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Introduction
From the Bronze Age to the Silicon Age, the discovery of new 

materials has been a primary engine of human progress. Yet, this process 
has largely been driven by serendipity and laborious experimentation. 
The complex challenges of the 21st century—from climate change to 
next-generation electronics—demand a more intelligent and efficient 
approach to materials innovation.1 The chemical space of possible 
materials is staggeringly vast, and exploring it through physical 
experimentation alone is intractable. This reality has catalyzed the rise 
of a new, data-driven paradigm in materials science.

Computational methods, particularly Density Functional Theory 
(DFT), have become indispensable, enabling high-throughput 
screening of thousands of candidate materials.2 Despite its successes, 
DFT has fundamental limitations. It struggles to accurately model 
systems where quantum mechanical effects like strong electron-
electron correlations are dominant. These “strongly correlated 
systems,” which include high-temperature superconductors and 
advanced catalysts, hold immense technological promise but remain 
beyond the predictive power of classical simulation.3

It is at this frontier that quantum computing emerges as a 
transformative technology.4 By operating on the principles of quantum 
mechanics, quantum computers can explore computational spaces that 
are exponentially larger than what is accessible to classical machines.5 
For materials science, this means a path toward solving the electronic 
Schrödinger equation with near-exact accuracy, a feat impossible for 
classical computers beyond the simplest systems.6

However, the raw power of quantum computation is not a 
complete solution. Current and near-term devices, known as Noisy 
Intermediate-Scale Quantum (NISQ) computers, are limited in scale 
and prone to errors.7

Maximizing their utility requires a sophisticated framework for 
data management, analysis, and integration with classical computing 
resources. This is precisely the domain of Materials Informatics (MI).

Materials informatics applies data science and machine learning 
to accelerate materials discovery.8,9 By learning from existing data, 
MI can build predictive models that guide research toward the most 
promising candidates, drastically reducing the time and cost of 
development.2,10

This paper explores the profound and synergistic intersection of 
these two revolutionary fields.11,12 We argue that the true acceleration 
of materials discovery will come from their integrated and symbiotic 
relationship. Quantum computing will provide the high-fidelity data 
needed to train a new generation of powerful machine learning models, 
overcoming the accuracy limitations of classical methods.13,14 In turn, 
materials informatics will provide the tools to manage the complexity 
of quantum computations, optimize algorithms, mitigate noise, and 
translate quantum outputs into actionable design principles.15,16 This 
integrated approach promises to create a new paradigm for designing 
bespoke materials on demand, transforming our world in the process.

Foundational pillars
To advance the optimization of material properties through 

quantum technologies, two foundational pillars—quantum computing 
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Abstract

The quest for novel materials with tailored properties is a cornerstone of technological 
advancement. However, traditional trial-and-error discovery methods are inefficient and 
costly. A new paradigm is emerging from the convergence of two powerful fields: quantum 
computing and materials informatics. Quantum computers promise to simulate molecular 
and material systems with an accuracy unattainable by classical computers, overcoming 
limitations in modeling complex quantum phenomena. Concurrently, materials informatics 
leverages data science and machine learning to analyze vast datasets, accelerating the 
design and discovery of new materials. This paper examines the synergistic intersection 
of these fields. We explore how high-fidelity data from quantum computations can train 
superior machine learning models and how materials informatics can, in turn, optimize 
quantum simulations. Key application areas are discussed, including catalyst design, energy 
storage, and the simulation of strongly correlated electron systems—a grand challenge for 
classical methods. We also address significant hurdles, from the hardware limitations of 
current Noisy Intermediate-Scale Quantum (NISQ) devices to the development of robust 
quantum algorithms and the need for a new generation of interdisciplinary scientists. 
Finally, we envision a future where a closed-loop, autonomous discovery platform, powered 
by the fusion of quantum simulation and machine learning, can predict, synthesize, and 
characterize novel materials at an unprecedented rate, heralding a new era of rational 
materials design.
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and materials informatics—form the basis of current research efforts, 
each addressing unique challenges while complementing one another 
in scope and application.

Quantum computing for materials science

Quantum computing represents a fundamental shift from classical 
bits to quantum bits, or qubits. A qubit can exist in a superposition 
of states (both 0 and 1 simultaneously) and become entangled 
with other qubits, where their fates are intrinsically linked.5 These 
properties allow quantum computers to perform calculations on an 
exponentially large number of states at once, making them naturally 
suited for simulating quantum mechanical systems like molecules and 
materials.17,18

Key quantum algorithms for materials science aim to find the 
lowest energy state (ground state) of a system. The Variational 
Quantum Eigensolver (VQE) is a leading candidate for near-term 
applications.19,20 VQE is a hybrid quantum-classical algorithm 
where a quantum computer prepares and measures the energy of 
a parameterized quantum state. In contrast, a classical computer 
optimizes the parameters to find the minimum energy.21,22 Its resilience 
to noise makes it well-suited for current hardware.23

However, building a large-scale, fault-tolerant quantum computer 
is an immense engineering challenge.24 We are currently in the Noisy 
Intermediate-Scale Quantum (NISQ) era, characterized by processors 
with fewer than a few hundred qubits that are susceptible to 
environmental noise (decoherence) and gate errors.7 These limitations 
restrict the complexity of solvable problems, driving research toward 
developing algorithms and applications that can demonstrate a 
“quantum advantage” on these imperfect, near-term devices.25

Materials informatics: a data-driven paradigm

Materials informatics (MI) applies data-centric methods to 
accelerate the discovery of new materials.8 It relies on a robust data 
ecosystem encompassing generation, storage, and analysis. Large 
datasets are generated from both high-throughput experiments and 
computational methods like DFT.2 These datasets are housed in 
curated databases, providing a valuable resource for the research 
community.

The core of MI is the application of machine learning (ML) to 
analyze this data and build predictive models.9,10 The most common 
approaches include:

(i)	 Supervised learning: An algorithm learns from a labeled dataset 
to predict a specific property, such as a material’s stability or 
band gap.8,26

(ii)	 Unsupervised learning: The algorithm identifies hidden 
patterns or clusters in unlabeled data, helping to discover new 
classes of materials.

(iii)	 Generative models: Advanced models like Generative 
Adversarial Networks (GANs) are used for inverse design, 
generating new materials predicted to have desired properties.27

The impact of MI is already significant, having accelerated 
the discovery of materials for thermoelectrics, photovoltaics, and 
batteries.28 However, the adage “garbage in, garbage out” applies; the 
quality of the training data fundamentally limits the accuracy of ML 
models. The inaccuracies of classical methods like DFT for certain 
classes of materials create a critical need for higher-fidelity data, a 
role quantum computing is perfectly poised to fill.14

The synergistic intersection
The true transformative potential lies in the convergence of 

quantum computing and materials informatics, creating a powerful 
feedback loop where each field mitigates the limitations of the 
other.11,12

Quantum computing as a source of high-fidelity data

The primary role of quantum computing in this partnership is to 
generate “gold standard” data. The predictive power of ML models 
in materials science is capped by the accuracy of their training data.10 
For many important materials, data from classical methods like DFT 
is not accurate enough.3 Quantum computers, by directly simulating 
quantum mechanics, can provide exact or near-exact data on material 
properties, even for the most challenging systems.6

This high-fidelity data can then be used to train a new generation of 
“quantum-accurate” machine learning models.13 For example, a small 
number of highly accurate quantum calculations on representative 
material fragments can train an ML model capable of predicting 
properties for much larger systems. This approach effectively 
amplifies the power of near-term quantum computers, leveraging their 
depth of accuracy while using classical ML to achieve scale.14,29

Materials informatics for enhancing quantum 
computing

The synergy flows in both directions, as MI and ML techniques 
are crucial for addressing key challenges in quantum computing, 
particularly in the NISQ era.

(i)	 Optimizing quantum algorithms: Hybrid algorithms like VQE 
depend on a classical optimizer to find the best parameters for the 
quantum circuit. ML techniques such as Bayesian optimization 
or reinforcement learning can navigate the complex parameter 
landscapes more effectively, leading to faster and more accurate 
results.15

(ii)	 Error mitigation: NISQ devices are inherently noisy. ML 
models can learn the characteristic error patterns of a specific 
quantum device and be used to “denoise” the raw output, 
extracting a more accurate signal from the corrupted data.16

(iii)	 Designing quantum circuits: The performance of VQE is 
highly dependent on the design of the quantum circuit, or ansatz. 
ML models can be trained to automatically discover optimal, 
problem-specific circuit architectures, reducing the human 
expertise required to run effective quantum simulations.

The emergence of quantum machine learning (QML)

Beyond these hybrid approaches, the field of Quantum Machine 
Learning (QML) seeks to develop ML algorithms that run directly 
on quantum computers.13,26 QML algorithms could leverage quantum 
phenomena to find patterns in complex, high-dimensional materials 
data that are invisible to classical ML. While still in its infancy, 
QML holds the long-term promise of creating even more powerful 
predictive models for materials discovery.16

Key application areas

The integration of quantum computing and materials informatics 
is set to drive breakthroughs across a wide spectrum of materials 
science and chemistry.30
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Electronic structure and strongly correlated systems

This is the most fundamental application. Classical methods like 
DFT fail for strongly correlated electron systems, which include 
high-temperature superconductors and many transition metal oxides.3 
Quantum computers can, in principle, calculate the properties of these 
materials with high accuracy.17 This quantum-derived data could be 
used to train ML models to predict the behavior of other correlated 
systems or even to develop improved functionals for DFT, using 
quantum computing to enhance our most valuable classical tools.

Catalyst design for sustainable chemistry

Developing new catalysts is essential for sustainable processes like 
carbon capture and green hydrogen production. The effectiveness of a 
catalyst depends on quantum mechanical interactions at its active site, 
which are often difficult to model classically. Quantum computers 
can simulate these chemical reactions with high precision, providing 
detailed mechanistic insights. This high-quality data can then be 
fed into an MI framework to train ML models that rapidly screen 
thousands of potential catalyst candidates, dramatically accelerating 
the discovery cycle.30

Advanced energy storage materials

Improving battery performance requires designing new electrode 
and electrolyte materials. This, in turn, depends on understanding 
quantum-level processes like ion diffusion and charge transfer. 
Quantum computing can accurately model these fundamental 
interactions, providing data to understand the limitations of current 
materials.4 ML models trained on this data can then predict key 
performance metrics like energy density and cycle life, accelerating 
the search for novel materials for safer, more powerful batteries.11

Drug discovery and computational biology

The principles of this integrated approach extend to the life 
sciences. The binding of a drug molecule to its target protein is a 
quantum mechanical process. Quantum computers can calculate 
drug-protein interaction energies with much higher accuracy than 
classical methods. This high-accuracy data, even for a small number 
of molecules, can be used to train a QML model capable of rapidly 
screening virtual libraries of millions of potential drug candidates, 
significantly reducing the time and cost of drug discovery.15

Challenges and future outlook
While quantum computing and materials informatics hold 

transformative potential, realizing their full impact requires 
confronting persistent technical, methodological, and organizational 
barriers that will shape the trajectory of future progress.

Overcoming current challenges

Despite the immense promise, the path forward is lined with 
significant challenges.

(i)	 Hardware limitations: Current NISQ devices have low qubit 
counts, short coherence times, and high error rates, severely 
limiting the scale and complexity of solvable problems.7,24

(ii)	 Algorithm development: Quantum algorithms like VQE 
need further refinement to improve their efficiency and noise 
resilience for practical applications on near-term hardware.20,23

(iii)	Data integration: Standardized methods for generating, storing, 
and integrating high-fidelity quantum data into existing classical 
materials databases are needed.

(iv)	Workforce and skill gap: The field requires a new generation 
of scientists with interdisciplinary expertise in quantum physics, 
computer science, and materials science.

A roadmap for the future

The vision for this field can be broken down into near, medium, 
and long-term goals.

(i)	 Near-term (NISQ era): The focus will be on achieving a 
“quantum advantage” for specific, high-value problems. A key 
goal is to use NISQ devices to generate small, highly accurate 
datasets to train ML potentials for use in large-scale classical 
simulations.11,29

(ii)	 Medium-term (Early fault-tolerance): As quantum computers 
with error correction emerge, it will become possible to simulate 
larger systems with greater accuracy and to model quantum 
dynamics, unlocking new insights into time-dependent processes 
like photochemical reactions.31

(iii)	 Long-Term (Mature fault-tolerance): The ultimate vision is a 
fully autonomous, “closed-loop” materials discovery platform. 
In this platform, AI models would propose novel materials, 
quantum computers would perform high-fidelity simulations to 
validate them, and the results would be used to retrain the AI, 
creating a self-improving cycle that could be linked to automated 
robotic labs for synthesis and characterization.1,4,32

Conclusion
The convergence of quantum computing and materials informatics 

heralds a new scientific paradigm poised to revolutionize materials 
discovery. Quantum computing offers a path to simulate nature with 
unprecedented fidelity, breaking through the accuracy barriers of 
classical computation. Materials informatics provides the essential 
data-driven framework to harness and scale this newfound predictive 
power.

Their synergy creates a powerful, self-reinforcing cycle. Quantum 
computing will generate the “gold-standard” data needed to train 
a new generation of highly accurate machine learning models. In 
turn, machine learning will be indispensable for optimizing and 
extracting value from noisy, near-term quantum hardware. This 
integrated approach will enable the rational design of materials with 
novel functionalities, from next-generation catalysts and batteries to 
revolutionary medicines and quantum materials themselves.

While significant challenges in hardware, algorithms, and 
workforce development remain, the momentum in both fields is 
undeniable. The journey from today’s NISQ devices to tomorrow’s 
fault-tolerant quantum computers will be incremental, but each step 
will unlock new capabilities. The fusion of quantum computing’s 
deep physical accuracy with the broad, data-driven intelligence of 
materials informatics has charted a clear and exciting course toward a 
new era of accelerated scientific discovery, equipping us with the tools 
to design the materials that will shape the 21st century and beyond.
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