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Abbreviations: LCNN, lite convolutional neural network; 
CNNs, convolutional neural networks; IN, inclusion defect; CR, 
crazing defect; PA, patches defect; PS, pitted surface defect; SC, 
scratches defect; RS, rolled-in scale defect 

Introduction
Ensuring the quality of metal products is crucial in various 

industries to meet stringent standards and customer expectations. 
Visual inspection remains a primary method for detecting surface 
defects, which can affect product integrity and performance. However, 
manual inspection processes are time-consuming, subjective, and 
prone to human error. To address these challenges, automated defect 
detection systems based on deep learning techniques have gained 
significant attention. Recent studies have demonstrated the capability 
of Convolutional Neural Networks (CNNs)1 to effectively analyze and 
classify image data, making them suitable candidates for automating 
defect detection tasks. This research presents a novel approach using 
a deep neural network model, a new Lite Convolutional Neural 
Networks (LCNN) version specifically tailored for inspecting metallic 
surface defects.2 The model was trained on a widely recognized dataset 
of 1800 images, each depicting one of six common surface defects.

Our primary objective is to achieve high accuracy in defect 
detection and classification, which is crucial for enhancing quality 
control processes in metal manufacturing. Despite the relatively 
small training dataset, experimental results showcase a promising 
classification accuracy of 91.67% on the test set. This underscores 
the efficacy of our proposed method in accurately identifying and 
categorizing surface defects under realistic manufacturing conditions. 
In this paper, we detail our deep neural network’s architecture and 
training methodology, provide insights into the dataset used, and 
discuss the implications of our findings for industrial applications. 
The results affirm the feasibility and practicality of leveraging 
LCNNs for automating quality control processes in metal product 
manufacturing, paving the way for improved efficiency and reliability 
in defect detection systems.

Related work
The detection and classification of metal surface defects have been 

extensively studied. Various approaches leverage machine learning 
and artificial neural network techniques to enhance the accuracy 
and efficiency of defect detection systems. Early methods for 
detecting metal surface defects relied on traditional image processing 
techniques, such as edge detection, thresholding, and morphological 
operations. For example, Tsai and Hsiao3 proposed an edge detection-
based method for identifying surface defects in steel strips, achieving 
moderate success. However, these techniques often struggled with 
complex and varied defect patterns, leading to high false positive 
and false negative rates. Huang et al.4 address the growing demand 
for high-quality metal workpieces in mechanized industries. They 
introduced an image processing and machine learning-based 
automatic defect detection and classification system. By leveraging 
SVM and KNN classifiers on extracted grayscale, shape, and HOG 
characteristics, their system achieves an average recognition rate of 
92.6%, distinguishing between genuine and false defects.

Liu et al.5 proposed an advanced machine-learning approach 
using video streams for real-time metal surface defect detection. 
Their method employs Renyi’s entropy to select critical statistical 
and structural features, outperforming conventional decision-tree 
classifiers in accuracy and efficiency. Recent advancements in metal 
surface defect detection highlight the evolution towards more efficient 
and accurate methodologies. Wang et al.6 emphasize the inefficiencies 
of traditional methods and have proposed a YOLO-v5-based real-
time detection network. Their approach integrates a multi-scale 
explore block and spatial attention mechanism to effectively capture 
diverse defect features, achieving approximately 72% mean Average 
Precision (mAP) while maintaining real-time processing capabilities.

Zhu et al.7 introduced the L Swin Transformer, a novel architecture 
combining convolutional embedding and attention patch merging 
modules with a depth multilayer perceptron. Their model, adapted from 
the Swin Transformer, achieves a mean average precision of 81.2% 
on a steel-surface defect dataset, demonstrating superior performance 
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Abstract

Quality control in metal product manufacturing relies heavily on accurately detecting 
and classifying surface defects through visual inspection. Recently, convolutional neural 
networks (CNNs) have shown promising results in automating this process with high 
accuracy. This research paper proposes a new (experimental version) Lite Convolutional 
Neural Network (LCNN) designed to analyze image data to detect and classify surface 
defects on metallic surfaces. Our model was trained on a metal surface defects dataset 
comprising 1800 images of six different types of surface defects. Despite using relatively 
small datasets, the proposed LCNN version achieves a classification accuracy of 91.67%, 
highlighting its effectiveness in real-world defect detection scenarios.
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in feature extraction and global dependency building compared to 
existing methods. The evolution of defect detection methods, from 
traditional image processing to advanced deep learning techniques, 
has significantly enhanced the accuracy and efficiency of metal surface 
inspection systems. Convolutional neural networks, particularly when 
combined with transfer learning, data augmentation, and hybrid 
models, represent the current state-of-the-art in this domain. This 
provides a strong foundation for further research and development, 
aiming to achieve even higher performance and adaptability in defect 
detection applications.

Methodology
This section introduces the Lite Convolutional Neural Network 

(LCNN), an experimental variant designed to detect and classify 
surface defects on metallic surfaces. Traditional approaches to 
defect detection often face computational efficiency and scalability 
challenges, particularly in industrial settings where real-time 
processing is crucial. The LCNN addresses these challenges by 
offering a streamlined architecture that balances model complexity 
with performance metrics. The methodology for this research 
comprises several key steps, including dataset preparation, model 
design, training, and evaluation. (Figure 1)

Figure 1 Workflow diagram.

Dataset preparation
The dataset utilized in this research was sourced from the North 

Eastern University (NEU) Metal Surface Defects Database, a widely 
recognized repository for studying surface defects in hot-rolled steel 
strips. This dataset encompasses six distinct types of typical surface 
defects, each critical to the integrity and quality of steel products.

Inclusion defect (In): Inclusions are unwanted particles in metal 
castings that can seriously impact mechanical properties. These 
defects can vary in size and composition. While some inclusions 
may be loosely attached and prone to detachment, others are firmly 
embedded and pressed into the metal plate, affecting surface finish 
and structural integrity.

Crazing defect (Cr): Crazing refers to fine crack networks that 
appear on the surface of the metal. These cracks can compromise 
the material’s mechanical properties and lead to further deterioration 
under stress or environmental exposure.

Patches defect (Pa): Patches are localized areas on the metal surface 
that exhibit distinct characteristics from the surrounding material. 
These could be texture, color, or composition variations, often 
resulting from processing anomalies or material inconsistencies.

Pitted surface defect (PS): Pitting is a form of localized corrosion 
that manifests as small, deep holes on the metal surface. These pits are 
typically narrow in diameter but can penetrate deeply into the metal, 
posing significant risks to the structural integrity and longevity of the 
product.

Scratches defect (Sc): Scratches are linear abrasions or marks caused 
by mechanical actions such as scraping or sliding. These defects can 
vary in depth and length, potentially affecting the metal’s aesthetic 
quality and surface properties.

Rolled-in scale defect (RS): Rolled-in scale defects occur when 
oxidized layers of mill scale are embedded into the metal surface 
during the rolling process. This defect can create surface irregularities 
and impact the visual and functional quality of the finished product. 
The dataset is comprised of a total of 1,800 grayscale images, with 
300 samples for each of the six defect categories. Each image has a 
200×200 pixel resolution, providing sufficient detail for defect analysis 
while maintaining manageable computational requirements. The 
dataset was divided into three model training and evaluation subsets: 
training, validation, and test sets. The training set includes 276 images 
from each defect category, amounting to 1,656. This subset is utilized 
to learn the patterns and features associated with each defect type. The 
validation set consists of 24 images per category, totaling 144 images, 
and is used for tuning hyperparameters and preventing overfitting 
during the training process. Finally, the test set comprises 24 images 
from each defect class, totaling 144 images, and assesses the model’s 
performance and generalization capability on unseen data. (Figure 2)

Figure 2 NEU grayscale images.

Model design
The proposed model architecture for defect detection and 

classification on metallic surfaces uses the Keras Sequential API. It 
comprises convolutional and fully connected layers tailored for image 
classification tasks. The model’s architecture is below. (Table 1) The 
model includes two convolutional layers, each with 128 filters of 
size 2×2 and ReLU activation functions. These layers detect features 
in the input images. Following each convolutional layer, max-
pooling layers with pool size 2×2 are employed to reduce the spatial 
dimensions of the feature maps, thereby reducing the computational 
load of the model and the risk of overfitting. Flatten layer converts 
the 2D feature maps into a 1D vector, preparing the data for the fully 
connected layers. We use two dense layers with 256 and 128 neurons, 
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respectively, using ReLU activation, and they are included to learn 
complex data representations. A dropout rate 0.2 is applied to prevent 
overfitting by randomly setting 20% of the input units to zero during 
training. The final dense layer consists of six neurons with softmax 
activation, corresponding to the six defect classes, to output the class 
probabilities.

Table 1 Model – sequential

Layer (type)                Output shape              Parameters 

Conv2D (None, 199, 199, 128) 1664

MaxPooling2D (None, 99, 99, 128)      0

Conv2D (None, 98, 98, 128)       65664

MaxPooling2D (None, 49, 49, 128)      0

Flatten (None, 307328)            0

Dense (None, 256)               78676224

Dense (None, 128)            32896

Dropout (None, 128)               0

Dense (None, 6)                 774

Total parameters:78,777,222

Trainable parameters: 78,777,222

Non-trainable parameters: 0

Training and evaluation

The LCNN model was compiled using the Adam optimizer, which 
is known for its efficiency and adaptability in training deep learning 
models. The categorical cross-entropy loss function was used, as it 
is suitable for multi-class classification tasks. The model was trained 
for 24 epochs with a batch size of 24. The trained LCNN model was 
evaluated on the test set comprising 144 images, with 24 images 
from each defect class. The evaluation metrics included accuracy, 
precision, recall, and F1-score, comprehensively assessing the 
model’s performance. The training and testing results demonstrated 
a classification accuracy of 91.61% and 91.67%, respectively, 
indicating the model’s effectiveness in detecting and classifying metal 
surface defects.

Result analysis
The training and testing results of the experimental version of 

Lite Convolutional Neural Network (LCNN) on the Metal Surface 
Defects Database unequivocally demonstrate the model’s robustness, 
establishing it as a reliable and effective classifier. (Figure 3) The 
model’s training loss of 0.2536 and an accuracy of 91.67% are clear 
indicators of its effective learning from the training data, with minimal 
error. The high accuracy further confirms the model’s ability to 
correctly classify most training samples. Upon evaluation of the test 
set, the model reported a loss of 0.2536 and an accuracy of 91.67%. 
These metrics closely mirror those obtained during training, implying 
that the model generalizes well to unseen data. This consistency 

between training and testing performance suggests that the model has 
not overfitted to the training data and retains its predictive power on 
new data.

Figure 3 Train results.

A more granular analysis of the test results shows that out of 16 test 
images, 14 were classified correctly, and two were classified incorrectly. 
This demonstrates an accuracy rate of 87.5% for the specific batch of 
test images evaluated. (Figure 4) The model’s overall performance, as 
evidenced by the training and testing metrics, is commendable. The 
training and the test accuracy highlight the model’s capacity to learn 
and generalize effectively. The detailed evaluation of the batch of test 
images further substantiates this with an accuracy rate. These results 
underscore the model’s efficacy in the given task, demonstrating its 
strong capability to accurately classify metal surface defect images. 
Future work will focus on further reducing the test loss and improving 
the accuracy through additional training, data augmentation, or model 
optimization techniques.
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Figure 4 Generalized test results.

Conclusion
The proposed experimental version of the Lite Convolutional 

Neural Network (LCNN) model demonstrates robust performance in 
detecting and classifying surface defects on the Metal Surface Defects 
Database, achieving an accuracy of 91.67%. The comprehensive 
analysis of losses and accuracies confirms the model’s effectiveness 
and reliability for practical applications in quality control within the 
metal manufacturing industry. Future work will expand the dataset 
and refine the model to achieve even higher accuracy and address the 
minor misclassifications observed.
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