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Introduction
Electric Discharge Machining (EDM) is a well-established non-

traditional machining process that is extensively used for the shaping 
of hard, brittle, and electrically conductive materials with good 
dimensional accuracy and surface integrity. The working principle of 
EDM is based on the thermoelectric energy that is generated by a 
series of controlled electrical discharges between the tool electrode 
and the workpiece material, separated by a dielectric medium. This 
process does enable in the machining of complex geometries and 
even high-strength materials that are otherwise difficult to machine 
using conventional techniques. However, conventional EDM requires 
large volumes of hydrocarbon-based dielectric fluids, which are 
not only flammable and expensive but also pose serious health and 
environmental risks due on account of the emission of toxic fumes 
and waste disposal challenges.1,2

In light of increasing global concern for environmental 
sustainability, there has been a concerted effort within the 
manufacturing community to develop greener and safer alternatives to 
traditional EDM. Several studies have explored use of the following: 
(i) biodegradable dielectrics,3 (ii) the approach of minimum quantity 
lubrication,4 and (iii) alternative dielectric delivery systems5 as viable 
steps toward sustainable machining. Among these, Near-Dry EDM 
has emerged as a promising advancement. It operates with a two-
phase dielectric fluid—a mixture of a small amount of liquid dielectric 
[such as deionized water, kerosene, or other compatible fluids] that is 
atomized in a high-velocity air stream—and sprays it directly into the 
inter-electrode gap. This innovative modification drastically reduces 
the consumption of dielectric fluid while concurrently improving 
process safety, portability, and operational cleanliness.6,7

The use of near-dry conditions in EDM has been reported 

to produce comparable, and in some cases, superior machining 
performance in terms of MRR, TWR), and SR, when compared to 
the conventional setups. Singh et al.,8 demonstrated the application of 
mist-type dielectrics in EDM could lead to improved debris flushing 
and reduced tool wear. Rao and Kumar9 reported enhanced machining 
efficiency under near-dry conditions with significantly lower thermal 
damage to the workpiece. Despite these advantages, achieving an 
optimal performance under near-dry EDM conditions require precise 
tuning of the process parameters since the interplay between thermal 
energy distribution, dielectric delivery, and material removal becomes 
more complex in the absence of a conventional dielectric pool.

In this study, we investigate and optimize the effect of five critical 
input parameters in the near-dry electric discharge machining process. 
These essentially include the following:

(i)	 Discharge current (A),

(ii)	 Pulse-on time (µs),

(iii)	 Gap voltage (V),

(iv)	 Liquid flow rate (ml/min), and

(v)	 Workpiece feed rate (mm/min). These parameters are known to 
significantly influence three key output responses: 

(a) 	 MRR in mm³/min, 

(b) 	 TWR in mm³/min, and 

(c) 	 SR in µm. 

The primary objective was to achieve a balanced optimization—
maximizing MRR, which reflects productivity, while minimizing 
the TWR and SR, which are critical for tool life and surface quality.

Material Sci & Eng. 2025;9(1):20‒25. 20
©2025 Deshpande et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, 
which permits unrestricted use, distribution, and build upon your work non-commercially.

Multi-objective optimization of near-dry electric 
discharge machining process using genetic algorithm 
and scalarization

Volume 9 Issue 1 - 2025

 
 

 

1Department of Industrial and Production Engineering, Shri G.S. 
Institute of Technology and Science, India
2Department of Mechanical, Materials and Aerospace 
Engineering, Indian Institute of Technology Dharwad, India
3Department of Mechanical Engineering, the University of 
Akron, USA

Correspondence: Dr. Krishnakant Dhakar, Department of 
Industrial and Production Engineering, Shri G.S. Institute of 
Technology and Science, India

Received: April 11, 2025 | Published:  June 04, 2025

Abstract

Near Dry Electric Discharge Machining (NDEDM) represents a significant advancement 
in advanced manufacturing by replacing the conventional dielectric pool with a spray-
based dielectric delivery system, thereby enhancing both the portability and practicality 
of the process. This study focuses on optimizing the key process parameters: (i) Current 
(A), (ii) Pulse-on Time (µs), (iii) Gap Voltage (V), (iv) Liquid Flow Rate (ml/min), and 
(v) Workpiece Feed Rate (mm/min) for the purpose of achieving a balanced outcome in 
terms of (i) Material Removal Rate (MRR), (ii) Tool Wear Rate (TWR), and (iii) Surface 
Roughness (SR). The primary objective was to maximize MRR while minimizing both 
TWR and SR. A multi-objective Genetic Algorithm was used for optimization, utilizing 
predictive regression models developed through multiple regression analysis of the data 
obtained from experiments that were designed using the Taguchi Design of Experiments 
approach. Scalarization techniques were applied to incorporate weighted preferences for 
each response, thereby enabling in an exploration of the trade-offs among MRR, TWR, 
and SR. The study did reveal a valuable insight into the interdependencies of machining 
parameters, with the multi-objective genetic algorithm demonstrating high predictive 
accuracy—as was evident from minimal deviation between the predicted outcome and 
experimental outcome. The optimized results highlight a favorable balance, enhancing 
productivity while concurrently maintaining quality, and contribute meaningfully to the 
field of machining optimization.
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The multi-objective nature of this problem is inherently challenging 
due on account of the conflicting trends in the behaviour of the 
performance metrics. For example, an increase in discharge current 
may enhance MRR but could also lead to higher TWR and poor SR. 
To address this complexity, we used a Multi-Objective Genetic 
Algorithm -a well-established metaheuristic technique for solving 
optimization problems involving multiple conflicting objectives. It 
is capable of generating a set of Pareto-optimal solutions, thereby 
allowing decision-makers to select the most suitable trade-off based 
on need of a specific application.10,11

To support the optimization process, a structured experimental 
design was formulated using the Taguchi Design of Experiments 
method. The Taguchi’s orthogonal array approach ensures a 
systematic and statistically efficient exploration of the input space 
while minimizing the number of experiments required.12 The 
resulting experimental data were analysed using multiple regression 
techniques in Minitab Statistical Software so as to generate predictive 
mathematical models for the MRR, TWR, and SR. These models 
were subsequently used as fitness functions in the genetic algorithm 
optimization.

Through the combined approach of experimental design, statistical 
modelling, and evolutionary computation, this study does provide a 
comprehensive insight into the parametric influence and optimization 
of the near-dry EDM process. The results not only validate near dry 
EDM as a viable and sustainable alternative to conventional EDM but 
also offers practical guidelines for improving machining efficiency 
while minimizing environmental impact. This research contributes to 
the evolving field of green manufacturing and expands the prevailing 
knowledge base for the purpose of optimization of the non-traditional 
machining process.

Methodology 
This section outlines the experimental procedure, parameter 

selection, data analysis, and optimization techniques used in the 
present study. The goal was to evaluate and optimize the performance 
of Near-Dry EDM by considering key input parameters and their 
influence on the three critical output responses:

(i)	 MRR,

(ii)	 TWR, and

(iii)	 SR.

Experimental setup

The experimental trials were conducted using a modified EDM 
setup capable of near-dry operation. A two-phase dielectric system was 
utilized, comprising a fine mist of dielectric fluid (a blend of deionized 
water and air) that was atomized using a high-pressure air-assisted 
spray nozzle. This arrangement did ensure in a consistent delivery of 
the dielectric into the inter-electrode gap. The machining tests were 
performed on a EDM machine, and the workpiece material selected 
was high speed steel (HSS) due to its high hardness and industrial 
relevance. A copper tubular electrode was used, and constant flushing 
conditions were maintained throughout the experiments.

Selection of input parameters and output responses

Based on prior studies and preliminary investigations, five key 
input parameters were selected:

(a)	Discharge Current (A)

(b)	Pulse-on Time (µs)

(c)	Gap Voltage (V)

(d)	Liquid Flow Rate (ml/min)

(e)	Workpiece Feed Rate (mm/min)

The levels of each parameter were carefully chosen based on both 
machine capabilities and recommendations in the published literature. 
These parameters were studied to understand their impact on the 
following output responses:

(a)	MRR in mm³/min

(b)	TWR in mm³/min

(c)	SR in µm

The design of experiments

A Taguchi-based Design of Experiments (DOE) approach was 
used to both plan and execute the machining trials efficiently. An L27 
orthogonal array was selected based on the number of parameters and 
levels considered, minimizing experimental runs while concurrently 
maintaining statistical robustness.

The Taguchi method did facilitate in a systematic study of the 
multiple factors with minimal resource expenditure while also 
enabling in an identification of parameter significance through signal-
to-noise (S/N) ratio analysis.

Data collection and response measurement

Each experimental run was replicated to ensure repeatability 
while ensuring a reduction in the random error. Material removal 
was calculated based on a difference in weight of the workpiece 
before machining and after machining, using a high-precision digital 
balance. Tool wear was similarly measured by tracking weight loss of 
the tool electrode. Surface roughness was measured using a contact-
type surface profilometer, averaging three readings from different 
locations on the machined surface so as to ensure accuracy.

Regression analysis

The experimental results were analysed using Minitab Statistical 
Software. A multiple linear regression analysis was conducted for 
each output response to develop predictive models that relate the input 
parameters to MRR, TWR, and SR. The adequacy of each regression 
model was assessed using the coefficient of determination (R2R^2R2) 
and analysis of variance (ANOVA) to verify significance of the 
individual terms.

The regression equations served as objective functions for 
subsequent optimization using a genetic algorithm.

Multi-objective optimization using genetic algorithm

A Multi-Objective Genetic Algorithm was used to optimize the 
near-dry EDM process for simultaneous improvement of MRR, TWR, 
and SR. The regression models developed were integrated into the 
fitness evaluation within the genetic algorithm framework.

Given the conflicting nature of the objectives [e.g., high MRR 
often leads to high TWR or poor SR], a Pareto-based approach was 
used to identify non-dominated solutions representing optimal trade-
offs.

The key Genetic Algorithms parameters are the following:

(a)	Population size

(b)	Number of generations
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(c)	Crossover rate

(d)	Mutation rate

The scalarization technique was used to assign a weight to each 
response based entirely on process priorities. Different weight 
combinations were explored to analyse their influence on optimization 
of the outcomes.

Validation of optimized results

To verify the reliability of the predicted optimal solutions, 

confirmatory experiments were conducted using the best parameter 
combination(s) derived from the genetic algorithm. The predicted 
value and experimental value were compared to evaluate both model 
accuracy and overall effectiveness of the optimization approach.

In this research study, the Taguchi design of experiment technique 
was used to systematically determine the combination of input 
parameters for the experimental trials. Machining experiments were 
conducted using a copper electrode on a workpiece material made 
of high-speed steel (HSS), with each trial lasting five minutes. The 
experimental data obtained from these trials is presented in Table 1.

Table 1 Data obtained from experimentation

S No. Current 
(A)

Pulse 
on time 
(µs)

Gap 
voltage 
(V)

Liquid 
flow rate 
(ml/min)

Workpiece 
feed rate 
(mm/min)

Avg. MRR 
(mm3/min)

Avg. TWR 
(mm3/min)

Avg. SR 
(µm)

1 4.5 120 40 2 2 0.34 0.003 0.73
2 4.5 120 50 6 5 0.63 0.004 0.92
3 4.5 120 60 10 10 0.81 0.0043 1.02
4 4.5 150 40 6 5 0.52 0.0057 0.95
5 4.5 150 50 10 10 0.82 0.0081 1.05
6 4.5 150 60 2 2 0.38 0.0066 0.78

7 4.5 200 40 10 10 1.5 0.0087 1.15
8 4.5 200 50 2 2 0.79 0.0125 0.87
9 4.5 200 60 6 5 1.2 0.008 0.99
10 6 120 40 6 10 0.73 0.0052 1.1
11 6 120 50 10 2 0.78 0.0045 0.92
12 6 120 60 2 5 0.69 0.0037 0.96
13 6 150 40 10 2 0.97 0.0049 0.93
14 6 150 50 2 5 0.71 0.0066 1.03
15 6 150 60 6 10 1.54 0.0052 1.14
16 6 200 40 2 5 1.34 0.0101 0.91
17 6 200 50 6 10 2.53 0.0085 1.23
18 6 200 60 10 2 1.96 0.0105 1.09
19 9 120 40 10 5 2.37 0.0101 1.07
20 9 120 50 2 10 1.81 0.0091 1.14
21 9 120 60 6 2 1.74 0.0157 0.92
22 9 150 40 2 10 1.59 0.0143 1.23
23 9 150 50 6 2 2.11 0.019 0.79
24 9 150 60 10 5 3.22 0.0121 1.05
25 9 200 40 6 2 2.91 0.0324 0.96
26 9 200 50 10 5 3.87 0.021 1.08
27 9 200 60 2 10 3 0.0194 1.33

Regression analysis and modelling

A regression analysis was performed on the data obtained from 
the experiments mentioned. The regression analysis was done using 
the Minitab Statistical Software and the regression equations were 
obtained for MRR, TWR, and SR respectively and then analyzed 
to establish the relation between the different input parameters and 
the resultant response. An analysis of the effects of each parameter 
on response was done in Minitab itself. The results obtained are as 
follows: 

Regression equations given by Minitab

Avg. MRR (mm3/min) = 	 -4.347 + 0.3910 Current (A) 
+ 0.01312 Pulse on time (µs) + 0.01261 Gap voltage (V) + 0.0785 
Liquid flow rate (ml/min) + 0.0288 Workpiece feed rate (mm/min).

Avg. TWR (mm3/min) = 	 -0.01709 + 0.002448 Current 
(A) + 0.000100 Pulse on time (µs) –

				    0.000049 Gap voltage (V) - 
0.000015 Liquid flow rate (ml/min) –

				    0.000325 Workpiece feed rate 
(mm/min)

Avg. SR (µm) = 		  0.376 + 0.02487 Current (A) + 
0.001185 Pulse on time (µs) + 0.00139

				    Gap voltage (V) + 0.00528 
Liquid flow rate (ml/min) + 0.03317

				    Workpiece feed rate (mm/min)
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Relation between the input parameters and the response (Figures 
1–3)

Figure 1 Relation for MRR and the input parameters.

Figure 2 Relation for TWR and the input parameters.

Figure 3 Relation for SR and the input parameters.

Then, we developed a code for prediction of the response in 
MATLAB where the user has to give the five parameters in software 
and the predicted output will be shown or displayed in the command 
window.

Optimization

In the optimization process, the MOGA in MATLAB was used, 
utilizing the predefined ‘gamultiobj’ function available in MATLAB. 
The objective was to maximize the MRR while simultaneously 
minimizing both the TWR and SR, as evident from the provided 
code.14–17

The code works on the basic principle of genetic algorithm, which 
uses two set of values as parents and then performs a crossover which 
gives a new set of parameters that can be put in the pareto front and 
checked for fitness, which is then treated as parents and once again 
crossover is performed and the mutations are done to refine the results 
till such time a best set of solutions is obtained.

After obtaining feasible solutions through the genetic algorithm, 
which by nature does not guarantee a single optimal outcome—a 
scalarization approach was introduced to identify the optimal solutions. 
This method transforms the multi-objective optimization problem into 
a single-objective problem by combining the multiple criteria into a 
unified scalar value. Specifically, the scalarization function in the code 
integrates the objectives of (i) MRR), (ii) TWR, and (iii) SR. It does 
this by applying user-defined weights to each objective, reflecting 
their relative importance based on specific requirements. The function 
then computes a weighted sum for each solution, effectively ranking 
them in accordance with their aggregated scores. This ranking allows 
for a selection of top-performing solutions that best balance the trade-
offs among the objectives. As a result, the scalarization technique 
does enable in a tailored optimization process that aligns well with the 
desired priorities of the user (Figure 4).

Figure 4 Genetic algorithm flow.

Different weights were assigned, and the results were predicted as 
shown in Table 2. Weights of 0.1, 0.1, 10 were given, optimizing each 
parameter to an average level. This parameter set proves valuable 
when all responses need to be at their optimal level. Emphasis was 
then placed on TWR and SR by assigning weights of 10, 1, 1 and 
10, 1, 0.5, respectively. Lastly, weights of -1, -1, 10 were assigned, 
prioritizing MRR while keeping TWR and SR at nominal importance 
levels. The obtained outcomes were as follows. 

Experimental observations

The scalarization approach was applied using different weight 
combinations to evaluate its effectiveness in balancing the trade-offs 
among MRR, tool TWR, and SR. The outcomes of each experimental 
setting are summarized below:

Experiment 1 (Weights: MRR = 0.1, TWR = 0.1, SR = 10): A 
high priority was assigned to minimizing SR, while MRR and TWR 
were given minimal importance. The resulting SR and TWR were 
minimized effectively. The MRR reached a relatively high value of 
2.31 mm³/min, primarily attributed to an elevated discharge current.

This configuration is suitable when high surface finish quality is 
critical, without severely compromising the MRR.

Experiment 2 (Weights: MRR = 10, TWR = 1, SR = 1): Emphasis 
was placed on minimizing TWR, with moderate importance given 
to SR and high importance to MRR. The optimization resulted in a 
significant reduction in both TWR and SR, while also maintaining an 
optimal MRR. This setup achieved balanced performance across all 
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objectives, making it ideal for applications requiring both efficiency 
and tool longevity.

Experiment 3 (Weights: MRR = 10, TWR = 1, SR = 0.5): Higher 
priority was given to minimizing TWR and SR, while MRR was treated 
as a secondary objective. The configuration successfully reduced both 
the TWR and SR to low levels, while retaining a moderately high 
MRR retained. This setting is particularly applicable where quality of 
SR is critical and a reasonable MRR is acceptable.

Experiment 4 (Weights: MRR = -1, TWR = -1, SR = 10): The 
highest priority was assigned to maximizing MRR, with TWR and SR 

considered less significant. The MRR was maximized effectively, with 
only minimal compromises in the TWR and SR. This experimental 
setup is suitable for high-throughput machining processes where 
MRR is the primary objective and surface quality is of lesser concern.

Results and discussion
The parameters shown above (Table 2) are been optimized using 

genetic algorithm. The experiments were conducted using these 
optimized parameters and the actual responses are summarized in 
Table 3.

Table 2	Optimized parameters and predicted outputs

Current 
(A)

Pulse 
on time 
(µs)

Gap 
voltage 
(V)

Liquid 
flow rate 
(ml/min)

Workpiece 
feed rate 
(mm/min)

Predicted 
MRR

Predicted 
TWR

Predicted 
SR

Weight 
(TWR, SR, 
MRR)

9 133.128 49.2401 5.554 5.767 2.1338 0.0139 1.0443 0.1, 0.1, 10
7.8 120 40 2.81 2.81 1.0819 0.0111 0.876 10, 1, 1
7 120 40 2.2 4 0.75 0.008 0.89 10, 1, 0.5
9 177 43 7.47 8.51 2.86 0.01 1.19 -1, -1, 10

Table 3 Actual responses obtained for experiments

S. No. Current 
(A)

Pulse 
on time 
(µs)

Gap 
voltage 
(V)

Liquid 
flow rate 
(ml/min)

Workpiece 
feed rate 
(mm/min)

Actual MRR 
(mm3/min)

Actual TWR 
(mm3/min)

Actual 
SR (µm)

1 9 133.128 49.24 5.554 5.767 2.31 0.019 1.038
2 7.8 120 40 2.81 2.81 0.98 0.012 0.91
3 7 120 40 2.2 4 0.82 0.01 0.96
4 9 177 43 7.47 8.51 2.9 0.017 1.2

The experimental results demonstrate ae successful optimization 
of output parameters—MRR, TWR, and SR—based on user-defined 
weight combinations applied using the scalarization technique. All 
four experimental configurations yielded desirable outcomes tailored 
to specific operational priorities, indicating an overall flexibility 
and robustness of the proposed hybrid approach combining Genetic 
Algorithm and scalarization.

The primary objective of this study was to optimize machining 
performance by establishing a predictive mathematical model that 
correlates the input parameters with output responses. The multi-
objective nature of the problem—maximizing the MRR while 
minimizing both TWR and SR — necessitated an integration of the 
genetic algorithm for exploring a feasible solution space coupled with 
scalarization for the purpose of identifying optimal trade-offs among 
the conflicting objectives.

The scalarization method effectively transformed the multi-
objective optimization problem into a single-objective framework by 
assigning weights to each output parameter according to the desired 
level of importance. This allowed for a consolidation of the multiple 
performance criteria into a single scalar value, thereby enabling in 
a systematic prioritization and balancing through the optimization 
process.

The experimental results highlight how different weightings of 
machining objectives influence overall performance. In the first 
experiment, prioritizing SR while assigning lower weights to MRR 
and TWR led to a high MRR with minimal compromise on other 
metrics, making it ideal for balancing productivity and surface 
quality. The second experiment aimed to reduce tool wear and surface 
roughness, with moderate attention to MRR. This approach effectively 

improved both TWR and SR while still delivering an acceptable 
MRR, making it suitable for tasks that value tool longevity and fine 
finishes. In the third experiment, minimizing tool wear was the main 
priority. Although this caused a slight drop in MRR, the significant 
reduction in TWR supports its use in high-precision operations where 
tool preservation is critical. The last experiment focused heavily on 
maximizing MRR. While this resulted in a minor increase in tool wear 
and a slight decrease in surface finish, the performance stayed within 
practical limits, making it appropriate for applications that prioritize 
throughput over precision.

The accuracy of the genetic algorithm-based prediction model 
is validated through a comparison with the actual experimental 
data, as is shown in Table 2 and Table 3. The differences between 
the predicted value and observed value were negligible, affirming 
the overall reliability of the model. Notably, MRR of 2.31 mm³/
min was achieved along with a SR of 1.038 µm, thus representing a 
favorable balance between efficiency of material removal and surface 
quality. Furthermore, the research also achieved a minimum SR of 
0.91 µm, with corresponding MRR and TWR values of 0.98 mm³/min 
and 0.012 mm³/min, respectively. Thus, capability of the proposed 
approach to generate high-quality surfaces demonstrated efficient 
material removal and minimal tool wear.

Overall, the results confirm that an integration of the genetic 
algorithm with scalarization offers a powerful framework for solving 
a multi-objective optimization problem in advanced manufacturing 
processes, with strong predictive capability and an adaptability to 
varying performance requirements. This work adds to the existing 
body of knowledge in advanced manufacturing systems by providing a 
robust optimization framework. The findings provide a basis for future 
research and industrial applications seeking to improve machining 
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efficiency, tool life, and surface integrity through intelligent, data-
driven strategies.

Conclusion
This study successfully explored the optimization of machining 

parameters in the near dry EDM process using a hybrid approach 
combining multi-objective Genetic Algorithms and scalarization 
techniques. An integration of Genetic Algorithms with scalarization 
enabled in simultaneous optimization of conflicting objectives-
maximizing MRR while minimizing TWR and SR. The approach 
demonstrated strong performance in balancing the trade-offs that is 
crucial for industrial applications. The scalarization techniques helped 
in obtaining practical relevance by assigning user-defined weights to 
each output parameter, the methodology allowed for customization 
based on specific operational goals. The resulting configurations did 
provide practical solutions for diverse machining scenarios, ranging 
from high material removal to precision surface finish. The study 
reinforces the potential of near dry EDM as a viable, energy-efficient 
alternative to conventional EDM, supporting the advancement of 
green and sustainable manufacturing practices. The experimental and 
optimization results do contribute a valuable insight into the process 
behavior and its suitability for use in modern production environments.
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