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Introduction
Jointed Plain Concrete Pavement (JPCP) is one of the most 

common types of rigid pavements that consist of concrete slabs with 
steel mesh reinforcement. Faulting, a critical distress occurs in JPCP 
when transverse joints of adjacent slabs differ in elevation. Several 
factors such as heavy traffic load, soil stripping in the base layer, 
moisture infiltration at joints, differential settlement, and temperature 
variation in the slab may cause faulting. 

Literature review
Faulting is a major issue in jointed concrete pavements (JCPs). 

Many prediction models are being developed for predicting fault 
failure. In AASHTO 1993 version of pavement design guide, faulting 
and cracking were combinedly accounted for by maintaining and 
serviceability above defined threshold. In the attempted to separate 
these two concerns and forecast faults independently based on 
pavement design, traffic, weather conditions.1 Most of the prediction 
models used LTPP database in which Faulting data include faulting 
measurements at doweled and non-doweled joints and some 
measurements at transverse crack locations. Ehsani et al.2 used both 
artificial neural and random forest method with 19 input variables to 
develop prediction model. Ker et al.3 developed prediction model for 
transverse joint faulting incorporating ERESBACK 2.2 program for 
back calculation to get more accurate data. Mechanistic-empirical 
erosion-based faulting model incorporated traffic parameters with 
the application of erosion test showed the correlation between traffic 
, environmental factors with faulting.4 Darter et al.5 incorporated 
Monte Carlo Simulation into the M-E PDG JPCP cracking prediction 
in which pavement layer thickness, joint spacing, co-efficient of 
subgrade reaction, tire pressure etc. were studied. The current 
faulting model integrated into the Pavement ME design procedure 
considers pavement response, climatic conditions, traffic, and base 

erodibility.6 This model is uniformly applied to all types of jointed 
concrete pavements, regardless of their structural makeup (such as 
conventional concrete pavement, unbonded concrete overlay, bonded 
concrete overlay, etc.). This suggests that the pumping mechanism is 
assumed to be consistent across all pavement structures. Furthermore, 
it assumes uniformity in the rate of faulting development and the 
maximum faulting regardless of pavement structure. The focus of this 
study is to build an ANN model capable of predicting faulting for dry 
region by incorporating both structural and environmental variables 
of JPCP. 

Objective and scope
The main objective of the study is to utilize a machine-learning 

approach principally an ANN base model for future faulting 
prediction in JPCP. The model is trained by datasets collected from 
LTPP for the dry climatic zone in the US. Both structural properties 
and environmental effects are considered for neural net development 
thus creating a well-grounded prediction model. The study also 
derives a first-degree simplified equation from the ANN model, which 
can be utilized by pavement engineers and maintenance contractors to 
predict future faulting development in JPCP. The sensitivity analysis 
of the model input parameters is performed to investigate the inner 
connectivity between input parameters and output results. 

Data collection and processing
For training the neural network model data sets are collected 

from The LTPP database. The LTPP program regularly collects joint 
and crack faulting data at each jointed concrete pavement test site 
using the Georgia Fault Meter (GFM). Figure 1 shows the diagram 
for GFM faulting measurement. The faulting measurements over 30 
years of lifespan at the wheel path for the Dry-Freeze and Dry No-
Freeze climate regions subjected to this study are shown in Figure 
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Abstract

Faulting, a critical distress in rigid pavements, poses a crucial challenge to road safety and 
maintenance. It is defined as the elevation difference of transverse joints in Jointed Plain 
Concrete Pavements, which is primarily caused due to environmental effects, subgrade 
properties, and accumulated traffic loads. Traditional regression models cannot often capture 
complex relations within pavement faulting and other detrimental effects on pavement, 
whereas Artificial Neural networks leverage data-driven machine-learning approaches to 
provide more accurate predictions. Datasets have been prepared from the LTPP database 
of dry climate zones. Environmental factors such as Yearly ESALs, Annual Precipitation, 
Annual Average Temperature, Freeze-Thaw Cycles, and structural properties like Pavement 
Thickness, Pavement Age, Tensile Strength, and Optimum Moisture Content (OMC) are 
considered the factors causing wheel path faulting. An Artificial Neural Network (ANN) 
based faulting prediction model is developed with one hidden layer and three neurons. 
8 States over 30 years of lifespan are taken into consideration for this study. The final 
developed ANN model can predict the faulting in pavement sections accurately for any 
climatic region with an R2 value of 0.81. The correlation between the factors is studied as 
well and an ANN linear equation is also developed. The developed predictive ANN model 
equation will allow transportation engineers and contractors to easily predict Faulting in 
Jointed Plain Concrete Pavements (JPCP) which will assist in improving maintenance 
strategies to alleviate the effects of JPCP faulting.
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2 & 3. A total of 190 observations in 8 states are fed into the ANN 
model for both front and back training propagation. Linear regression 
shows the existing correlation between which was further evaluated 
by correlation heatmap presented in Figure 4. ESAL and pavement 
thickness demonstrate the highest positive correlation, reaching 0.5. 
Conversely, the annual average temperature exhibits a significant 
negative correlation (-0.74) with faulting formation, indicating a 
strong inverse relationship between the two variables.

Figure 1 Diagram of manual faulting measurement using the GFM. (Source: FHWA) 

Figure 2 Study area containing states with observations numbers in dry climatic region. 
The database included four structural and four environmental factors which are shown 
in Figure 3.

Figure 3 Input variables for ANN model training. The training dataset of the neural 
network is initially evaluated with linear regression analysis and R2 is observed to be 
0.269, represented in Table 1. This accuracy was enhanced through the machine learning 
approach.

Figure 4 Correlation heatmap between input parameters and output parameters.

Table 1 Linear regression statistics between input and output variables

Multiple R 0.518676
R square 0.269024
Adjusted R square 0.236716
Standard error 1.437277
Observations 190

Developing artificial neural network model
The ANN model requires the datasets to be standardized for 

training. Table 2 represents the maximum, minimum, average, and 
standard deviation of the training dataset. These values are used 
further for equation development process. A multilayer perceptron 
(MLP) based ANN consists of fully inner connected neurons which 
have three types of layers, input layer, hidden layers, and output 
layer. The input layer receives the input data sets which are processed 
through one or more hidden layers using mathematical operations. 
Finally, the model’s prediction is produced by output layer based 
adjusted weights and biases. The algorithm gradually corrects the 
weights among the different units and for this, the algorithm evaluates 
the difference between the output predictions produced by the MLP 
and the actual desired values. This learning method is feedforward 
backpropagation.7 For this study the dataset is initially normalized. 
Normalization is a process to change the dataset into a specific range. 
It is necessary where the input features has big differences in ranges.8 
For faulting prediction ANN, min-max normalization is used to 
rescale the input variables range between -1 to +1, shown in Equation 
1. With this method, the relational properties in data remains the same, 
changing the range only.9 

X XminX 2
Xmax Xmin

−
= ×

−
 				               (1)

Where,

X = Normalized Value of the parameter x

Xmin = Minimum value of the parameter x

Xmax = Maximum Value of the parameter x

To tackle the zero-gradient problem in Tanh, a scaled Hyperbolic 
Tangent is used10 which is defined as, Hyperbolic Tanh(x) = A × 
Tanh(B × x)  with output range in [−A, A].

For training the MLP three hidden neurons are used with 8 input 
neurons and one output neuron. Figure 5 shows the ANN architecture 
for the model. The MLP Model Output can be described as the 
following Equation 2,

Output ( )1 1 2 2 n nx x x= ω + ω +…+ω +β 		             (2)

Where,

𝑓 = activation function applied to the weighted sum of inputs plus 
a bias term

ω1, ω2,…, ωn​ = Weights associated with each input

x1, x1,…, xn​ = Input values

β = bias term

The dataset of total 190 observation were randomly split into three 
subgroups, 70% dataset is used for training the ANN model, 15% for 
validating of the model and 15% for testing the prediction outcomes. 
This division is done to avoid overfitting the model and create the 
model more reliable. While training the model the loss function The 
Root Mean Squared Error (RMSE) is observed on validation datasets. 
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If the loss value on validation data sets did not reduce up to six times, the training would stop. For training the MLP, The Levenberg-Marquardt 
Algorithm is used as it performs greatly than simple gradient descent and other conjugate gradient optimization.11 The obtained ANN outputs 
were validated with the Original Outputs by performing Regression Analysis. The obtained model showed R2=0.81 overall which can be seen 
in Figure 6.

Table 2 Descriptive statistics of the model training data

Input parameters Maximum Minimum Average Standard deviation
ESAL 1995922 1887 698060.6947 501379.0096
Annual Precipitation (mm) 785.7 70.2 269.7211 132.0294
Annual Average Temp (°C) 19 5.3 10.58947 2.151509
FT Cycle (days) 195 12 116.1842 41.247
Tensile Strength (psi) 846 471 691.7842 127.1084
Pavement Thickness (mm) 11.7 8.1 9.338948 0.88399
Pavement Age (yr) 39 1 21.6 9.130332
Optimum Moisture Content (%) 14 2 7.878947 3.713422

Figure 5 Architecture of an ANN-based model with 8 input variables with 3 neurons in 1 hidden layer.

Figure 6 R2 for training, validation, testing and all dataset (mm).

After numerous iterations of model training, testing, and validation, 
it was noted that the coefficient of determination of the model exhibits 
an upward trend with the augmentation of neurons. Conversely, 
augmenting the neuron count contributes to heightened model intricacy, 
particularly in the context of an equation encompassing eight input 

variables. Given that one of the principals aims of the investigation is 
the derivation of an equation, an optimal neuron count is imperative to 
strike a balance between model complexity and predictive accuracy. 
Three neurons are selected for the model development with R2 = 0.81. 
The model with optimum accuracy is reported in Table 3& 4 with the 

https://doi.org/10.15406/mseij.2024.08.00240


Artificial neural network-based investigation of factors impacting faulting in rigid pavements for dry-
freeze and dry no-freeze climatic zone

80
Copyright:

©2024 Ahmed et al.

Citation: Ahmed T, Isied M, Souliman MI. Artificial neural network-based investigation of factors impacting faulting in rigid pavements for dry-freeze and dry 
no-freeze climatic zone. Material Sci & Eng Int J. 2024;8(3):77‒81. DOI: 10.15406/mseij.2024.08.00240

weights and bias matrices. An independent mathematical expression 
can be derived from the ANN architecture. The developed equation 

is presented in Equation 3. The equation has three tangent hyperbolic 
functions for representing three hidden neurons in MLP model.

Table 3 Weights and biases input to hidden layer

Weights input to hidden layers

ESAL
Annual 
precipitation (mm)

Annual average 
temp
(°C)

FT cycle 
(days)

Tensile 
strength (psi)

Pavement 
thickness (mm)

Pavement age 
(yr)

Optimum 
moisture 
content (%)

-0.1353 0.2260 4.5737 -0.4668 5.8574 -4.7690 -1.5143 -0.7942
-0.2685 -0.0362 -1.1032 1.2064 -6.5853 4.2016 1.8447 -3.4987
-1.7579 0.5384 3.2043 2.4952 -2.3667 -3.7351 -0.3972 -5.2930
Biases input to hidden layer
3.6681 -1.1503 2.9037

Table 4 Weights and biases hidden to output layer

Weights hidden to output layer
2.6472 2.5795 -0.1784
Bias hidden to output layer
-0.7253

F a u l t i n g = 4 . 7 5 × ( 2 . 6 4 7 2 × T A N H ( -
0.0000001×E+0.00063×P+0.6677×θ-0.0051×FT+0.03124 ×TS–
2.6494×PT-0.0797×A-0.13237×OMC+ 4.26033)+2.57953×TANH(-
0 . 0 0 0 0 0 0 3 × E – 0 . 0 0 0 1 × P – 0 . 1 6 1 0 6 × θ + 0 . 0 1 3 1 8 × F T –
0.03512×TS+2.33426×PT+0.09709×A–0.58312×OMC+ 2.49604)–
0.17844×TANH( 0.0000018×E+0.00151×P+0.46778×θ+0.02727×F
T– 0.01262×TS–2.0751×PT–0.02091×A–0.88218×OMC+31.8459)- 
0.72531+1)+0.1	                                                                              (3)

Where,

E = ESAL (Equivalent Single Axle Load)	

P = Annual Precipitation (mm)

θ = Annual Average Temp (°C)	

FT = FT Cycle (days)

TS = Tensile Strength (psi)	

PT = Pavement Thickness (mm)	

A = Pavement Age (yr)	

OMC = Optimum Moisture Content (%)

Sensitivity analysis of the developed ANN Model

As the MLP has multiple inputs, the impact of each input 
parameter is measured by the sensitivity index. Equation 4 defines 
the sensitivity index. In this study the absolute value of the sensitivity 
index is measured. The sensitivity index is proportional to the variable 
impact on model output. Figure 7 shows the sensitivity of the input 
parameters to faulting.

2 1

2 1

ave

ave

IO OS
I I O

  −
=   

−  
      (4)

Where,

S= Sensitivity Index

O2 = Maximum ANN Output of faulting

O1 = Minimum ANN Output of faulting

I2 = Maximum Input variables of faulting

I1 = Minimum Input variables of faulting

Iave = Average of Input variable of faulting

Oave = Average of ANN Output of faulting

Figure 7 Sensitivity index of input parameters.

Faulting is more responsive to pavements thickness and Tensile 
Strength. Apart from these two variables, the other inputs show 
similar impacts on faulting.

Conclusions and recommendation
With the help of machine learning approach, prediction model 

for faulting in Rigid Pavements for Dry-Freeze and Dry No-Freeze 
Climatic Zone was developed. For training the ANN model, 190 
observations over the 30 years of lifespan were evaluated. Based on 
literature reviews four structural and four environmental parameters 
were selected which are ESAL, Annual Precipitation (mm), Annual 
Average Temp (°C), FT Cycle (days), Tensile Strength (psi), Pavement 
Thickness (mm), Pavement Age (yr), Optimum Moisture Content (%). 
By incorporating these environmental, structural, and traffic elements, 
the model aims to anticipate faulting in rigid pavements in dry region. 
Validation was done by comparing the model’s predictions with actual 
field measurements, resulting in a commendable R-squared value of 
0.8, indicating an 80% accuracy rate. The model can further improve 
by incorporating more observation over the years. Additionally, 
employing additional hidden layers with a greater number of neurons 
or exploring alternative methods for synthesizing the prediction 
model may yield more precise results. This predictive tool could prove 
invaluable for pavement managers and engineers, allowing them to 
preemptively address faulting issues, thus averting further pavement 
deterioration, and ensuring safer roads with optimal ride quality, all 
within budget constraints.

https://doi.org/10.15406/mseij.2024.08.00240


Artificial neural network-based investigation of factors impacting faulting in rigid pavements for dry-
freeze and dry no-freeze climatic zone

81
Copyright:

©2024 Ahmed et al.

Citation: Ahmed T, Isied M, Souliman MI. Artificial neural network-based investigation of factors impacting faulting in rigid pavements for dry-freeze and dry 
no-freeze climatic zone. Material Sci & Eng Int J. 2024;8(3):77‒81. DOI: 10.15406/mseij.2024.08.00240

Acknowledgments
None.

Conflicts of interest
The authors declare that there is no conflicts of interest.

References
1.	 Simpson L, Brent R, et al., Sensitivity analyses for selected pavement 

distresses, no. SHRP-P-393. 1994. 

2.	 Ehsani M, Moghadas F, Hajikarimi P. Developing an optimized faulting 
prediction model in jointed plain concrete pavement using artificial 
neural networks and random forest methods. Int J Pavement Eng. 
2022;24(2).

3.	 Ker HW, Lee YH, Lin CH. Development of faulting prediction models 
for rigid pavements using LTPP database. Statistics. 2008;218(0037):30–
37.

4.	 Jung Y, Zollinger D, New laboratory-based mechanistic-empirical 
model for faulting in jointed concrete pavement. Transp Res Rec. 
2011;2(2226):60–70.

5.	 Darter M, Khazanovich L, Yu T, et al. Reliability analysis of cracking 
and faulting prediction in the new mechanistic-empirical pavement 
design procedure. Transp Res Rec. 2005;1936:150–160.

6.	 Agurla M, Lin S. Long-term pavement performance automated faulting 
measurement. 2015.

7.	 Buscema M. Back propagation neural networks. Subst Use Misuse. 
1998;33(2):233–270.

8.	 Jamal P, Ali M, Faraj RH, et al. Data normalization and standardization: 
a technical report. Mach Learn Tech Reports. 2014;1(1):1–6.

9.	 Aksu G, Güzeller CO, Eser MT. The effect of the normalization method 
used in different sample sizes on the success of artificial neural network 
model. Int J Assess Tools Educ. 2019;6(2):170–192.

10.	 Dubey SR, Singh SK, Chaudhuri BB. Activation functions in deep 
learning: a comprehensive survey and benchmark. Neurocomputing. 
2022;503(7):92–108.

11.	 Ranganathan. The levenberg-marquardt algorithm 3 LM as a blend of 
gradient descent and gauss-newton itera. 2004;142:1–5.

https://doi.org/10.15406/mseij.2024.08.00240
https://onlinepubs.trb.org/onlinepubs/shrp/SHRP-P-393.pdf
https://onlinepubs.trb.org/onlinepubs/shrp/SHRP-P-393.pdf
https://www.tandfonline.com/doi/full/10.1080/10298436.2022.2057975
https://www.tandfonline.com/doi/full/10.1080/10298436.2022.2057975
https://www.tandfonline.com/doi/full/10.1080/10298436.2022.2057975
https://www.tandfonline.com/doi/full/10.1080/10298436.2022.2057975
https://mail.tku.edu.tw/yinghaur/lee/papers/ICTI2008-draft-shortened.pdf
https://mail.tku.edu.tw/yinghaur/lee/papers/ICTI2008-draft-shortened.pdf
https://mail.tku.edu.tw/yinghaur/lee/papers/ICTI2008-draft-shortened.pdf
https://trid.trb.org/View/1118875
https://trid.trb.org/View/1118875
https://trid.trb.org/View/1118875
https://www.fhwa.dot.gov/publications/research/infrastructure/pavements/ltpp/14092/
https://www.fhwa.dot.gov/publications/research/infrastructure/pavements/ltpp/14092/
https://pubmed.ncbi.nlm.nih.gov/9516725/
https://pubmed.ncbi.nlm.nih.gov/9516725/
https://files.eric.ed.gov/fulltext/EJ1246486.pdf
https://files.eric.ed.gov/fulltext/EJ1246486.pdf
https://files.eric.ed.gov/fulltext/EJ1246486.pdf
https://arxiv.org/abs/2109.14545
https://arxiv.org/abs/2109.14545
https://arxiv.org/abs/2109.14545
https://sites.cs.ucsb.edu/~yfwang/courses/cs290i_mvg/pdf/LMA.pdf
https://sites.cs.ucsb.edu/~yfwang/courses/cs290i_mvg/pdf/LMA.pdf

	Title
	Abstract
	Introduction 
	Literature review 
	Objective and scope 
	Data collection and processing 
	Developing artificial neural network model 
	Conclusions and recommendation 
	Acknowledgments 
	Conflicts of interest 
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4 
	Figure 5
	Figure 6 
	Figure 7
	Table 1
	Table 2
	Table 3
	Table 4

