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Introduction 

The industrial revolution 4.0 and technological advancement 
are in wide spread application across all discipline, information 
and communication technology such as artificial intelligence (AI), 
internet of thing (IOT) and block chain technology are accelerating 
and solving complex problems in Health care system.1 stated that 
doctors can stay current on patient data, offer virtual help, and send 
emergency answers when necessary thanks to block chain and AI.2 
The problems of record keeping, ongoing patient monitoring, long-
distance patient care, and emergency response are all solved by IoT 
devices. Furthermore, the transparency of blockchain technology can 
strengthen clinical trial data integrity and boost confidence in research 
findings. In conclusion, applications of block chain and artificial 
intelligence (AI) in the delivery of healthcare include medical supply 
chain management, drug development and clinical trials, telemedicine 
and remote patient monitoring, precision medicine and genomic data, 
secure and interoperable health records, healthcare payment and 
insurance claims, and so on. Obstacles & Things to Think About are: 

Interoperability Standards, Regulatory Compliance, Data Privacy and 
Consent, cost, technology adoption and reliability and maintainability.

AI is the study of how to use computer to mimic human 
intelligent behavior, such as learning, judgement and decision making 
through training using large amount of data.3 The advancement of 
AI technologies helps clinical experts to facilitate more efficient 
and effective electronic healthcare systems to the patients.4,5 The 
formation of abnormal cells in or near the brain lead to the start of 
brain tumor and consequently affect patient healthcare.6,7 Automated 
technologies for non-invasive analysis of brain images have become 
necessary, because disease of brain is fatal and are the cause of large 
number of deaths in developed countries. Both adults and children 
are included in the American Cancer Society’s predictions for brain 
and spinal cord cancers in the country for 2022. There will be a total 
of 25,050 malignant brain or spinal cord tumor diagnoses (14,170 
for men and 10,880 for women). If benign tumors (tumors other than 
cancer) were included, these figures would be substantially higher.  
An estimated 18,280 individuals (10,710 men and 7,570 women) 
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Abstract

Background: Brain is the control center of the human body, in recent time, different variety 
of brain diseases are being discovered. The brain disease diagnosis tools are becoming 
challenging and still an open area of research, application of AI in brain disease diagnosis has 
made disease prediction and detection more precise and accurate. Automated technologies 
for non-invasive analysis of brain images have become necessary, because disease of brain 
is fatal and are the cause of large number of deaths in developed countries. Brain tumor 
surgery augmented with AI can result in safer and more effective treatment. The knowledge 
gap between clinical and data science experts still presents significant challenges. This 
paper will review literatures related to current challenges of AI technologies for brain 
tumor diagnosis and suggest new directions of AI technologies for diagnosing brain 
tumour. A systematic search of major academic databases (such as Science Direct, IEEE 
explore digital Library, and Google scholar) was conducted to identify relevant studies 
published between 2015 and 2023. The search term used in this study include “Brain 
tumor Diagnosis”, “AI challenges in Brain tumor Diagnosis”, ‘AI techniques” and “AI 
challenges in medicine and future”. Studies were included if they utilized AI techniques 
for brain tumor diagnosis. The identified studies were evaluated for the key challenges they 
encountered in their diagnostic approaches. The Present study identified several challenges 
related to the application of AI techniques in brain tumour diagnosis. These challenges 
include: Interpretability and explainability, variations in tumour location, shape, and size 
which make accurate segmentation and classification difficult. Overall, the challenges in 
explaining brain tumor detection stem from the unique requirements and complexities of 
the healthcare domain, necessitating specialized techniques and approaches. This study 
summarizes the new directions for AI as (I) Data Hungry: Large, standardized, annotated 
data sets and excellent ground truth data are necessary for the development of accurate AI. 
(II) Radiomics: makes it possible to extract a vast number of quantitative features from 
intricate clinical imaging arrays and convert them into high-dimensional data that can be 
further processed to determine their relationship to the histological features of the tumor, 
which represent underlying genetic mutations and malignancy as well as grade, progression, 
response to therapy, and even overall survival (OS). (III) Black box: AI, for instance, 
is capable of predicting the best course of care for a patient, but it is unable to explain 
its reasoning. A trend toward easing this restriction is interpretable deep learning, (IV) 
Demonstrating the generalizability of deep learning applications and conducting external 
validation are two major obstacles. (V) There are knowledge gaps in clinical oncology that 
need to be filled in order to successfully integrate AI and maximize its effects. (VI) Several 
national professional bodies have started programs to bridge these knowledge gaps and 
advance the adoption of AI in oncology in response to these difficulties.
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will pass away due to brain and spinal cord malignancies.8 Despite 
the significant developments in molecular biology and brain tumor 
imaging, including MRI, CT, PET, DTI, and SPECT. There are 
currently no easily accessible automated systems for brain imaging 
diagnosis in clinical practice.9 The brain is the human body’s control 
center, and a wide range of brain disorders are being identified these 
days. Furthermore, there is still much to learn about the diagnostic 
techniques for brain diseases, which is growing more difficult. The 
use of AI in brain disease diagnosis has improved the accuracy and 
precision of disease detection and prediction.10

Theoretical background of the AI

Human-machine intelligence (AI) One of the current uses of 
artificial intelligence (AI) is machine learning (ML), a branch of 
computer science that focuses on building intelligent machines that 
mimic human behavior. ML is based on the notion that we should 
give machines access to data so they can learn on their own. DL is a 
subfield of ML. While deep learning is more akin to animal vision, 
machine learning is more like human vision. Convolutional Neural 
Network (CNN) is a new method for image analysis using deep 
learning. Computer assisted diagnostic (CAD) technologies process 
digital pictures to highlight certain noticeable disorders to help 
radiologists or other medical practitioners.11 As displayed in Figure 1. 

Figure 1 Computer vision techniques.

Figure 2 displays the five major subdomains of artificial intelligence. 
There are several possible clinical uses for each subdomain of AI in 
brain tumor surgery. There are many more subfields within AI, hence 
this diagram is not all-inclusive. In12 the dependent variable (the 
target) and the independent variable (a collection of predictors) make 

up supervised learning. These variables are used to create a function 
that maps inputs to intended outputs. The model is trained repeatedly 
until it reaches a high degree of accuracy on the training set. kNN, 
logistic regression, decision trees, random forests, regression, and 
so on are a few instances of supervised learning. There won’t be 
any target variable to forecast in unsupervised learning. Examples 
of unsupervised learning include k-means, apriori algorithms, and 
others. The machine is placed in an environment where it continuously 
educates itself through trial and error in reinforcement learning. In this 
case, the computer attempts to get the knowledge necessary to make 
accurate decisions by learning from its prior experiences. Markov 
decision process serves as one illustration of reinforcement learning 
(Figure 3).13

Deep learning has medical research areas as shown in Figure 4.

The evolution of ML and DL in the healthcare industry for brain 
disease diagnosis and detection has many approaches over the time 
as shown in Figure 5. The distinction between ML and DL from 
the literature can be seen in the information recognition pattern15 as 
shown in Figure 6. 

Background knowledge of brain tumor 

Brain is the central processing and control center in human body.14 
The formation of abnormal cells in the brain or near the brain lead 
to the start of tumor called brain cancer, the abnormal cells altered 
the brain normal brain processing ability and consequently affects the 
patient’s health.16 Brain tumor as masses of abnormal cells (tissues) 
growing out of control can be classified according to starting locations, 
adverse effect, growing level and starting cells Primary tumors start 
in the brain and secondary (metastatic) tumor started in somewhere 
in the body and reach out to brain.17 Benign (non-cancerous) tumors 
do not grow into nearby tissues or distant tissues, while malignant 
(cancerous) tumors can spread into nearby tissues or distant tissues. 
Both benign and malignant brain tumors can spread through brain 
tissue, but they rarely spread to other parts of the body. While brain 
tumors that grow slowly, such as Grade I and Grade II, rarely invade 
nearby tissues, brain tumors that grow quickly, such as Grade III and 
Grade IV, mostly can.18 The brain tumor types based on the starting 
cells are shown in Table 1.

Figure 2 The five key subdomains of Artificial intelligence.12

https://doi.org/10.15406/mseij.2023.07.00224


Current challenges of the state-of-the-art of AI techniques for diagnosing brain tumor 198
Copyright:

©2023 Ahmed et al.

Citation: Ahmed H, Dada MO, Samaila B. Current challenges of the state-of-the-art of AI techniques for diagnosing brain tumor. Material Sci & Eng. 
2023;7(4):196‒208. DOI: 10.15406/mseij.2023.07.00224

Figure 3 Types of ML.

Figure 4 Research area of deep learning.

Figure 5 Classifications of ML and DL techniques to detect brain diseases.14

Figure 6 Comparison between ML and Dl algorithm.
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Table 1 The brain tumor types based on the starting cells

Brain tumor Starting cell Prevalence 

Glioma Glial cells
The most prevalent type of glial cell-derived central nervous system (CNS) tumor is 
called a glioma. Gliomas are detected in six cases per 100,000 persons in the United 
States each year.

Meningiomas Meninges cells
They occur more frequently in women and older persons, developing in about 8 out of 
every 100,000 people annually.

Medulloblastoma Neuroectodermal cells

About 20% of all pediatric brain tumors and 63% of intracranial embryonic tumors are 
caused by medulloblastoma. These tumors have an overall yearly frequency of about 5 
cases per million in the pediatric population. They can develop from childhood and into 
adulthood.

Ganglioglimas Both neuron and glial cells
Rare combined glio-neural tumors called gangliogliomas (GGs) account for 0.4% of 
central nervous system neoplasms and 1.3% of all primary brain tumors.

Schwannomas (neurilemmomas) Schwann cells The incidence is 4.4 to 5.23 cases per 100,000 adults/year; in children and adolescents, 
it is 0.44 cases per 100,000/year.

Craniopharyngiomas Pituitary gland In the United States, an estimated 350 new cases of craniopharyngioma are diagnosed 
each year, resulting in an age-adjusted incidence of 0.19 per 100,000 persons

Brain tumor diagnostic imaging modalities 

Magnetic resonance imaging (MRI)

Imaging with magnetic resonance (MRI) is a non-invasive method 
that uses magnetic field to generate radiofrequency (RF) field to 
produced images of soft tissue with high resolution. It was described 
in 1930s and 40s. the principle of MRI is based on the interactions of 
protons (hydrogen atoms), strong magnetic fields and radiofrequencies 
of different energies. (Figure 7).19

Figure 7 MRI brain scan.20

Patients is placed inside the strong magnet at still position to reduce 
motion artefacts in the image. MRI produced detailed anatomical 
structure of the brain,20 spinal cord and other body parts, it has the 
advantage of being able to visualized anatomical images in three 
planes: axial, sagittal and coronal views.21 MRI has the advantages of 
giving higher soft tissue contrast and being able to detect blood flows 
and cryptic vascular malfunctions, MRI has the advantage of being 
free from ionizing radiation exposure over computed tomography 
(CT) and conventional x-ray machines. T1-weighted, T2-weighted, 
diffusion weighted imaging (DWI), Proton density (PD-weighted), 
Fluid attenuated inversion recovery (FLAIR), Auto-calibrating 
reconstruction for cartesian imaging (ARC), and Generalized Auto-
calibrating partial parallel acquisition (GRAPPA) are the imaging 
sequences used in magnetic resonance imaging (MRI). ARC is 
multi-coil parallel imaging (PI). Based on the time to echo (TE) and 
repetition time (TR), T1-weighted and T2-weighted are generated. 
T1-weighted has longer TE and TR. Another difference is by looking 
at cerebrospinal fluid (CSF), CSF is darker in T1-weighted and bright 
in T2-weighted images. The FLAIR sequence is mainly T2-weighted 
image with longer TE and TR. Diffusion weighted image is used 
to detect random movement of water proton. Proton density is in 
between T1 and T2 with pulse sequence of long TR and short TE.21 
MRI is broadly classified into structural magnetic resonance imaging 
(sMRI) and functional magnetic resonance imaging (fMRI), sMRI 
is mostly applicable to clinical practices and research purposes. The 

distinction between sMRI and fMRI is difficult to make as function 
and structure are closely related, from biological view point fMRI 
provides dynamic physiological information which includes blood 
oxygen level depended (BOLD), perfusion and blood flow, while, 
sMRI displays static anatomical information which include studies 
of epilepsy, schizophrenia, dementia, trauma, tumours and multiple 
sclerosis.22 Structural MRI sequence has high contrast between gray 
matter and white matter giving room for volume quantification of the 
gray and white matter.  The common method used for processing sMRI 
is voxel-based morphometry, it can also be used to assess the degree of 
cortical folding or pattern and variation of cortical gyrification. sMRI 
has the advantages of clear interpretation, early implemented across 
centres and relatively low cost over fMRI, electroencephalography 
and proton magnetic resonance spectroscopy23 (Figure 8).

Figure 8 Example of T1 weighted, T2 weighted and PD weighted MRI Scan.

Computerized tomography (CT) 

The brain’s structure, including details like blood perfusion, can be 
seen by computerized tomography scans using X-rays. The resulting 
images are two-dimensional and have a very low resolution, although 
since 1998, the quality has significantly increased. Better technology 
has allowed for the creation of multisections and eight times faster 
speeds, resulting in well-defined three-dimensional images from a 
single section. Underdeveloped brain regions or locations of impact, 
tumor, lesion, or infection may be visible on a CT scan.24

Positron emission tomography (PET) 

Using positron emission tomography scanning, one can obtain 
a three-dimensional picture of the brain’s functional activities in 
addition to its structural makeup. Fluorodeoxyglucose, a radioactive 
sugar tracer, must be subcutaneously injected into the patient’s 
bloodstream in order for PET imaging to be performed. Gamma-rays, 
a type of electromagnetic radiation with a higher energy than X-rays, 
are produced by radioactive material. The radioactive substance 
enters the brain and travels throughout the body. Pairs of gamma rays 
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are indirectly emitted by the positron-emitting radionuclide (tracer) in 
each area of the brain being examined, and they are detected using a 
ring of detectors outside the head.4,25

Single photon emission computed tomography (SPECT)

In single photon emission computed tomography, two or more 
synchronized gamma cameras record the signals from gamma rays 
(rather than when the emissions are opposite at 1800). Multiple 2-D 
pictures are generated and tomographically rebuilt to 3-D. While a 
segment can be viewed from multiple perspectives, it is not as clear as 

a PET image. Using more readily available, longer-lived radioisotopes, 
SPECT scanners are less costly than PET scanners. The brain’s blood 
flow may be traced to determine the areas of metabolic activity, which 
facilitates the evaluation of brain functions.26

Diffusion tensor imaging (DTI)

A kind of diffusion magnetic resonance imaging (MRI) called 
diffusion tensor imaging is used to watch brain activity as it happens. 
A common method for imaging white matter in the brain is to detect 
the limited diffusion of water through the tissue under study (Table 
2).27 

Table 2 Summary of the related literature

Reference Year Datasets AI technology 
29 2021 Commonly used brain tumor dataset Deep neural network and residual network
30 2021 BRASTS 2013 Challenges CNN
4 2018 BRASTS 2012, ISLES 2015 DNN
31 2018 BRASTS 2021 Orthogonal gamma distillation machine learning model
32 2020 MICCAI datasets and BRASTS 2015-2017 Grab cut methods 
33 2020 MRI data CNN-based and AlexNet
34 2021 MRI T1-W and T2-W Auto ML
35 2020 MRI BRASTS Adaptive KNN
36 2020 MRI BRASTS RF
37 2020 MRI BRASTS SVM
38 2020 MRI GBM CNN+SVM
39 2020 MRI BRASTS and ISLES LSTM+Softmax
40 2021 MRI BRATS 2018 3D-CNN
41 2020 MRI Figshare Inception V3 softmax DenseNet+softmax
42 2020 MRI T1 Figshare Hybride CNN-NADE
43 2020 MRI T1 CNN-ELM
44 2020 MRI (TCGA-GBM) SequenceNet CNN-Elm
45 2020 MRI Kaggle Repository CNN
46 2020 MRI Kaggle BranMRNet CNN
47 2020 MRI BRTASTS Stacked sparse auto encoder+softmax
48 2020 MRI BRASTA Deep CNN
49 2021 MRI T1, T2 and Flair DBM
50 2020 MRI BRASTS CNN-VUG19+KNN CNN-VUG19+Ensemble
51 2021 MRI BRASTS 3D CNN
52 2019 TCGA-GBM NS-CNN NS-EMFSE
53 2020 MRI BRASTS ELM
54 2018 MRI BRASTS Two-pathway group CNN
55 2019 MRI KNN, ANN and SVM
56 2021 Figshare denseNet-41-b with cornerNet
57 2019 MRI T1-W RT
28 2019 76 MRI SVM
58 2019 126-MRI RF
59 2019 MRI and PET SVM
60 2019 233-MRI CNN
44 2020 500-MRI CNN
61 2019 100-MRI RF-SVM
62 2019 180-MRI DNN
63 2019 350-PETs Deep belief network
64 2018 32-MRI Fuzzy C-means 
65 2018 30-MRI RF
66 2018 9-MRI SVM
67 2019 64-MRI CNN
68 2019 60-MRI Supervised learning LOCATE
69 2015 10-pateints MRI Hybrid level set 
70 2015 BTASTS Fully automated generic method
71 2015 SPES and SISS EM
72 2017 BRASTS Otsu algorithm 
73 2017 21HGG patients Non-negative matrix factorization 
74 2019 1340-clinical MRI Adaptive thresholding 
75 2021 Local Data SVM, CNN 
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Diffuse optical tomography (DOT)

A non-invasive imaging method called diffuse optical tomography 
(DOT) uses near-infrared light to scan the inside of the brain for 
changes in oxygenation and other physiological parameters that may 
have resulted from a stroke, seizure, or hemorrhage. Despite having 
a lower spatial resolution than MRI, DOT has the advantage of being 
simpler and faster at taking measurements. The devices are small and 
lightweight, roughly the size of a laptop and a small suitcase, making 
them easy to carry to the patient’s bedside for ongoing brain activity 
monitoring.28

Material and method 
The period considered in study for the literature review is from 

2015 to 2023, the databases used to obtain the literatures are Science 
Direct, IEEE explore digital Library, and Google scholar. The search 
criterions are “Brain tumor Diagnosis”, “AI challenges in Brain 
tumor Diagnosis”, ‘AI techniques” and “AI challenges in medicine 
and future”. The inclusion criteria (IC) and exclusion criteria (EC) are 
shown in table below (Tables 3,4).

Table 3 Selection criteria

Inclusion criteria Eexclusion criteria
IC1: Paper must from 2015 to 2022 and peer reviewed EC1: duplicate studies in different database
IC2: paper should use only MRI, CT or PET for Imaging acquisition EC2: case study papers 
IC3: paper should have automated AI technology EC3: Study less cited by the peer reviewed papers

EC4: Study using imaging other than MRI, Ct or PET

Table 4 Search strategy from the different databases

Result and discussions
Challenges in explaining brain tumor detection

Brain tumor detection poses several challenges in terms of 
explanation. Existing explanation techniques for image classifiers, 
such as ImageNet, may not be adequate for explaining the detection of 
brain tumors in MRI brain images.76 The variations in tumor location, 
shape, and size make accurate segmentation and classification 
difficult.77 Additionally, the complexity of the brain as an organ 
and the critical nature of brain tumors contribute to the challenge 
of early detection and diagnosis.78 Further improvement is required 
in the efficiency of existing detection schemes, and critical research 
challenges need to be addressed in order to develop new methods for 
brain tumor detection.79 Overall, the challenges in explaining brain 
tumor detection stem from the unique requirements and complexities 
of the healthcare domain, necessitating specialized techniques and 
approaches. The issues surrounding the diagnosis and assessment of 
brain tumors have been discussed by,80 The random forest classifier 
approach finds the tumor in less machine time and with measured 
precision in their suggested treatment model. Our research revealed 
that the suggested system has a high accuracy rate for detecting 

tumors, a high rate of diagnosing diseases, and a low computing time 
for detecting diseases.

Kenneth Aldape 81 reported that, in an effort to promote 
advancements in the knowledge and capacity to effectively treat 
brain tumor patients, Cancer Research UK assembled a global panel 
of physicians and scientists working in laboratories to pinpoint 
obstacles that need to be surmounted in order to cure every patient 
with a brain tumor. The seven main issues are outlined here to provide 
future research and funding priorities. These include: (1) revamping 
the pipeline for brain tumor research and therapy; (2) utilizing the 
entire field of neuroscience; (3) comprehending the function of the 
microenvironment in the physiology and treatment of brain tumors; 
and (4) creating more accurate preclinical models. (5) find drugs for 
challenging targets in a diverse environment (6) create a precision 
medicine strategy for treating brain tumors (7) reduce treatment for 
Less-aggressive brain tumours.

Kenneth Aldape79 employed a Weiner filter with several wavelet 
bands to improve and de-noise the input slices, Using Potential Field 
(PF) clustering, subsets of tumor pixels are identified. Furthermore, in 
Fluid Attenuated Inversion Recovery (Flair) and T2 MRI, the tumor 
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zone is isolated using a global threshold and several mathematical 
morphological techniques. Features from the Gabor Wavelet 
Transform (GWT) and Local Binary Pattern (LBP) are combined for 
reliable classification. Outcomes Peak signal to noise ratio (PSNR), 
mean squared error (MSE), and structural similarity index (SSIM) 
are used to evaluate the suggested technique. The findings are as 
follows: 76.38, 0.037, and 0.98 on T2 and 76.2, 0.039, and 0.98 on 
Flair, respectively. Pixels, individual features, and fused features 
have all been utilized to evaluate the segmentation outcomes. The 
suggested method is compared at the pixel level to ground truth 
slices and validated in terms of error region (ER), pixel quality (Q), 
background (BG), and foreground (FG) pixels. Using a local dataset, 
the method produced precision values of 0.93 FG, 0.98 BG, and 0.010 
ER. BRATS 2013, a multimodal brain tumor segmentation challenge 
dataset, yields precision values of 0.93 FG, 0.99 BG, and 0.005 ER. 
Similarly, 0.015 ER, 0.97 FG, and 0.98 BG accuracy are obtained on 
BRATS 2015. The average Q value and variance in terms of quality 
are 0.88 and 0.017, respectively. Particularity, sensitivity, accuracy, 
area under the curve (AUC), and dice similarity coefficient (DSC) 
at the fused feature-based level are, respectively, 1.00, 0.92, 0.93, 
0.96, and 0.96 on BRATS 2013, 90, 1.00, 0.97, 0.98, and 0.98 on 
BRATS 2015, and 90, 0.91, 0.90, 0.77, and 0.95 on local dataset. The 
suggested method performed better than the current methods.

New directions of AI technology for brain tumor 
diagnosis 

Brain tumors are incurable diseases that impact nerves and human 
blood cells due to aberrant brain cell development. As it can help 
physicians plan surgeries, early and accurate brain tumor diagnosis 
is crucial to avoiding difficult and unpleasant treatment procedures.82 
AI-enhanced brain tumor surgery can lead to safer and more efficient 
care.83 There are still many difficulties due to the knowledge gap that 
exists between data science and healthcare specialists. In contrast to 
data scientists, who possess advanced cognitive skills in data science 
to comprehend AI mechanisms, physicians have extensive experience 
in oncologic workup and management. To close the gap between 
clinical and data science professionals, more collaboration should 
be encouraged. The role of AI is another crucial matter. Without 
expertise, it is nearly impossible to run an AI. AI shouldn’t be used in 
an entirely unsupervised setting as a stand-alone solution. Conversely, 
it is a useful tool that can assist in areas where human talents are still 
limited and a beneficial assistance to experts.83

Radiomics 

Radiomics makes it possible to extract a vast number of quantitative 
features from intricate clinical imaging arrays and convert them into 
high-dimensional data that can be further processed to determine 
their relationship to the histological features of the tumor, which 
represent underlying genetic mutations and malignancy as well as 
grade, progression, response to therapy, and even overall survival 
(OS). In contrast to conventional brain imaging, radiomics offers 
quantifiable data associated with significant biologic features and the 
use of deep learning, which illuminates the complete automation of 
imaging diagnosis. Recent research has demonstrated the wide range 
of applications of radiomics, including the identification of primary 
tumors, differential diagnosis, grading, assessment of aggression and 
mutation status, and prediction of treatment response and recurrence 
in brain metastases, pituitary tumors, and gliomas.84

Radiomics is a rapidly expanding field and is still in extensive 
clinical exploration stage, with many obstacles to overcome. Current 
standards lack results validation, incomplete results reports, and 

unidentified confounding variables in the source database, especially 
for retrospective data.85,86 radiomics and radiogenomics can only 
identify the correlation, thus lacking robustness and credibility 
without tissue biopsy.87 The auto segmentation procedures used 
today are dispersed and lack standardized practices. According to 
the research we looked at, brain tumor radiomics rarely uses more 
sophisticated algorithms, like deep learning, than lung, prostate, or 
colorectal cancer radiomics.88 Current research in brain tumor still 
lack huge populations, especially from several sites.89 Furthermore, 
there are ethical concerns regarding the motivation of academics and 
governments to share personally validated data for machine learning, 
even when the creation of AI algorithms necessitates not just basic 
technology but also legislation and maybe ethics.85

Data hungry 

One continuous need for AI is the collection of a sizable, publicly 
available, well-annotated cancer dataset. Good data is essential for 
the effective creation of an AI model. Even if there is a rising volume 
and variety of data available, the evaluation of data quality is not 
standardized. AI is challenging to use since patients have a wide range 
of cancer types and frequently lack clinical, imaging, or genetic data. 
AI is challenging to use since patients have a wide range of cancer 
types and frequently lack clinical, imaging, or genetic data. Equity 
and Access to Data The issues of overfitting are directly caused by 
restrictions on the availability and caliber of data. More than any other 
ML approach, DL neural networks need a lot of data. This can be 
problematic for the healthcare industry when trying to apply AI to 
less common disease processes. Moreover, data silos can exist inside 
certain institutions. Concerns about the transmission of protected 
patient health information, the absence of an infrastructure for data 
sharing between institutions, the variability and incompleteness of 
data collecting, and competition between institutions are all factors 
contributing to this relative data drought. With an increasing focus on 
expedited data collecting90 and several multi-institutional data-sharing 
agreements,91,92 these challenges are starting to be addressed. Research 
organizations can now publish their own data, which may encourage 
openness.94 Guidelines for FAIR (findable, accessible, interoperable, 
and reusable) data utilization have also been presented.93

Large, standardized, annotated data sets and excellent ground 
truth data are necessary for the development of accurate AI. The 
majority of clinical studies for gliomas are multi-institutional, which 
makes it more difficult to get consistent data sets,27,95 Understanding 
what sorts of datasets are required for a possible utility and how 
to get these datasets is crucial to optimizing the intended results. 
Commonly, radiographic imaging, cancer genome, medical records, 
pharmacological information, and biomedical literature are among the 
sensitive and helpful indications or features for AI-powered cancer 
research.96,97

Black box

The model’s relative opacity limits the application of AI in 
practical situations. The machine was unable to explain how or why it 
had come to this conclusion. The “black box” dilemma is how people 
frequently refer to this.98 It is challenging to identify the input data 
features that contribute to the result. AI, for instance, is capable of 
predicting the best course of care for a patient, but it is unable to explain 
its reasoning. A trend toward easing this restriction is interpretable 
deep learning.99,100 The mystery box issue Although these models 
consistently achieve good performance, one of the main obstacles 
to the use of AI in healthcare is the worry that they are relatively 
opaque. For example, based on a patient’s prior two years of EHR 
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data, a DL model may correctly predict that the patient will acquire 
pancreatic cancer. But why did the model make that prediction? We 
can currently only deduce a limited amount of the exact reasoning 
underlying DL-based predictions. This issue is frequently called the 
“black box” dilemma.101 Understanding the reasoning behind each 
clinical choice has long been crucial in the practice of medicine. 
Conventional machine learning methods, such as linear regression, 
are not very good at modeling intricate relationships, but they are 
straightforward to understand since they provide us with a collection 
of pre-defined features and the feature weights that represent their 
respective impact sizes. On the other hand, unstructured input data 
is used in deep learning, and the majority of knowledge creation 
takes place in the hidden layers. As a result, identifying the precise 
attribute or characteristics of the input data that influenced the result 
becomes challenging. The use of AI-based algorithms in healthcare 
will be significantly impacted by this interpretability issue, from both 
a practitioner and a regulatory standpoint.102–105 

Despite the fact that AI algorithms employ a wide range of 
features in their decision-making, many of the previously published 
AI algorithms cannot be easily replicated by other researchers due 
to the complexity of their analytical methods. The “blackbox” 
aspect of AI is being investigated further, and the results could one 
day make it possible to follow otherwise opaque processes step-by-
step using transparent methods.106,107 Currently, addressing the black 
box issue is a key area of research attention.3 Many techniques have 
been developed for AI image analysis algorithms, such as saliency 
maps, class activation mapping, feature visualization, and sensitivity 
analyses, in which specific areas of the image are hidden to reduce 
prediction error.108 Even though these techniques have improved 
in recent years, more research is required to fully understand the 
reasoning behind deep neural network decision-making.

Proving generalizability and real-world applications

Even though artificial intelligence (AI) is being quickly used to 
oncologic research, more has to be done to convert these findings 
into practical, therapeutically useful applications. Demonstrating the 
generalizability of deep learning applications and conducting external 
validation are two major obstacles. Neural networks have a strong 
propensity to produce overfitted models that do not generalize across 
various populations because to their complexity and astronomically 
high parameter counts (sometimes in the millions). Furthermore, 
several external validation sets would be needed to demonstrate the 
effectiveness of an application due to the notable variety of medical 
data among institutions.109 One of the main obstacles inhibiting the 
AI algorithms’ wider clinical application is their generalizability. The 
majority of AI applications used in gliomas and oncology to yet have 
been trained on patient populations that are still quite small. The huge 
and diverse population of gliomas makes the performance of an AI 
algorithm created on a small population suboptimal.110

Education and expertise 

There are knowledge gaps in clinical oncology that need to be 
filled in order to successfully integrate AI and maximize its effects. 

Physicians are now undertrained in data science and machine 
learning, which hinders their capacity to comprehend deep learning 
mechanisms, choose suitable algorithms, and carry out research.111 
Analogously, the majority of data scientists lack expertise in 
oncologic workup and management, which hinders their capacity 
to recognize significant and appropriate clinical use cases. Clinical 
oncologic departments and bioinformatics and data science divisions 
should work together more, and when necessary, strategic alliances 
with technological companies should be established. The connection 
between clinicians and engineers presents another barrier to the 
widespread adoption of AI in gliomas and cancer. Presently, the 
majority of computer scientists are unfamiliar with the complexities 
of clinical patient management, while physicians have relatively little 
training in computer/data science.112

Promoting AI in oncology: professional societies and national 
initiatives

Several national professional bodies have started programs to bridge 
these knowledge gaps and advance the adoption of AI in oncology 
in response to these difficulties. The American College of Radiology 
(ACR) established the ACR-DSI, or American College of Radiology 
Data Science Institute, to work with industry, government, and 
radiologists to advance AI in imaging.113 The ACR-DSI encompasses 
multiple fundamental objectives: (i) offering guidelines for gauging 
AI algorithm performance (“Touch-AI”), (ii) autonomous, external 
verification of algorithms and managing the regulatory environment 
(“Certify-AI”), and (Assess-AI”), a long-term, prospective assessment 
of implemented algorithm performance. In addition, a number of 
use cases for suggested AI imaging applications with unmet clinical 
needs have been established by the ACR-DSI. In collaboration with 
oncologists, industry, and academia, the American Society of Clinical 
Oncology (ASCO) and American Society for Radiation Oncology 
(ASTRO) have launched a big data initiative called Cancer Link. The 
initiative aims to provide oncologists with user-friendly knowledge 
dissemination while tracking and evaluating treatment outcomes 
in real-time.114 The foundation of the project is an ever-expanding 
database of de-identified patient data that can be searched through and 
examined. ASTRO and Cancer Link teamed in 2017 to offer radiation 
oncology knowledge and database applications. Additionally, 
one of the main goals of the ASTRO Research Agenda for 2018 is 
bioinformatics and big data analytics.115 National Institutes of Health 
(NIH): To encourage the development of tools for integrating big 
data and data science into biomedical research, the Big Data to 
Knowledge (BD2K) effort was started as part of the NIH Common 
Fund.116 Using pre-existing national datasets, such as The Cancer 
Genome Atlas (TCGA) and the Library of Integrated Network-based 
Cellular Signatures (LINCS), and machine learning (ML) techniques 
to find patterns in the data that could lead to previously unidentified 
compounds for cancer therapeutics is one of the initiative’s main 
focuses (Tables 5,6).3

Each of the brain tumor database have their specific ethics related 
to data sharing for machine learning which the researcher needs to 
explore for compliance.117

Table 5 Brain tumor associations around the world

Brain tumor association Website 
National brain tumor society https://braintumor.org/
The American Brain Tumor Association https://www.abta.org/
The International Brain Tumour Alliance (IBTA) https://www.cancer.gov/rare-brain-spine-tumor/living/related-organizations
Voices Against Brain Cancer's (VABC) http://www.voicesagainstbraincancer.org/
European Organisation for Research and Treatment of Cancer EORTC https://www.eortc.org/research_field/brain/
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Table 6 Brain tumor database around the world

Brain tumor database Website 
Figshare Brain datasets https://figshare.com/articles/dataset/brain_tumor_dataset/1512427
BRASTS 2012-2018 Challenge datasets https://paperswithcode.com/dataset/brats-2018-1
Kaggle datasets https://www.kaggle.com/search
Brain tumor datasets IEEE https://ieee-dataport.org/documents/brain-tumor-dataset
The Cancer Genom Atlas  (TCGA)  https://portal.gdc.cancer.gov/projects/TCGA-GBM
The Cancer Imaging Archive (TCIA) https://www.cancerimagingarchive.net/
Internet Brain Segmentation Repository (IBSR) http://allie.dbcls.jp/pair/IBSR;Internet+Brain+Segmentation+Repository.html
Brain Web Simulated Datasets http://allie.dbcls.jp/pair/IBSR;Internet+Brain+Segmentation+Repository.html
Ischemic Stroke Lesion Segmentation Challenge 2015-2017 Datasets http://www.isles-challenge.org/ISLES2015/

Harvard Medical School Whole Brain datasets  https://www.med.harvard.edu/aanlib/

Obstacles in the treatment of primary brain tumors 
at various tumor growth phases

The ventricular–subventricular zone’s non-malignant cellular 
makeup contains neural stem cells, which proliferate and give rise 
to transit-amplifying cells. Neuroblasts that migrate are derived from 
transit-amplifying cells90. The neural stem cell niche also contains 
ependymal cells. The niche may interact with other cell types, such 
as microglia and astrocytes, and is closely linked to blood arteries. 
When the non-malignant hierarchy starts to change, the premalignant 

proliferation of transit-amplifying cells and migratory neuroblasts is 
probably caused by the malignant transformation of neural stem cells. 
This disordered hierarchy is what causes the cancerous brain tumor. 
The ultimate goal of treating these lesions is to eliminate the tumor 
cells in order to bring about a cure. The primary research topics at 
each stage, from the genesis of cancer to its remission after successful 
therapy, are indicated by the blue panels beneath these cartoons. The 
relationship between these particular stages of illness development 
and the seven barriers to advancement is illustrated by the green 
panels (Figure 9).

Figure 9 Obstacles to curing of primary brain tumors at different stages by Aldape.
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Conclusion
The systematic study draws attention to the current shortcomings 

in the most advanced AI methods for brain tumor diagnosis. This 
literature review has focused on the challenges associated with 
the identification and assessment of brain tumors. The difficulties 
in detecting and diagnosing brain cancers early on are further 
compounded by the brain’s intricate structure as an organ and 
their crucial role.  Personalized treatment plans, the application of 
explainable AI in clinical decision making, and the integration of 
numerous data modalities are just a few of the topics that require 
further research and development. In general, solving these issues will 
speed up the creation of fully effective AI instruments for the clinical 
management of brain tumor patients.
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