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Abstract

The quest for novel materials with tailored properties is a cornerstone of technological
advancement. However, traditional trial-and-error discovery methods are inefficient and
costly. A new paradigm is emerging from the convergence of two powerful fields: quantum
computing and materials informatics. Quantum computers promise to simulate molecular
and material systems with an accuracy unattainable by classical computers, overcoming
limitations in modeling complex quantum phenomena. Concurrently, materials informatics
leverages data science and machine learning to analyze vast datasets, accelerating the
design and discovery of new materials. This paper examines the synergistic intersection
of these fields. We explore how high-fidelity data from quantum computations can train
superior machine learning models and how materials informatics can, in turn, optimize
quantum simulations. Key application areas are discussed, including catalyst design, energy
storage, and the simulation of strongly correlated electron systems—a grand challenge for
classical methods. We also address significant hurdles, from the hardware limitations of
current Noisy Intermediate-Scale Quantum (NISQ) devices to the development of robust
quantum algorithms and the need for a new generation of interdisciplinary scientists.
Finally, we envision a future where a closed-loop, autonomous discovery platform, powered
by the fusion of quantum simulation and machine learning, can predict, synthesize, and
characterize novel materials at an unprecedented rate, heralding a new era of rational
materials design.
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Introduction

From the Bronze Age to the Silicon Age, the discovery of new
materials has been a primary engine of human progress. Yet, this process
has largely been driven by serendipity and laborious experimentation.
The complex challenges of the 21st century—from climate change to
next-generation electronics—demand a more intelligent and efficient
approach to materials innovation.! The chemical space of possible
materials is staggeringly vast, and exploring it through physical
experimentation alone is intractable. This reality has catalyzed the rise
of a new, data-driven paradigm in materials science.

Computational methods, particularly Density Functional Theory
(DFT), have become indispensable, enabling high-throughput
screening of thousands of candidate materials.? Despite its successes,
DFT has fundamental limitations. It struggles to accurately model
systems where quantum mechanical effects like strong electron-
electron correlations are dominant. These “strongly correlated
systems,” which include high-temperature superconductors and
advanced catalysts, hold immense technological promise but remain
beyond the predictive power of classical simulation.?

It is at this frontier that quantum computing emerges as a
transformative technology.* By operating on the principles of quantum
mechanics, quantum computers can explore computational spaces that
are exponentially larger than what is accessible to classical machines.’
For materials science, this means a path toward solving the electronic
Schrédinger equation with near-exact accuracy, a feat impossible for
classical computers beyond the simplest systems.®

However, the raw power of quantum computation is not a
complete solution. Current and near-term devices, known as Noisy
Intermediate-Scale Quantum (NISQ) computers, are limited in scale
and prone to errors.’

Maximizing their utility requires a sophisticated framework for
data management, analysis, and integration with classical computing
resources. This is precisely the domain of Materials Informatics (MI).

Materials informatics applies data science and machine learning
to accelerate materials discovery.*® By learning from existing data,
MI can build predictive models that guide research toward the most
promising candidates, drastically reducing the time and cost of
development.>!°

This paper explores the profound and synergistic intersection of
these two revolutionary fields.!"'> We argue that the true acceleration
of materials discovery will come from their integrated and symbiotic
relationship. Quantum computing will provide the high-fidelity data
needed to train a new generation of powerful machine learning models,
overcoming the accuracy limitations of classical methods.'>!* In turn,
materials informatics will provide the tools to manage the complexity
of quantum computations, optimize algorithms, mitigate noise, and
translate quantum outputs into actionable design principles.'>!® This
integrated approach promises to create a new paradigm for designing
bespoke materials on demand, transforming our world in the process.

Foundational pillars

To advance the optimization of material properties through
quantum technologies, two foundational pillars—quantum computing
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and materials informatics—form the basis of current research efforts,
each addressing unique challenges while complementing one another
in scope and application.

Quantum computing for materials science

Quantum computing represents a fundamental shift from classical
bits to quantum bits, or qubits. A qubit can exist in a superposition
of states (both 0 and 1 simultaneously) and become entangled
with other qubits, where their fates are intrinsically linked.’ These
properties allow quantum computers to perform calculations on an
exponentially large number of states at once, making them naturally
suited for simulating quantum mechanical systems like molecules and
materials.'"8

Key quantum algorithms for materials science aim to find the
lowest energy state (ground state) of a system. The Variational
Quantum Eigensolver (VQE) is a leading candidate for near-term
applications.””® VQE is a hybrid quantum-classical algorithm
where a quantum computer prepares and measures the energy of
a parameterized quantum state. In contrast, a classical computer
optimizes the parameters to find the minimum energy.?' Its resilience
to noise makes it well-suited for current hardware.?

However, building a large-scale, fault-tolerant quantum computer
is an immense engineering challenge.? We are currently in the Noisy
Intermediate-Scale Quantum (NISQ) era, characterized by processors
with fewer than a few hundred qubits that are susceptible to
environmental noise (decoherence) and gate errors.” These limitations
restrict the complexity of solvable problems, driving research toward
developing algorithms and applications that can demonstrate a
“quantum advantage” on these imperfect, near-term devices.”

Materials informatics: a data-driven paradigm

Materials informatics (MI) applies data-centric methods to
accelerate the discovery of new materials.® It relies on a robust data
ecosystem encompassing generation, storage, and analysis. Large
datasets are generated from both high-throughput experiments and
computational methods like DFT.> These datasets are housed in
curated databases, providing a valuable resource for the research
community.

The core of MI is the application of machine learning (ML) to
analyze this data and build predictive models.”!° The most common
approaches include:

(1) Supervised learning: An algorithm learns from a labeled dataset
to predict a specific property, such as a material’s stability or
band gap.®*

(i) Unsupervised learning: The algorithm identifies hidden
patterns or clusters in unlabeled data, helping to discover new
classes of materials.

(iii) Generative models: Advanced models like Generative
Adversarial Networks (GANs) are used for inverse design,
generating new materials predicted to have desired properties.?’

The impact of MI is already significant, having accelerated
the discovery of materials for thermoelectrics, photovoltaics, and
batteries.”® However, the adage “garbage in, garbage out” applies; the
quality of the training data fundamentally limits the accuracy of ML
models. The inaccuracies of classical methods like DFT for certain
classes of materials create a critical need for higher-fidelity data, a
role quantum computing is perfectly poised to fill.*
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The synergistic intersection

The true transformative potential lies in the convergence of
quantum computing and materials informatics, creating a powerful
feedback loop where each field mitigates the limitations of the
other.!"?

Quantum computing as a source of high-fidelity data

The primary role of quantum computing in this partnership is to
generate “gold standard” data. The predictive power of ML models
in materials science is capped by the accuracy of their training data.'®
For many important materials, data from classical methods like DFT
is not accurate enough.’> Quantum computers, by directly simulating
quantum mechanics, can provide exact or near-exact data on material
properties, even for the most challenging systems.®

This high-fidelity data can then be used to train a new generation of
“quantum-accurate” machine learning models."® For example, a small
number of highly accurate quantum calculations on representative
material fragments can train an ML model capable of predicting
properties for much larger systems. This approach -effectively
amplifies the power of near-term quantum computers, leveraging their
depth of accuracy while using classical ML to achieve scale.'**

Materials informatics for

computing

enhancing quantum

The synergy flows in both directions, as MI and ML techniques
are crucial for addressing key challenges in quantum computing,
particularly in the NISQ era.

(i) Optimizing quantum algorithms: Hybrid algorithms like VQE
depend on a classical optimizer to find the best parameters for the
quantum circuit. ML techniques such as Bayesian optimization
or reinforcement learning can navigate the complex parameter
landscapes more effectively, leading to faster and more accurate
results.'®

(ii)) Error mitigation: NISQ devices are inherently noisy. ML
models can learn the characteristic error patterns of a specific
quantum device and be used to “denoise” the raw output,
extracting a more accurate signal from the corrupted data.'®

(iii) Designing quantum circuits: The performance of VQE is
highly dependent on the design of the quantum circuit, or ansatz.
ML models can be trained to automatically discover optimal,
problem-specific circuit architectures, reducing the human
expertise required to run effective quantum simulations.

The emergence of quantum machine learning (QML)

Beyond these hybrid approaches, the field of Quantum Machine
Learning (QML) seeks to develop ML algorithms that run directly
on quantum computers.'** QML algorithms could leverage quantum
phenomena to find patterns in complex, high-dimensional materials
data that are invisible to classical ML. While still in its infancy,
QML holds the long-term promise of creating even more powerful
predictive models for materials discovery.'®

Key application areas

The integration of quantum computing and materials informatics
is set to drive breakthroughs across a wide spectrum of materials
science and chemistry.*
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Electronic structure and strongly correlated systems

This is the most fundamental application. Classical methods like
DFT fail for strongly correlated electron systems, which include
high-temperature superconductors and many transition metal oxides.?
Quantum computers can, in principle, calculate the properties of these
materials with high accuracy.'” This quantum-derived data could be
used to train ML models to predict the behavior of other correlated
systems or even to develop improved functionals for DFT, using
quantum computing to enhance our most valuable classical tools.

Catalyst design for sustainable chemistry

Developing new catalysts is essential for sustainable processes like
carbon capture and green hydrogen production. The effectiveness of a
catalyst depends on quantum mechanical interactions at its active site,
which are often difficult to model classically. Quantum computers
can simulate these chemical reactions with high precision, providing
detailed mechanistic insights. This high-quality data can then be
fed into an MI framework to train ML models that rapidly screen
thousands of potential catalyst candidates, dramatically accelerating
the discovery cycle.>

Advanced energy storage materials

Improving battery performance requires designing new electrode
and electrolyte materials. This, in turn, depends on understanding
quantum-level processes like ion diffusion and charge transfer.
Quantum computing can accurately model these fundamental
interactions, providing data to understand the limitations of current
materials.* ML models trained on this data can then predict key
performance metrics like energy density and cycle life, accelerating
the search for novel materials for safer, more powerful batteries."!

Drug discovery and computational biology

The principles of this integrated approach extend to the life
sciences. The binding of a drug molecule to its target protein is a
quantum mechanical process. Quantum computers can calculate
drug-protein interaction energies with much higher accuracy than
classical methods. This high-accuracy data, even for a small number
of molecules, can be used to train a QML model capable of rapidly
screening virtual libraries of millions of potential drug candidates,
significantly reducing the time and cost of drug discovery.'*

Challenges and future outlook

While quantum computing and materials informatics hold
transformative potential, realizing their full impact requires
confronting persistent technical, methodological, and organizational
barriers that will shape the trajectory of future progress.

Overcoming current challenges

Despite the immense promise, the path forward is lined with
significant challenges.

(i) Hardware limitations: Current NISQ devices have low qubit
counts, short coherence times, and high error rates, severely
limiting the scale and complexity of solvable problems.”**

(i) Algorithm development: Quantum algorithms like VQE
need further refinement to improve their efficiency and noise
resilience for practical applications on near-term hardware.?*

(iii) Data integration: Standardized methods for generating, storing,
and integrating high-fidelity quantum data into existing classical
materials databases are needed.
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(iv) Workforce and skill gap: The field requires a new generation
of scientists with interdisciplinary expertise in quantum physics,
computer science, and materials science.

A roadmap for the future

The vision for this field can be broken down into near, medium,
and long-term goals.

(i) Near-term (NISQ era): The focus will be on achieving a
“quantum advantage” for specific, high-value problems. A key
goal is to use NISQ devices to generate small, highly accurate
datasets to train ML potentials for use in large-scale classical
simulations.'*

(ii) Medium-term (Early fault-tolerance): As quantum computers
with error correction emerge, it will become possible to simulate
larger systems with greater accuracy and to model quantum
dynamics, unlocking new insights into time-dependent processes
like photochemical reactions.?!

(iii) Long-Term (Mature fault-tolerance): The ultimate vision is a

fully autonomous, “closed-loop” materials discovery platform.

In this platform, Al models would propose novel materials,

quantum computers would perform high-fidelity simulations to

validate them, and the results would be used to retrain the Al,
creating a self-improving cycle that could be linked to automated
robotic labs for synthesis and characterization.'*¥

Conclusion

The convergence of quantum computing and materials informatics
heralds a new scientific paradigm poised to revolutionize materials
discovery. Quantum computing offers a path to simulate nature with
unprecedented fidelity, breaking through the accuracy barriers of
classical computation. Materials informatics provides the essential
data-driven framework to harness and scale this newfound predictive
power.

Their synergy creates a powerful, self-reinforcing cycle. Quantum
computing will generate the “gold-standard” data needed to train
a new generation of highly accurate machine learning models. In
turn, machine learning will be indispensable for optimizing and
extracting value from noisy, near-term quantum hardware. This
integrated approach will enable the rational design of materials with
novel functionalities, from next-generation catalysts and batteries to
revolutionary medicines and quantum materials themselves.

While significant challenges in hardware, algorithms, and
workforce development remain, the momentum in both fields is
undeniable. The journey from today’s NISQ devices to tomorrow’s
fault-tolerant quantum computers will be incremental, but each step
will unlock new capabilities. The fusion of quantum computing’s
deep physical accuracy with the broad, data-driven intelligence of
materials informatics has charted a clear and exciting course toward a
new era of accelerated scientific discovery, equipping us with the tools
to design the materials that will shape the 21st century and beyond.
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