential of 
fusing AI with domain-specific knowledge to drive innovation.
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