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Introduction
The rapid technological modernization brought by industrial 

revolution, urbanization, and the capitalist society that we live in are 
the main reason for fathomless exploitation of natural resources.1 
With the nonrenewable and pollutant laden fossil fuels dominating 
the global energy supply, air pollution is worsening in many parts of 
the world especially where the economy is heavily dominated by low-
tech manufacturing.2 In the past decade, air pollution is becoming a 
global phenomenon that has reached concerning levels. Vohra et al.,3 
are raising awareness, implicating that the death toll caused by fossil 
fuels in outdoor air pollution is much higher than other studies suggest. 
The authors estimate that 8.7 million deaths globally in 2018 are 
caused by air pollution originating from burning fossil fuels. Speaking 
particularly about CO2, global fossil emissions in 2020 decreased by 
5.3% compared to 2019, mainly due to the COVID-19 pandemic. 
However, in 2021, global emissions returned almost to the level of 
2019, reaching 37.9 Gt, just 0.36% lower than in 2019, getting back 
to pre-pandemic CO2 emission levels.4 Not only atmospheric but also 
aquatic pollution represents a burgeoning environmental problem, 
causing world scale concerns for public health. Inadequate and 
poor management of wastewater leads to contaminated or chemical 
polluted drinking water which leads to serious health problems and 
even deaths. According to the World Health Organization (WHO), 
unsafe drinking water is the culprit for 1.5 million deaths every 
year, most of them of infants and small children.5 Water scarcity and 
decline in aquatic biodiversity are caused due to population growth 
and pollutants contaminating all remaining water sources.6 Climate 
change, severe droughts, and usage increase are just a few reasons that 
have further stressed the scarce freshwater resources.7 Limited water 
resources prompted the modern world to adopt sustainable measures 
for saving water by increasing its control, reuse, and recycling.8 
Nanotechnology offers a potential for providing sustainable solutions 
to the global challenges, and thus cleaner air and water1. Having a 
chance to manipulate materials at atomic and molecular level, the 
application of nanotechnology could greatly improve treatment 

efficiency.9 Rapid and precise sensors able to detect pollutants at the 
molecular level may enhance the ability to protect the sustainability 
of human health and the environment.10 Nano materials are of great 
importance for the further development of electrochemical sensors. 
From the viewpoint of application as potential electrode material, 
they possess novel properties due to their nano scale dimensions, 
such as high ratio of surface area to volume, unique optical, electrical, 
mechanical, and thermal properties which are the crucial factor for 
their use (Figure 1).

Due to their large specific surface area and high reactivity, nano 
materials are showing incredible performance and can be employed 
as excellent sensors, adsorbents, and photo/electro-catalysts.11 
Nano sensors can be defined as sensors that have at least one of the 
dimensions less than 100 nm and have the ability to collect information 
at nano scale and convert it to analyzable data. These nano sensors are 
using the unique characteristics of nano materials due to the ability 
for interaction with the surrounding environment at a nano scale level 
(Figure 2).12 

Recently, nanostructured electrodes have been actively used as 
sensors for clean technology environmental applications, where 
precisely modified working electrodes can be implemented as an 
excellent system for detection of environmental pollutants such as 
chemical, physical, and biological agents. Modified nanostructures 
with specific functionalities can recognize a particular pollutant 
within a mixture.13,14 Sensors based on nano materials have also 
been successfully used for industrial discharge monitoring of toxic 
compounds such as flue gases.15 Compared to conventional sensors, 
this nanomaterial-based sensors offer superior properties and 
are identified as more accurate, sensitive in nature and selective. 
Moreover, nano materials can significantly increase the sensors 
sensing capability16. In this paper we highlighted and discussed 
the roles of nano materials and the application of nanotechnology to 
combat environmental pollution, using nano sensors as devices for 
control and monitoring (Figures 3&4). 
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Abstract

Increased environmental pollution is becoming one of the greatest problem the world 
is facing nowadays causing irreparable damage to the earth. Because of their novel and 
tunable physicochemical properties, nano materials have attracted great attention among 
researchers as promising materials to combat environmental challenges. Developing 
nanotechnology have triggered a great deal of interest in these structures for pollution 
monitoring and treatment, enabling new technologies for identifying and addressing 
environmental problems. Even though achieving environmental pollution control is a 
challenging task using conventional materials, revolutionary progress has been observed 
with the advancements in nanotechnology, showing that precisely modified nano materials 
can be used for purposes such as treatment of polluted atmosphere, industrial and domestic 
wastewater, natural water, and soil. In this paper we review and discuss the environmental 
applications of nano materials as nano sensors employed for combating atmospheric and 
aquatic pollution.
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Figure 1 Surface PM2.5 originating from fossil fuel combustion, calculated by 
chemical transport model GEOS-Chem. Statistical data and image cited from 
Vohra et al.3

Figure 2 Estimated excess annual deaths due to exposure to surface PM2.5 . 
Statistical data and image cited from Vohra et al.3

Figure 3 Global CO2 emissions from fossil fuels by region, 1959-2022. 
statistical data and image cited from global carbon budget 2022.13,14

Figure 4 Annual CO2 emissions by fuel, 1959-2022. Statistical data and image 
cited from global carbon budget 2022.13,14

Control and monitoring of air pollution
Monitoring is the first prerequisite procedure for environment 

pollution treatment, but it still represents a major challenge – 

conventional monitoring methods are not sensitive to detect 
micro-pollutants in traces.9 Therefore, it is imperative to develop 
novel sensors with advantages over conventional sensors such as 
miniaturization, higher selectivity and sensitivity, fast response, real 
time sensing and so on. Nano sensors’ design is based on incorporation 
of nano materials with unique properties (noble metals – Ag and Au, 
transition metal oxides, carbon-based materials – carbon nanotubes, 
graphene, carbon quantum dots and g-C3N4) into sensing devices for 
effectively enriching pollutants with extremely low concentration 
(parts-per-trillion) and therefore, more accurate detection. Moreover, 
some nano materials can enhance the spectroscopic response, 
improving the sensitivity of the device. The type of used nanomaterial 
and its structure has an important role in determination of the sensors’ 
physicochemical properties.12 Here we are summarizing nano sensors 
based on the used nanomaterial, divided by some major classes. 

Carbon-based nano sensors

Also known as “wonder materials”, carbon allotropes such 
as carbon nanotubes (CNTs), fullerenes and graphene present 
encouraging resources for various application fields, due to their 
special capabilities.16,17 Each allotrope is characterized with notably 
different electrical properties,18 making them particularly interesting in 
electrochemical applications. Thanks to the excellent electro catalytic 
behavior and chemical inertness, carbon-based nano materials have 
found huge application as electrochemical sensors, and have been 
used for detection of numerous environmental contaminants. Highly 
selective gas sensors for detection of organic (chloroform, benzene, 
toluene, dichloromethane, carbon tetrachloride etc.) and inorganic 
gases (NOx, COx, H2, NH3 etc.) have been developed using carbon-
based nanomaterials.12 Kong et al.,19 developed gas sensors using 
semiconducting single-walled carbon nanotubes (SWCNTs) which 
electrical resistance changed by three orders of magnitude right 
after exposure to NO2 and NH3 concentration in traces, at room 
temperature. The incredible properties of the developed sensor (fast 
response, high sensitivity, and low detection limit) are originating 
from SWNTs large specific surface area.20 Modified CNTs exhibit 
interesting electrochemical behavior, due to the presence of reactive 
functional groups on the nanostructure’s surface. Change in the 
resistance of SWCNTs was also reported by Collins and al.,12 under 
exposure of O2. Grozdanov et al.,21 developed polymer-modified 
multi-walled carbon nanotubes (MWCNTs) and graphene nano 
sensor used for sensing of NH3 vapors with different concentration. 
The sensor design was based on screen-printed electrodes, offering 
great sensitivity towards ammonia and non-cost efficiency. NO2 and 
hazardous organic molecules detection gas sensor was designed 
by Nguyet at al.,12 using SnO2 nanowires and CNTs. Kar and 
Choudhury12 reported nanocomposite sensor developed using PANI 
doped with functionalized MWCNTs for detection of chloroform. 
This modification showed better sensing response compared to pure 
PANI, due to the better synergy of modified PANI with the pollutant. 
Metal oxide (ZnO and SnO2)-incorporated carbon fibers are reported 
by Jang et al.,22 for detection of dimethyl methyl phosphonate 
(DMMP) at room temperature. Sensors showed high sensitivity and 
minimum detectable limit of 0.1 parts-per-billion (ppb), contributing 
to the presence of metal oxide nano nodules on the carbon nano 
fiber’s structure. Bekyarova et al.,23 investigated m-amino benzene 
sulfonic acid (PABS) functionalized SWCNTs, tested for detection of 
ammonia. Sensors showed two times enhanced response compared 
to pristine SWCNTs, resulting from the reactions between NH3 and 
PABS-functionalized SWCNTs and changing the electronic structure 
of PABS. For ammonia detection are also used flexible SWCNTs films 
functionalized with carboxylic acid, showing 30% better response for 
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detection of 300 ppm NH3 compared to 15% for un functionalized 
SWCNTs. The authors elaborate that the functionalized carbon 
nanotubes have enhanced response because of the formation of 
hydrogen bonds between ammonia and oxygen/OH groups present 
on the CNTs surface, thus forming possible charge traps.23 Rigoni et 
al.,23 reported a more that 100-fold resistivity increase for SWCNTs 

functionalized with CTAB (cetyltrimethylammonium bromide) 
surfactant compared to carboxylic acid for detection of ammonia 
in the range of 10-30 ppm. However, the active layer of the CTAB 
functionalized SWCNTs sensor was not that stable in the range of 10-
30 ppm, compared to COOH-SWCNTs (Table 1).

Table 1 Carbon-based nanosensors

Nanostructure Targeted contaminants Reference
Ca12O12 nanocage CO2, SO2, NO2 Hitler et al.24

Laser-induced graphene (LIG) NOx Yang et al.25

B24N24 fullerene COS, H2S, SO2, CS2 Ding et al.26

MoSe2/MWCNT N,N-Dimethylformamide Singh et al.27

CNT-rGO-Co3O4 C2H6O Hu et al.28

Pd/SWCNT Acetonitrile, styrene, perchloroethylene Yoosefian et al.29

ZnO/CuO@graphene NH3 Jagannathan et al.30

GNWs/NiO-WO3/GNWs NO2 Kwon et al.31

Pt-COFs@SnO2@carbon nanospheres Triethylamine Shao et al.32

(Ag)-decorated laser-induced graphene (LIG) foam (Ag/LIG) NO2 Yang et al.33

Mousavi et al.,34 reported using MIL-101(Cr), a highly porous 
metal-organic framework (MOF), for fabrication of resistive gas 
sensor for detection of low concentration volatile organic compounds 
(VOCs). The authors synthesized MIL-101(Cr)/CNT nanocomposite 
for sensing of methanol, ethanol, formaldehyde, isopropanol, acetone, 
tetrahydrofuran, acetonitrile, dichloromethane, and n-hexane at room 
temperature. Implementing MOFs leads to better sensing activity and 
higher gas molecules adsorption because of their large active surface 
area. Kheirabadi et al.,35 joined two similar Folded Armchair Graphene 
Nano ribbons (FAGNRs from their open sides, and constructed a 
new structure called Attached FAGNR tube (AFAGNT). The authors 
tested the gas sensing performances of CNT and AFAGNT in presence 
of CO, O2 and CO2 gases molecules, which resulted in significant 
sensitivities to CO gas molecule at various bias voltages, especially at 
0.8V. Polyimidazole multi-walled carbon nanotubes (Plm/MWCNTs) 
nanocomposite films have been synthesized by Yahaya et al.,36 and 
tested against contrasting mixtures of gas. The proposed sensor 
provided fast response and recovery, high repeatability, and increased 
sensitivity for methanol, as it can be seen on Figure 5.  

Figure 5 Plm/MWCNTs composite sensing of VOCs.

Shooshtari et al.,37 used a CNT-TiO2 hybrid sensor, to increase the 
sensitivity level of intrinsic CNT gas sensors. A threefold increase 
in sensitivity and a 30-second decrease in response time have been 
observed for CNT-TiO2 sensor compared to the pristine CNT sensor. 
The authors reported achieving 97.5% accuracy in sensing four 
different VOC gases. Carbon nanotubes-anatase titanium dioxide 
(CNT/a-TiO2) film-based sensor have been also reported by Chang 
et al.,38 for detection of NO at room temperature. As authors reported, 
the CNT/a-TiO2 sensor exhibited high sensitivity of 41% to 50 ppm 
NO, rapid and reversible response at room temperature, and high 

selectivity toward NO among several toxic gases including NH3, NO2, 
CH4 and H2S.

Pure, mixed, and doped metal oxides (MOX) have attracted 
such attention for development of electrochemical sensors since 
their low-cost, operation simplicity and capability of real-time 
identification.39 Because of their ability to display high sensitivity 
towards chemical environmental changes, MOX have been explored 
for construction of highly efficient nanosensors for environmental 
application.12 ZnO, In2O3, TiO2, NiO, WO3 and SnO2 are some of the 
frequently used semiconductive MOX for design of environmental 
gas sensors used for detection of toxic gases (H2, CO, NO2) and 
volatile organic compounds (VOCs) (acetone, ethanol etc.). Zhang 
et al.,12 reported nanosensor based on ZnO nanostructures with 3D 
flower-like morphology tested for detection of n-butanol. The gas 
sensor demonstrated excellent sensing ability due to the large specific 
surface area and more numerous surface-active sites.  Excellent 
electrochemical activity has been reported for nanosensors based 
on flower-like NiO nanoparticles, displaying high sensitivity for 
detection of formaldehyde.12 Fazio et al.,39 reported developing of 
nanosensor based on V-doped ZnO:Ca nanopowders, which shows 
increase in the resistive sensor response for detection of ammonia. 
Ca-doped ZnO nanosensor has been reported by Dhahri et al.,39 who 
investigated the performance over CO2. Doping Ca2+ ions with larger 
ionic radius with respect to Zn2+ ions help increase the adsorption of 
acidic CO2 as a result of creating larger lattice distortion and finally 
resulting in enhance sensor properties. Zhang et al.,40 report PdO 
particle decorated ZnO nanostructures with promising gas sensing 
properties towards various gases. The decorated ZnO was reported to 
show a good sensing response to ethanol in range of 35.4 to 100 ppm. 
Other doped nanocomposites such as ZnO/Co3O4 and Al-doped ZnO/
CuO were reported for detection of NO2 and NH3, respectively. Gao et 
al.,40 report synthesis of CuO nanoparticles decorated MoO3 nanorods, 
tested against H2S, with greater sensor response compared to pure 
MoO3, mainly attributed to the formation of n-p heterojunctions. Au-
doped ZnO (Au-ZnO) ultra-selective nanosensor was designed by 
Suematsu et al.,41 for toluene sensing. Metal oxide modification with 
Au nanoparticles enhances the selectivity towards toluene and the 
recovery of electrical resistance compared to undoped ZnO sensors. 
Gao et al.,41 reported a nickel oxide sensor incorporated with Stannic 
oxide (SnO2), designed for detection of toluene. The doped sensor 
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response to toluene is 50 times superior to the pristine ZnO. This type 
of sensor stands as an ultrasensitive toluene sensor because of the 
nature of the incorporated material which can act as a catalyst. Authors 
report CNTs nanocomposites modified with hexagonal tungsten oxide 
(WO3) are shown to detect low concentration (100 ppm) of NO2 at 
room temperature.42 WO3 is defined as most promising material for 
detection of NO2, being able to detect ppm concentrations. Wang et 
al.,42 recently reported N and SnO2 doped rGO nano composites for 
detection of such low NO2 concentrations in the range of 5 ppm. The 
reported sensors are characterized with fast response and excellent 
recovery. In summary, metal-oxide doped carbon nanomaterials 
provide excellent sensors for detection of NOx at room temperature.

Zhai et al.,53 loaded metal-organic framework (MOF) (UiO-66-
NH2) onto a polyacrylonitrile nanofibermembrane and prepared 
UiO-66-NH2/PAN-based capacitive gas sensor with excellent sensing 
performance for SO2 gas in the range 1–125 ppm. The authors further 

improved the detection ability of the sensor toward trace SO2 by 
modifying the structure with 2,3,4-trihydroxybenzaldehyde (THBA), 
revealing that the abundant hydroxyl groups present on THBA 
improved the SO2 adsorption performance of the material, enabling 
a low detection limit (0.1 ppm). Panigrahi et al.,54 investigated 
the selected transition metal dichalcogenides (MoX2: X = Se, Te) 
monolayers toward the toxic sulfur-containing gases, such as H2S 
and SO2. Authors found that doped MoX2 with As, Ge, and Sb at 
lower doping concentrations of around 2%, strongly adsorbed H2S/
SO2 yielding significant changes in their electronic properties, which 
are fundamental for efficient sensing mechanism. In conclusion, As–
MoSe2, Ge-MoSe2 and Sb–MoTe2 have shown a superior and selective 
sensing performance. Araújo et al.,55 synthesized a network of SnO2 
nanobelts decorated with palladium nanoparticles, for sensing of CO 
and CO2. Results showed a sensitivity of up to 125% for CO in 60 s, 
and when doping with nanoparticles from 130 ppm to 1360 ppm the 
response increased for 30 seconds to CO (Table 2).

Table 2 Metal oxide-based nanosensors

Nanostructure Targeted contaminants Reference
rGO/Pd coated SnO2 film NO2 Akshya S43

ZnO:Eu nanowire H2 Lupan et al.44

Single SnO2 nanowire C3H6O, NH3, CO, C2H6O, H2, NO2, C7H8 Tonezzer M45

Zn, Fe modified SnO2 CO Dascalu et al.46

Comb-like ZnO H2S A. Dawood Faisal47

WOx NO2 Isaac et al.48

Ni, Zn doped SnO2 CO Zhou et al.49

ZnO/CuO C2H6O Shinde et al.50

Porous rod-like In2O3 NO Li et al.51

WO3-graphene@Cu CO, NO2, C3H6O Haiduk et al.52

Qomaruddin et al.,56 presented nitrogen dioxide (NO2) gas sensors 
based on zinc oxide nanorods (ZnO NRs) decorated with gold 
nanoparticles (Au NPs) working under visible-light illumination with 
different wavelengths at room temperature. The authors demonstrated 
the contribution of localized surface plasmon resonant (LSPR) 
by Au NPs attached to the ZnO NRs, showing that the presence of 
LSPR not only extends the functionality of ZnO NRs towards longer 
wavelengths (green light) but also increases the response at shorter 
wavelengths (blue light) by providing new inter-band gap energetic 
states (Figure 6). 

Figure 6 Palladium decorated SnO2 nanobelts networks for detection of CO 
and CO2.

55

Electrospun nano fibers

Nanofibers are promising materials due to their flexibility, 
tunability, and high surface area, properties making them suitable for 
integration into sensor devices. Their sensor related properties such 
as fast response, sensitivity and better activity can be easily tailored 

to enhance absorption and diffusion rates. Electrospun nanofibers 
are found to be potential candidates for nanosensors to improve the 
sensing phenomenon, producing ready to implement nanofibers with 
smaller diameter, more surface functionality, better permeability, and 
better mechanical properties12. An ammonia gas sensor was recently 
developed by Chen et al.,57 based on electrospun cobalt trioxide 
nanofibers and molybdenum telluride (Co3O4-MoTe2) with low 
detection limit (26 ppb). The introduced sensor showed better sensing 
performance compared to the pristine Co3O4 and MoTe2 film sensors 
respectively, mainly attributed to the p-n heterojunction formed 
between MoTe2 and Co3O4. Ramakrishnan et al.,58 developed p-Co3O4 
supported heterojunction carbon nanofibers (CNF) based sensor for 
detection of trace level concentration of NH3. Nanofibers are often 
utilized to create heterojunctions for boosting conductivity and 
rapid response, hence enhanced sensor activity. Wu et al.,59 prepared 
Cu doped Fe2O3 electrospun nanofibers, studying the electrical 
resistance change against NO¬2 gas in the range of 5-50 ppm. ¬ ZnO-
polystyrene sulfonate nanofibers based nanosensor was designed by 
Andre et al.,59 with ability to sense ammonia gas in a mixture of NO2, 
CO and NH3. Wei et al.,59 introduced an Ag doped LaFeO3 nanofiber 
sensor with excellent selectivity for detection of formaldehyde. Salehi 
et al.,59 reported reduced graphene oxide-ZnO nanofiber sensor, tested 
against acetone detection. Graphene addition enhanced sensitivity 
and reduced the functioning temperature of the developed nanosenor. 
Metal-organic framework (MOF)-derived Zn2+ doped SnO2 (ZZS) 
hollow nanofibers (HNFs) based nanosenor was designed by Zhu et 
al.,60 for detection of formaldehyde. The sensor exhibited excellent 
gas-sensing properties such as rapid response and fast recovery. A 
novel Al-doped CdIn2O4 nanofibers (ACO NFs) based sensor was 
recently reported by Tian et al.,61 for sensing n-butanol. The developed 
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sensor shows excellent long-term stability and sub-ppm detection 
limit, hence making the ACO NFs promising sensing material. Zhang 
et al.,62 are describing a facile fabrication of a flexible gas sensor for 
rapid detection of hydrogen sulfide (H2S) through integrating NO2-
UiO-66 on electrospun nanofibers membrane (NO2-UiO-66 NM). 
Good H2S gas sensing properties has shown a study reported by 
Park et al.,63 describing the fabrication of ZnO-ZnFe2O4 electro spun 
hollow nano fibers, enabling enlarged surface area and increasing gas 
sensing sites. The interface of ZnO and ZnFe2O4 forms a p-n junction 
for improved sensor response and lowers the operation temperature. 
Calcinated WO3 nanofibers were reported by Morais et al.,64 as high 
signal sensor for detection of low and high NO2 concentrations. The 
sensor showed high selectivity against potential interferents (H2 and 
CO), due to the interactions between NO2 molecules and the surface 
of the WO3 nanofibers.  

Cai et al.,75 prepared ZnWO4/ZnO hetero-structured nanofibers 
which exhibited an enhanced selectivity to triethylamine with excellent 
stability and repeatability. The excellent sensing performance authors 
mainly ascribed to the porous structure and synergetic sensing effect 
of ZnWO4 and ZnO. The results showed a high relative response of 
108.5 achieved for 50 ppm triethylamine (TEA) and a low detection 
limit of about 150 ppb. Kgomo et al.,76 developed belt-like In2O3 
based sensor for methane detection. The In2O3 sensor displayed good 
sensing capabilities with a response of 1.1 to 90 ppm of methane at 
a lower operating temperature of 100℃. The sensor has response and 
recovery times of only 36 and 44 s, respectively, displaying good 
stability and selectivity as well as a lower detection limit of 0.18 ppm. 
The authors revealed that the enhanced sensing behavior originate 
from the mesoporous nature of the synthesized nanostructure offering 
many active sites for methane gas molecules because of the high 
surface area and high concentration of oxygen vacancies, which 
enabled greater channels for methane gas adsorption and desorption 
capacity (Table 3).

Table 3 Electrospun nanofibers-based nanosensors

Nanostructure Targeted 
contaminants Reference

PAN@ UiO-66-NH2
PAN@UiO-66-NH2@CNT SO2 Zhai et al.65

ZIF-67/PAN CH3OH, C2H6O, C3H6O Zhai et al.66

ZnO-PANI NO2 Bonyani et al.67

PAN Chloroform Yardimci et al.68

WO3 NO2 Qiu et al.69

PAN/NiO C3H6O, C2H2 Kaidar et al.70

Au-WO3 NO2 Lin et al.71

(1D) CuO NO2 Liu et al.72

ZnO/NiO NO2 Xu et al.73

In2O3/ZrO2 C3H6O Feng et al.74

Quantum dots (QDs)

QDs are semiconductor nanocrystals with typical MX 
composition, where M is commonly Zn or Cd and X is Se, S or 
Te. QDs are characterized as outstanding optical transducers due to 
broad absorption bands and narrow fluorescence emission bands. 
Often, they are synthesized with a shell or a coated second MX 
alloy for generation of highly tuneable core/shell QDs.12 ElShamy77 
presents a Schottky device based on carbon dots (CDots) decorated 
magnesium oxide (MgO) nanoparticles (CDots@MgO) engineered 
for H2S sensing with high response. Chen et al.,78 are presenting a 
novel artificial neuron-like gas sensor constructed from CuS Quantum 

Dots/Bi2S3 nanosheets for ultra-sensitive capture of NO2 molecules. 
Sawalha et al.,79 reported the first example of using C-dots (CDs) 
as conductometric gas sensor for monitoring low concentrations 
of NO2 in ambient air. The designed sensor was found to exhibit 
excellent sensing properties in terms of rapid and selective response 
to sub-ppm concentrations, reproducibility, and stability. Lv et al.,80 
successfully designed a novel nitrogen-doped graphene quantum 
dots (N-GQDs) modified SnO2 (NG/Snx) gas sensor for detection of 
NO2. The NG/Snx sensing material exhibits rapid response and fast 
recovery speed, good selectivity, repeatability, long-term stability, 
and outstanding detection ability for low concentration NO2 (100 
ppb). He et al.,81 proposed a carbon monoxide (CO) sensor based on 
a Michelson interferometer combined with α-Fe2O3/reduced graphene 
oxide quantum dots (rGOQDs) composite film, with good sensing 
performance and advantages such as simple structure, high sensitivity, 
and selectivity. Šutka et al.,82 demonstrated a photodoping-inspired 
gas sensing approach based on a thin solid film made of ultrasmall 
(<5 nm) anatase TiO2 quantum dots for detection of volatile organic 
compounds. In summary, quantum dots can be employed for efficient 
sensing of multiple pollutants.

Menezes et al.,93 investigated the adsorption of carbon monoxide 
(CO), nitrogen dioxide (NO2), sulfur dioxide (SO2), and ammonia 
(NH3) on Graphene Quantum Dots (GQD). The results showed 
that doping with B, N, or Al can greatly improve GQD’s adsorbing 
capabilities and they serve as a promising application towards NO2 
gas sensing. Kumar et al.,94 designed a novel 2D-material/0D-
quantum dot (MoS2/SnS) heterostructure with highly sensitive sub-
ppb-level NO2 gas-sensing capability. The structure showed 3 times 
enhanced NO2 gas-sensing capability and recovery increase by more 
than 90%. The highest sensor response of 0.33 with good repeatability 
was observed at 250 ppb of NO2, while ultra-fast response time of 74 
s, was found at 50 ppb of NO2. The limit of detection have been found 
to be as low as 0.54 ppb (Table 4). 

Table 4 Quantum dot-based nanosensors

Nanostructure Targeted 
contaminants Reference

ZnO H2S Zhang et al.83

SnS NO2 Li et al.84

C(S, N)-WO3 NO2 Patel et al.85

MoS2/SnO2 NO2 Luo et al.86

ZnO-multilayer graphene NO2 Lee et al.87

TiO2/PbSnS CO, NO2 Kumar et al.88

PbCdSe NO2 Geng et al.89

N-Graphene QDs/SnO2 CH2O Chen et al.90

ZnO-SnO2 CH2O Sun et al.91

Carbon/In2O3 NO2 Cheng et al.92

Polymer-based nano materials

Polymeric nanomaterials combined with various novel scientific 
and analytical techniques can be used as electrochemical sensors 
for sensing of gaseous and liquid environmental pollutants. The 
electrochemical sensing and conducting properties of polymer-based 
nanomaterials can be improved by integration of graphene, CNTs, 
metal and metal oxide NPs, etc. In the last decade, Navale et al. 
reported polypyrrole (PPy)/a-Fe2O3 nanocomposite for detection of 
reducing (NH3, H2S, C2H5OH, CH3OH) and oxidizing (Cl2 and NO2) 
gases. Bentonite nanohybrid modified polyaniline (PANI) nanofibers 
were used by Pramanik12 for construction of gas sensor for toxic 
gases like toluene, ethanol, benzene, and acetone. Thangamani et al.,95 

https://doi.org/10.15406/mseij.2023.07.00214


Recent advancements in nano sensors for air and water pollution control 118
Copyright:

©2023 Dimitrievska et al.

Citation: Dimitrievska I, Paunovic P, Grozdanov A. Recent advancements in nano sensors for air and water pollution control. Material Sci & Eng. 
2023;7(2):113‒128. DOI: 10.15406/mseij.2023.07.00214

reported titanium dioxide (TiO2) nanoparticles reinforced polyvinyl 
formal (PVF) nanocomposite-based gas sensor (PVF/TiO2) for sulfur 
dioxide (SO2) monitoring. The fabricated sensor exhibited good 
sensitivity, selectivity, fast response time and long-term stability of 60 
days. Muthusamy et al.,96 recently reported a new ternary conducting 
polymer composite of polypyrrole (PPy), prussian blue (PB), titanium 
dioxide (TiO2), PPy-PB-TiO2 for fiber optic gas sensing applications. 
The gas sensing properties of this sensor were investigated upon 
ethanol, ammonia, and acetone with varying concentrations (0-500 
ppm). Experimental results showed best sensor performance i.e., 
high sensitivity and selectivity properties for ammonia detection. 
Yoon et al.,97 developed a polymer-based chemiresisitve CO2 sensor, 
incorporating 4-vinylpyridine (4VP) and azide groups on SWCNTs’ 
surface, exhibiting response of 25% at room temperature for 2% CO2 
concentration. However, the sensor resulted with a very long response 
time of thousands of seconds. This behavior suggests that further 
studies are required for improvement of the sensing performance 
of organic-inorganic hybrid sensors towards practical gas sensing 
applications.98 A flexible hydrogen sulfide (H2S) sensor based on 
polyaniline–polyethylene oxide (PANI–PEO) nanofibers doped by 
camphorsulfonic acid (HCSA) was presented by Mousavi et al.,99 
The proposed sensor has good characteristics and shows superior 
performance compared to other PANI-based H2S sensors. Wang et 
al.,100 reported a room-temperature NH3 core-shell nanocomposite 
gas sensor with high response and great long-term stability, including 
CeO2 NPs conformally coated by cross-linked PANI hydrogel. The 
nanohybrid’s enhanced response could once more be attributed to 
p-n heterojunctions formed by the contact between used materials. 
Ammonia (NH3) gas sensor based on reduced graphene oxide (RGO)–
polyaniline (PANI) hybrids was presented by Huang et al.,101 The 
characterization showed synergetic behavior between both materials 
allowing excellent sensitivity and selectivity to ammonia. Xiang et 
al.,102 synthesized polypyrrole (PPy) and graphene nanoplatelets (GNs) 
based composite decorated with titanium dioxide (TiO2) nanoparticles 
(TiO2@PPy–GN). The proposed nanocomposite exhibited good 
electrical-resistance response to ammonia at room temperature and 
enhancing sensing properties such as higher sensitivity and rapid 
response compared to the undoped PPy-GN film. Jian et al.,103 
fabricated a polyaniline (PANI)/tin oxide (SnO2) composite-based 
sensor for detection of CO. The sensor excellent response was 

attributed to two properties: a) high surface area of SnO2 significantly 
enhancing the response during concentration change at low operating 
temperature (<75 °C) and b) good PANI properties in the redox 
reaction during sensing, producing resistance between air and CO 
gas. DBSA doped PPy–WO3 hybrid nano composite sensor operating 
at room temperature was presented by Mane et al.,104 The gas sensing 
sensor performance was studied for various pollutants such as NO2, 
C2H5OH, CH3OH, H2S and NH3 with highest selectivity towards NO2 
with 72% response at 100 ppm. Copper nanoparticles intercalated-
polyaniline nanocomposites (NC) has been proposed by Patil et al.,105 
for detection of ammonia. Cu nanoparticles incorporation improved 
the sensor response and response kinetics. 

Pasupuleti et al.,116 combined graphene oxide-Poly(3,4-ethy
lenedioxythiophene):polystyrene sulfonate (GO-PEDOT:PSS) 
nanocomposite and piezoelectric LGS substrate to develop a NO2 
sensor. Compared to the pristine GO/LGS sensor, the developed GO-
PEDOT:PSS/LGS exhibited superior NO2 gas sensing performances. 
The sensor showed good cycling stability, excellent sensitivity, and 
a low detection limit at 175 ppb at room temperature. Liu et al.,117 
developed polyethyleneimine/polyethylene-glycol (PEI/PEG) 
functionalized black phosphorus (BP) gas sensor for detection of 
carbon dioxide (CO2). Black phosphorus is an attractive gas sensing 
material due to the layer-dependent direct bandgap, and high carrier 
mobility. The authors reported low limit of detection of PEI/PEG-BP 
gas sensor at 200 ppm CO2 under air conditions and high limit of 
detection of 250,000 ppm CO2 under N2 conditions. Moreover, the 
sensor showed high selectivity, and excellent repeatability – superior 
properties that can be attributed to the meso-macropores sensor 
structure, recognition function of amino groups, and formation of 
P-N heterojunction between BP and PEI. Ta2O5–SnO2–PANI hybrid 
composite for efficient sensing of CO at room temperature at very 
low concentration, have been reported by Aranthady et al.,118 The 
hybrid material exhibited superior CO sensing performance with high 
sensitivity, low operating temperature, fast response and fast recovery 
compared to the individual components. The enhanced sensing ability 
of the hybrid material has been attributed to the synergistic properties 
such as conductivity of PANI, improved oxygen vacancies and the 
heterostructure formed between the PANI and the (Ta2O5–SnO2) 
composite (Table 5). 

Table 5 Polymer-based nanosensors

Nanostructure Targeted contaminants Reference
Poly(3-aminophenylboronic acid) (PAPBA) CO, NO, NO2, SO2, SO3 Taremi et al.106

rGO/Chitosan NO2 Park et al.107

TiO2/PANI NH3 Conti et al.108

rGO/ZnO QDs/Nylon NO2 Lin et al.109

Poly(5-carboxyindole)–β cyclodextrin (P5C-BCD) CH2O Hodul et al.110

PEDOT:PSS/PPA CO Farea et al.111

Poly(3-hexylthiophene)/ molybdenum disulfide (P3HT/MoS2) NH3 Verma et al.112

PPy/TiO2 CO Farea et al.113

PANI NH3 Zhu et al.114

Poly(N-methyl pyrrole)/reduced graphene oxide (P(NMP)/rGO) CO Mohammed et al.115

Control and monitoring of aquatic pollution 
Control and monitoring of water quality present challenging tasks 

because of the trace contaminants, complexity, and versatility of 
wastewater matrices.119 The purpose of surface water monitoring is 
to develop a system for characterization and detection of physical, 
chemical and biological changes over time, which allows rapid 
identification of specific events or new and emerging problems.120 

Surface water is susceptible to pollution majorly stemming from 
urbanization, industrialization, and agriculture. Natural aquatic 
resources have become the most common discharge sites for 
wastewater containing microorganisms, pathogens, heavy metals, 
and other harmful and toxic compounds.121 Nanomaterials provide 
an opportunity to addressing these issues using nanosensors, offering 
reliable solutions with huge impact on humanity. Amongst the already 
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mentioned incredible properties like miniature size and high specific 
surface to volume ratio, nanomaterials have significant monitoring 
character with potential use in water quality management.121,122 Nano 
sensors offer superior properties for monitoring water quality, such as 
proficient recognition of extremely low concentrations of pollutants 
and fast analysis.123 Studies show that nanosenors are three to four 
orders of magnitude more sensitive than thin film sensors, because 
of their high signal-to-noise ratio.124 So far, developed nano sensors 
based on nano materials with distinctive electrochemical, optical, 
or magnetic properties including magnetic nanoparticles, carbon 
nanostructures (graphene and carbon nanotubes), noble metals (Ag 
or Au) and quantum dots show ability to detect pathogens, organic 
and inorganic pollutants.122,125 Here we are summarizing some 
advancements in nanosensors based on the pollutant sensing, divided 
by some major classes.

Inorganic pollutants - heavy metals

Heavy metals toxicity poses treats to health and organs system 
functioning in human beings. Beside humanity, it also affects other 
forms of living beings such as flora, fauna and even the microbiota.126 
The notorious one, mercury, causes side effects that are fatal and 
therefore receives much attention for proper sensing. Gao et al.,127 
reported a simple and green method for preparation of amino-
functionalized fluorescent carbon dots (FCDs) for detection of Hg2+ in 
aqueous solution. Synthesized FCDs presented a high quantum yield 
(36%) at 440 nm of emission wavelength with a detection limit of 20 
nmol L-1, indicating potential application for detection of trace Hg2+ 
in water samples. N and S doped carbon dots (N, S-CDs) synthesized 
from a wild plant, Typha angustata Bory (Patera), for ultra-low level, 
rapid detection of Hg2+ are reported by Samota et al.,128 The authors 
reported extreme sensitivity for the developed sensor exhibiting an 
unprecedented quantum yield of 83 % that has never been reported 
previously. Owing to extraordinary quantum yield, the sensor exhibited 
ultra-low limits of detection of 3.1 nM for Hg2+ and satisfactory 
recoverability in the range 95–102 % for real water samples. 
Hydrophilic graphene quantum dots (GQDs) are reported by Anusuya 
et al.,129 for detection of heavy metal ions in aqueous media, including 
Hg2+, Cd2+ and Pb2+. Using CQDs photoluminescence property 
an optical nanosensor has been constructed with detection limit of 
1.171 μM, 2.455 μM and 2.011 μM for Hg2+, Cd2+ and Pb2+ ions, 
respectively. Tian et al.,130 proposed greenly synthesized L-cysteine 
functionalized graphene oxide nanosheet (CGO) nanosensor with 
good colorimetric sensing of 5 μg L−1 of mercury ions. The reported 
metal-free sensor is economical and sensitive, presenting considerable 
anti-interference ability over other metal ions. Boron and nitrogen co-
doped carbon dots-based nanosensor (B, N-CDs) was designed by Fu 
et al.,131 for fluorescent and colorimetric dual-mode detection of Hg2+. 
The application potential of B, N-CDs nanosensor for complex water 
matrices has been demonstrated as excellent, with limit of detection of 
5.3 nM. Tümay et al.,132 synthesized pyrene base novel fluorescent iron 
oxide nanoparticles (Py@Fe2O3) for highly selective determination 
of Hg2+ ions in environmental samples. The limit of detection and 
quantification were reported to be 3.650 nmol L−1 and 10.960 nmol 
L−1 in the linear working range of 0.010–1.000 μmol L−1 Hg2+. Silver 
nanoparticles (AgNPs) embedded sulfur-doped graphitic carbon 
nitride (gCN) quantum dots-based fluorescent nanosensor (Ag-S-gCN 
QDs) was proposed by Pattnayak et al.,133 employed for sensitive and 
selective detection of Hg2+ ions under optimal conditions. The limit 
of detection and quantification have been measured to be 0.13 μM 
and 0.43 μM, respectively, with a linear range of 0.1–0.6 μM. The 
sensor emitted strong blue fluorescence with relative quantum yield 
of 36.5%. Along mercury, environmental pollution with cadmium 
stands as a major concern with prolonged exposure causing serious 

health damage.134 Al-Qasmi et al.,135 managed to greenly synthesized 
cuprospinel nanoparticles and successfully used them for detection 
of low-concentration Cd2+ ions in aqueous solutions. The prepared 
curospinel nanoparticles nanosensor demonstrated ability to detect 
trace Cd2+ ions with concentration reaching about 3.6 ng/L. 
Graphene oxide/urease nanobiosensor was reported by Ballen et al.,136 
for cadmium detection in river water. The developed nanobiosensor 
showed high sensitivity (0.0147 nm/ppt), low detection limit (18 
ppt) and satisfactory response. An electrochemical CNT-Cu-MOF 
sensor based on multi-walled carbon nanotubes (CNTs) and copper 
metal-organic framework (Cu-MOF) was synthesized and reported by 
Singh et al.,137 for detection ultrasensitive potentiometric detection of 
Cd2+ ions. The developed sensor demonstrated excellent selectivity, 
stability, repeatability and 100.4% recovery in a real-time sample 
of tap-water. Mohammadzadeh et al.,138 performed green synthesis 
of phenolic capping silver nanoparticles (PC-Ag NPs) and applied 
them as a colorimetric sensor for detection of Cd2+ and Ni2+ ions. 
The introduced nanosensor exhibited good selectivity, sensitivity, 
and linearity, under optimal conditions. Moreover, the sensor 
achieved satisfactory recovery within 90.57 to 113.61%. Wu et al.,139 
reported synthesis of monodisperse sphere-like Fe2O3 nanoparticles 
(Fe2O3 NPs) for simultaneous Pb2+ and Cu2+ detection. The authors 
demonstrated that the optimal presence of Fe2+ and oxygen vacancies 
are beneficial for better adsorption of heavy metal ions and enhanced 
electrochemical sensing performance. Functional N- and S-co-doped 
carbon dots for detection of trace amounts of Fe3+ with detection limit 
as low as 1.72 nM were reported by Cui et al.,140 Nitrogen-doped 
graphene quantum dots (N-GQD) for portable detection of Fe3+ were 
introduced by Yao et al.,141 The N-GQD showed high production 
yield of 64% and high blue fluorescence providing a new strategy 
for controlling Fe3+ levels in environmental water. Functionalized 
CoFe2O4/Ca-alginate nanocomposite was designed by Al-Gethami et 
al.,142 as nanosensor for detection of Pb2+ ions in aqueous solutions at 
different temperatures. High sensitivity, stability, and rapid detection 
are among the reported properties of the proposed sensor, while the 
lowest detection limit for Pb2+ ions could reach 125 ng. A novel copper 
doped boehmite (CBH) based nanomaterial, capable of simultaneous 
detection and removal of Cr6+ has been reported by Roy et al.,143 The 
nanosensor exhibited exceptional sensitivity with limit of detection 
of about 6.24 μM and selectivity towards hexavalent chromium ions. 
The sensor also showed multi-functionality when it comes to the 
adsorption-based removal of Cr6+ from wastewater, with remarkably 
high adsorption rate of around 85% in just 5 minutes. 

Sayyad et al.,154 reported fabrication of poly(3,4-ethylenedioxythio
phene):poly(styrenesulfonate) (PEDOT:PSS) reduced graphene oxide 
(rGO) nanocomposite used as a selective Hg2+ sensor. The inadequate 
structural and chemical properties of (PEDOT:PSS) can be overcome 
with inclusion of carbon nanomaterials, such as rGO. The authors 
tested the sensor toward variety of metal ions (Hg2+, Cd2+, Pb2+, Cu2+, 
Zn2+, Na+, and Fe3+), manifesting highest sensitivity and selectivity to 
Hg2+ with a low detection limit of 2.4 nM. Highly sensitive mercury 
detection have been also reported by Narouei et al.,155 using a novel 
conductive nanofibrillar structure with high number of nitrogen 
binding sites. The nanofibers are made of a conductive copolymer, 
poly(aniline-co-o-aminophenol) – PANOA – homogenously 
decorated with gold nanoparticles (Au NPs). The sensor showed high 
affinity and selectivity for Hg2+ among As, Pb, Cu, Zn and Cd ions, 
due to the synergistic effect caused by the large number of nitrogen 
functional groups (imine, amino, amido) in the PANOA and the Au 
NPs. The tested sensor exhibited low detection limit of 0.23 nM, and 
linear dynamic range between 0.8 and 12.0 nM, using a 180 s pre-
concentration step (Table 6). 
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Table 6 Nanosensors for detection of heavy metals in water

Nanostructure Targeted contaminants Reference
Greenly synthesized carbon dots from microalgae biomass biochar Cr6+ Pena et al. 14

Carbon dots synthesized from Poria cocos polysaccharide Cr6+ Huang et al. 145

diphenylcarbazide (DPC) combined with Semiconducting polymer dots-based fluorescence 
nanosensor Cr6+ Dou et al.146

Fe3O4@Pectin-polymethacrylimide@graphene quantum dot Cr3+ Barzegarzadeh et al.147

Schiff base immobilized mesoporous SBA-15 silica Cu2+ Zhang et al.148

Bis-Schiff base functionalized Fe3O4 nanoparticles Cu2+ Zhu et al.149

Quaternized salicylaldehyde Schiff base side-chain polymer grafted magnetic Fe3O4 
nanoparticles (Fe3O4@SiO2-PAP)

Cu2+ Zhang et al.150

Avocado seeds derived carbon dots Cu2+ ; Cr6+ Ávila et al.151

L-cysteine (L-Cys) capped Fe3O4@ZnO core-shell nanoparticles Fe3+ Chaudhury et al.152

Rice husk carbon quantum dots Fe3+ Kundu et al.153

Organic pollutants 

Phenolic compounds, dyes, surfactants, pesticides, and 
pharmaceuticals are important organic pollutants in wastewater.156 
The occurrence of organic pollutants in wastewater have become a 
serious concern because of their toxicity, semi volatile nature, low 
water solubility, high bioaccumulation, and non-biodegradability 
under normal environmental conditions.157 

Pharmaceuticals

Ling et al.,158 developed a magnetic fluorescent molecularly 
imprinted polymers (MFMIPs) sensor based on Fe3O4 and carbon 
dots for rapid detection of methcathinone, a stimulant drug like 
methamphetamine. The proposed sensor presented high sensitivity 
with a linear range of 0.5–100 nM and a detection limit of 0.2 nM, 
under optimal conditions. Moreover, the authors reported that the 
sensor is recyclable and reusable at least five times using an external 
magnetic field. Blue luminous nitrogen-doped carbon quantum 
dots (N-CQDs) have been developed by Raut et al.,159 and used for 
detection of doxycycline, a drug that has been globally employed 
for treatment of COVID 19. The reported detection approach is 
fluorescence quenching mechanism, even when there are other 
tetracycline derivatives interfering. The sensor showed great 
sensitivity (with limit of detection 0.25 μM) and selectivity, making 
N-CQDs ideal candidates for sensing doxycycline in environmental 
matrices. Research for doxycycline detection and its degradation was 

also reported by Kaur et al.,160 The authors proposed a novel single 
step strategy for synthesizing Fe-doped carbon dots (Fe-N@CDs) for 
detection and iron oxide-carbon dot hybrid nanoparticles (Fe3O4-
CDs) for degradation of doxycycline. The results demonstrated 
selective sensing of doxycycline with a limit of detection value of 66 
ng mL-1 and degradation by 70.26% in 5 minutes by applying shear 
force. Tito et al.,161 developed electrochemical sensor systems by 
depositing functionalized nickel selenide quantum dots (NiSe2QD) 
onto an L-cysteine or Nafion-modified gold electrode, capped with 
banana peel extract (BPE) and 3-mercaptopropionic acid (3-MPA) 
for stability improvement and agglomeration prevention. Of all 
synthesized sensors, 3-MPA-NiSe2QD/L-cyst/Au produced the best 
signal with high sensitivity of 6.15 µA/pM and recovery of 85%-
108% in real wastewater samples indicating suitability for real-time 
sample analysis. Dhanapal et al.,162 reported synthesis of vanadium 
and phosphorous doped graphitic carbon nitride nanosheets for 
detection of nimesulide. The analytical parameters of the proposed 
sensor are adequate, with high recovery values, and low detection 
(0.2 – 80 μM) and quantification limit (3 nM). Binder-free zinc oxide 
nanograins on carbon cloth (ZnO NGs@CC) have been synthesized 
by Kokulnathan et al.164 and employed for a flexible electrochemical 
sensor fabrication used for quantification of hydroxychloroquine. The 
fabricated ZnO NGs@CC-based electrochemical sensor displayed 
good performance in terms of wide sensing range (0.5–116 μM), low 
detection limit (0.09 μM), high sensitivity (0.279 μA μM−1 cm−2), and 
strong selectivity (Table 7).

Table 7 Nanosensors for detection of pharmaceuticals in water

Nanostructure Targeted contaminants Reference
Carbon dots embedded hydrogel spheres rifampicin Li et al.170

Polyvinyl alcohol functionalized tungsten oxide/reduced graphene oxide (PVA/WO3/rGO) 
nanocomposite 4-aminophenol Buledi et al.171

Graphitic carbon nitride (g-C3N 4) -coupled with CuS nanoparticles (g-C3N4@CuS) carbamazepine Goudarzy et al.172

CaO nanoparticles conjugated with l- Methionine polymer film onto carbon paste 
electrode levofloxacin Assaf et al.173

Chitosan-molybdenum vanadate nanocomposite V3.6Mo2.4O16-chitosan (MV-CHT) hydroxychloroquine sulfate Monsef et al.174

ZrMo2O8-MWCNTs nanocomposite adefovir Li et al.175

N-CQD/Fe3O4 nanoparticle/N-buty-3-methylimidazolium tetrafluoroborate (N–B-3-
MITFB) onto carbon paste electrode (N-CQD/Fe3O4/N–B-3-MITFB/CPE) raloxifene; tamoxifen Shalali et al.176

Sanghuangporus Lonicericola derived nitrogen doped carbon dots tetracyclines Wang et al.177

Sulfur and nitrogen-doped graphene quantum dots (S, N-GQDs) furazolidone Manshadi et al.178

La2O3-ZrO2-MWCNTs nanocomposite tenofovir Zeng et al.179

1-ethyl-3-methylimidazolium methyl sulfate (EMMS) and NiO doped Pt decorated 
SWCNTs (NiO@Pt/SWCNTs) in carbon paste matrix (NiO@Pt/SWCNTs/EMMS/CPE) atropine Tavana et al.180

Red-emitting carbon dots tetracyclines Wang et al.181

CHO-GO/CP (cholesterol-graphene oxide nanohybrid-modified carbon paste) cetirizine Killader et al.182
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Sherlin V. et al.,164 developed well-structured functional material 
based on ANbO3 (A = Na,K) perovskites, for electrochemical sensing 
of hydroxychloroquine. The synthesized NaNbO3 and KNbO3 have 
been pinned to functionalized carbon nanofibers (f-CNF) creating 
synergistic effect of rapid electron transfer and improved surface 
area, resulting to enhanced electrochemical activity for NaNbO3@f-
CNF. The fabricated sensor displays high sensitivity, wide dynamic 
range, outstanding selectivity, and reproducibility, proving capability 
for real-time analysis with good recovery rates (±97.67–99.81%). 
Halligudra et al.,165 reported Fe3O4 nanoparticles (NPs) supported 
MoS2 nanoflowers (Fe3O4–MoS2) modified carbon paste electrode 
used for detection of paracetamol, ascorbic acid, hydrogen peroxide, 
and tetracycline, showing well-separated peaks. The results indicated 
the potential use of Fe3O4–MoS2 as electrochemical sensor material for 
industrial applications. Facile synthesis of NiO/ZnO nanocomposite 
have been reported by Qambrani et al.,166 successfully employed 
to modify a glassy carbon electrode for construction of a sensitive 
and reliable electrochemical sensor for detection of carbamazepine, 
an anticonvulsant drug. The NiO/ZnO nanocomposite exhibited 
excellent electron transfer kinetics and less resistance than the 
pristine NiO and ZnO nanoparticles. The developed sensor showed 
exceptional response and selectivity for carbamazepine under linear 
dynamic range from 5 to 100 μM and calculated limit od detection of 
0.08 µM. The sensor also showed acceptable recovery ranging from 
96.7 to 98.6% (Figure 7).

Figure 7 Zinc oxide nanograins on carbon cloth as flexible electrochemical 
platform for hydroxychloroquine detection.163

A colorimetric and surface-enhanced Raman scattering dual-mode 
electrochemical sensing platform for amoxicillin detection have been 
developed by Tuan Anh et al.,167 by employing copper nanoparticles 
(CuNPs) and copper-graphene oxide (Cu-GO) nanocomposites. 
Cu-GO-based colorimetric nanosensor revealed superior properties 
against CuNPs nanosensor, with 1.3 times lower limit of detection 
(1.71 µM). The developed sensor exhibited practical applicability for 
real tap-water samples with high calculated recovery of about 95%. 
Beitollahi et al.,168 reported on achieving a sensing platform based 
on a screen-printed electrode modified with Ni-Co layered double 
hydroxide (Ni–Co LDH) hollow nanostructures for detection of 
sumatriptan. The obtained limits of detection and sensitivity have 
been reported as 0.002 ± 0.0001 μM and 0.1017 ± 0.0001 μA/μM, 
respectively. In addition, authors studied the performance of the 
developed nanosensor for simultaneous analysis of sumatriptan in 
the presence of naproxene, showing well-separated peaks leading 
to a quick and selective analysis of sumatriptan. Kurç et al.,169 
developed a molecularly imprinted polymers-based surface plasmon 
resonance (SPR) sensor chip performing rapid, selective analysis for 
detection of sulfamethoxazole. As a receptor, the authors reported 
use of sulfamethoxazole imprinted methacrylic acid-2-hydroxyethyl 

methacrylate-ethylene glycol dimethacrylate polymer [poly (MAA-
HEMA-EGDMA)]. The obtained results for limit of detection and 
limit of quantification were found to be 0.0011 µg/L and 0.003 4 µg/L, 
respectively (Figure 8). 

Figure 8 Synthesis of NiO/ZnO nanocomposite as an effective platform for 
electrochemical determination of carbamazepine.166

Phenolic compounds and dyes

Nitroaromatic compounds (NACs) find their way into the 
environment via anthropogenic activities. Because of their explosive 
and toxic behavior, soil and groundwater pollution control is 
essential183Garg et al.,183 reported synthesis of hydrophobic carbon 
nanoparticles (HCNPs) applied towards selective sensing of NACs, 
specifically 2,4,6-trinitrophenol (TNP) and 2,4-dinitrophenol (DNP). 
Synthesized HCNPs exhibit fluorescence property with brightly blue 
emission at ℃464 nm with ℃24% quantum yield, used for selective 
sensing activities. The obtained detection limit for TNP and DNP 
has been reported to be ℃242 nM and ℃276 nM, respectively. Rapid 
detection of 2,4,6-trinitrophenol (TNP) has been also reported by 
Ilyas et al.,184 using fluorescein based fluorescent and colorimetric 
sensors, accomplishing highly sensitive fluorescence detection of 
TNP (LOD, 0.73–1.7 nM). Catechol, also known as pyrocatechol or 
1,2 -dihydroxybenzene, is a toxic benzenediol. Wang et al.,185 reported 
gold nanostars-based (Au NSs) plasmonic colorimetric nanosensor for 
ultrasensitive catechol detection with ultra-wide detection range (3.33 
nM to 107 μM) and limit of detection at 1 nM. Le et al.,186 synthesized 
fluorescence-incorporated mesoporous nanosilica (F-NS), for 
detection and removal of 4-nitrophenol, dangerous compound found 
in insecticides and pesticides. The authors reported that modulation 
of the fluorescein isothiocyanate amount allowed detection of 
4-nitrophenol in traces through fluorescence quenching. Catechol 
and hydroquinone detection was also reported by Ranjith et al.,187 
via hybrid electrochemical sensor with electrospun one-dimensional 
(1D) MnMoO4 nanofibers coupled with a few-layered exfoliated 
two-dimensional (2D) MXene. The proposed 1D–2D hybridized 
MnMoO4–MXene–GCE sensor showed a low detection limit of 0.26 
nM and 0.30 nM for hydroquinone and catechol with high stability, 
respectively. Dhiman et al.,188 developed tyrosinase-gold nanoparticles 
(Ty-AuNPs) for ultrasensitive sensing of phenolic compounds, 
obtaining an ultralow limit of detection at 0.01 ppb. Highly sensitive 
nanoscale detection of nitrobenzene in both solution and vapor phase 
has been reported by Majeed et al.,189 via piezofluorochromic and 
AIEE active receptor free sensors, marked as 2 and 3. The highly 
selective fluorescence detection of nitrobenzene has been attributed to 
its adjustable small sized molecules that can penetrate the cavities of 
both sensors. Developed 2 and 3 sensors showed limits of detection as 
1.21 nM and 1.55 nM, respectively. Moreover, both sensors being used 
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as fluorescence ink showed highly sensitive colorimetric detection of 
nitrobenzene. Kumar et al.,190 developed a fluorescent sensor based 
on p-xylylenediamine capped CH3NH3PbBr3 perovskite nanocrystals 
for picric acid (2,4,6-trinitrophenol) sensing. The developed sensor 
exhibited high sensitivity and selectivity, with a good linear range of 
1.8 μM–14.3 μM achieving detection of limit of 0.3 μM. Detection of 
picric acid in industrial effluents was also reported by Keerthana P, et 
al.,191 using multifunctional green, fluorescent B/N-carbon quantum 
dots-based sensor. The synthesized B/N-CQDs exhibited high 
quantum yield (24%) and bright green fluorescence under UV light 
and were found to be an effective fluorescence probe for selective 
and sensitive sensing of picric acid in industrial effluents, with a good 
linear range of 37 nM-30 µM and a detection limit of 1.8 nM. Yahya 
et al.,192 developed a simple and sensitive electrochemical method 
to determine ethyl violet (EV) dye in aqueous systems employing a 
glassy carbon electrode modified with acidic-functionalized carbon 
nanotubes (COOH-fCNTs). Under optimal conditions, the limit 
of detection with a value of 0.36 nM demonstrated high sensitivity 
of COOH-fCNTs/GCE. Sadrolhosseini et al.,193 developed surface 
plasmon resonance sensor used for detection of environmental 
contaminant dyes such as methylene blue (MB) and methylene 
orange (MO). The sensor consisted of gold layer modified with NiCo-
layered double hydroxide, which thickness was proven to control 
the sensitivity of the sensor. Exhibiting performance for limit and 
response time of about 0.005 ppm and 268 s, respectively, it can be 
concluded that the developed system is fast and efficient for detection 
of MB and MO dyes in a short time. An electrochemical sensor 
using a modified glassy carbon electrode with amine functionalized 
multi-walled carbon nanotubes (NH2-fMWCNTs) for detection of 
nanomolar concentration of Metanil Yellow (MY), an azo dye used 
illegally in food industry was reported by Hakeem et al.,194 Under 
optimal conditions, the limit of detection of was calculated to be 0.17 
nM. Among detection, the dye was found to follow pseudo first order 
kinetics with a degradation extent of 98.7%, holding great promise in 
the context of water purification. Mehmandoust et al.,195 developed 
of a sensitive and novel electrochemical sensor for the detection 
of Allura Red in the presence of tartrazine using a screen-printed 
electrode modified by functionalized nanodiamond covered using 
silicon dioxide and titanium dioxide nanoparticles (F-nanodiamond@
SiO2@TiO2/SPE). The as-fabricated electrode demonstrated two 
wide dynamic ranges of 0.01–0.12 and 0.12–8.65 μM with a limit of 
detection as low as 1.22 nM. 

Pathogens

Water-borne pathogen contamination in surface water resources is 
a major worldwide concern for water quality, posing as a direct thread 
to human health and life.196 Hence, ensuring control over pathogens 
(bacteria and viruses) is crucial. Nair et al.,197 developed a novel silicon 
nanowire (SiNWs) coated with reduced graphene oxide (RGO)-
based sensing platform aimed for direct detection of Escherichia coli 
(E. coli) bacteria. During the analysis, E. coli showed preferential 
adhesion to the SiNWs network, resulting in a resistance decrease 
thereby leading to a current increase. The obtained device poses as 
a promising nanosensor for the direct, rapid, and precise detection 
of E. coli bacteria in aqueous solutions. Panchal et al.,198 designed 
a sensitive nanoplatform based on interchangeable sandwich ELISA 
composed of a novel, multifunctional magneto-plasmonic nanosensor 
(MPnS) with target antibodies (MPnS-Ab). The nanoplatform 
based on enzyme-linked immunosorbent assay (ELISA) is featuring 
synergistic properties of gold and iron oxide nanozymes, replacing 
the conventional enzyme horseradish peroxidase (HRP), therefore 
the experiments demonstrated a 100-fold increase in catalytic activity 

in comparison to HRP. Silicon nanowires-based biosensors for 
electrical detection of Escherichia Coli have been reported by Salaun 
et al.,199 The sensors exhibited high specificity ensured by chemical 
functionalization of the nanowires for binding of specific antibodies 
to target E. coli. Nqunqa et al.,200 demonstrated green synthesis of 
banana peel (Musa paradisiaca) and grape (Vitis vinifera) fruit 
extracts-functionalized silver nanoparticles (Ag-NPs) used as optical 
and electrochemical sensors developed for detection of E. coli. The 
obtained limit of detection values for constructed sensor systems 
are within the range for E. Coli in seawater and have been reported 
as 1 × 102 CFU/mL and 3.5 × 101 CFU/mL for the optical and 
electrochemical sensor, respectively. Gunasekaran et al.,201 developed 
an electrochemical method for detection of E. coli using bi-functional 
magnetic nanoparticle (MNP) conjugates, prepared by terminal-
specific conjugation of anti-E. coli IgG antibody and the electroactive 
marker ferrocene. The results indicate that the bi-functional 
conjugates pose as an ideal candidate for electrochemical sensing 
of waterborne bacteria, exhibiting high sensitivity (10 cells/mL) and 
providing specific signals within 1 hour. Chen et al.,202 constructed 
a chemiluminescence system based on the peroxidase-like property 
of 4-mercaptophenylboronic acid (MPBA)-functionalized CuSe 
nanoprobes (CuSeNPs@MPBA), designed for improved accurate 
and sensitive detection of Staphylococcus aureus and Escherichia 
coli. The reported limit of detection is as low as 1.25 and 1.01 cfu 
mL–1 for Staphylococcus aureus and Escherichia coli detection, 
respectively and bacteria can be efficiently eliminated due to excellent 
photothermal property of CuSeNPs@MPBA. Juang et al.,203 reported 
on in-situ magnetic capturing and surface-enhanced Raman scattering 
(SERS) detection of bacteria E. Coli, based on a substrate platform 
consisted of immobilized gold nanoparticles (AuNPs) and iron-oxide 
(Fe3O4) nanoparticles on exfoliated nanoscale silicate platelets (NSPs). 
The prepared magnetic SERS nanosheets (Fe3O4@AuNPs@NSP 
nanosheets) were able to magnetically capture and separate E. Coli, 
and then monitor the samples by Raman spectroscopy for rapid SERS 
detection. The SERS sensitivity increased by approximately 2 times 
after magnetic capturing, while the limit of detection was below 103 
CFU/mL. Arreguin-Campos et al.,203 presented an imprinted polymer-
based thermal biomimetic sensor for detection of Escherichia coli. 
Graphene oxide (GO)-functionalized polydimethylsiloxane (PDMS) 
films have been investigated as a novel and simple imprinting 
protocol. The limit of detection for PDMS-GO has been reported to 
be 80 ± 10 CFU/mL, a full order lower than pristine PDMS (670 ± 140 
CFU/mL), emphasizing the beneficial effect of the dopant (Figure 9).  

Figure 9 Imprinted polydimethylsiloxane-graphene oxide composite receptor 
for the biomimetic thermal sensing of Escherichia Coli.203

Conclusion
To conclude, in this paper we have discussed some recent advances 

in the nanosensors field for detection and monitoring of hazardous gas 
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and water pollutants. Due to the novel physicochemical properties, 
nanomaterials have huge potential to combat environmental pollution. 
Different types of attractive nanomaterial classes were reviewed for 
highly sensitive and selective performance against a wide variety 
of organic and inorganic targeted gases. Moreover, nanosensors 
advancements based on the specific water pollutant were reviewed. 
Nanosensor technology advancement presents the promising response 
to the urgent demand for environmental contamination, offering 
simple and effective solutions. 
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