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Atomic force microscopy studies of formation of
black silicon by reactive ion etching

Abstract

Black silicon (BSi), a surface modification of silicon, can be fabricated by various
methods such as Electrochemical Etching, Metal Assisted Chemical Etching, Laser
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Introduction

Black Silicon (BSi), a surface modification of silicon, is being
used in a variety of applications including image sensors, bio—sensors,
Micro-Electro Mechanical Structures (MEMS), light-emitting
devices, anti—reflection coatings and antibacterial coatings.'* The
unusually low reflectance and high absorptance of BSi make it an
attractive candidate in silicon solar cell technology.>® Several methods
have been used to process BSi. These methods include the following:
Metal Assisted Chemical Etching,’'® Electrochemical Etching! "
and Laser Method."”?” Non—conventional etching techniques may be
hazardous, complex and not easily scalable.?®

In the present study, we utilize the conventional Reactive lon
Etching (RIE) method for the processing of BSi. The formation of
BSi structures with varying etch conditions is presented. An Oxford
PlasmaPro NGPO RIE system is utilized in these experiments. The
Oxford PlasmaPro NPG80 RIE is an open—load medium plasma
density system configured for fluorine—based etch chemistries, which
can accommodate pieces to wafers up to 8” in diameter and 3 cm
thick. The rate of flow of gases, SF,, O, and CHF,, is fixed. The
chamber pressure and etch time have been varied to study the surface
structure formation.

Reactive ion etching

The use of RIE for the formation of grass like BSi structures
was first reported by Jansen et al. around 1995.2%° The RIE system
consists of two parallel-plate electrodes. One wafer may be loaded
onto the bottom electrode, called the cold cathode, for each run. A
high vacuum is formed using a turbomolecular pump. The gases are
supplied from the edge of the upper electrode.’! The RIE process can
provide high rates of isotropic etching, which makes it possible to
vary the etch directionality between isotropic and anisotropic etching
using SF /O, at various flow rates.”> In SF /O,/CHF, plasma, each
gas has its specific function and influence. The etch profile may be
controlled by varying the flow rates of the gases.

SF, produces F* radicals for the chemical etching of silicon by
forming volatile SiF,. O, creates O* radicals to passivate the surface
of Si wafer with SiOxFy. SF_ radicals remove the oxyflouride. The
CHF, gas is almost an independent source of oxyflouride etch ions.

These gases are responsible for the highly controllable profiles at
very low ion energies and also high etch rates. The low ion energy
prevents substrate damage, and makes it easy to change the profile
of the trench. The ion energy is governed by the potential which is
developed between the plasma and the powered electrode, the DC
self-bias. Gases such as O, and CHF, are used at high bias voltages,
whereas SF, requires very low voltage. The SF /O,/CHF, etching
mechanism is shown in Figure 1.
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Figure I The SF,/O,/CHF, chemistry {based on Figure from}.””
Experimental details

In the present study, single side polished p—type <100> CZ wafers
with substrate resistivity of 0.010-0.020 Q-cm, 5-inch diameter
and 600 um thickness are used. The wafers are cut to 1 square inch
samples after standard cleaning. SF, O, and CHF, gases are used for
the etching process with flow rates of 33 scem, 11 scem and 13 scem
respectively. Chamber pressures are varied from 60 mTorr to 100
mTorr. The plasma power is maintained at 100 W for all the etching
processes. Various conditions of etching, implemented in this study,
are summarized in Table 1. Fifteen to twenty samples were prepared for
each process run. Out of these, five were used for AFM measurements.
The AFM results, presented in this study, represent a characteristic
image for each process. Average of the results of roughness has been
presented in Table 2. A Bruker Atomic Force Microscope, Model —
Dimension FastScan, has been utilized in acquiring the AFM images.
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Table | Summary of etch conditions used in the present study.

Sample Pressure Etc.h time
(mTorr) (minutes)
Sample A 100 10
Sample B 100 20
Sample C 100 30
Sample D 80 10
Sample E 60 10
Sample F 60 15

Results and discussion

AFM images of six samples, processed in this study, are presented
in Figure 2. This figure shows the distribution of varying surface
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Table 2 Summary of roughness and structure profile.

Sample z:::)ghness Structure profile
Sample A 204 Columnar

Sample B 29.1 Pyramidal

Sample C I Non-uniform pyramids
Sample D 69 Columnar

Sample E 459 Pyramidal

Sample F 51.1 Pyramidal

roughness for the samples. It may be observed that, at higher
pressures, the trenches are wider than that at lower pressures. The
roughness varies between 11 nm to 69 nm. The 3D view of the AFM
image, showing the roughness, is presented in Figure 3.

Figure 3 3D view of Samples A-F.The corresponding viewing areas of samples, imaged under the AFM, are 4 ym?2.
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At a pressure of 100 mTorr, for 10 minute etch duration (sample
A), the resulting structures are columnar structures of roughness 20.4
nm. For higher etch durations, viz., 20 minutes and 30 minutes, the
structures are pyramidal and non—uniform pyramidal structures with
roughness of 29.1 nm and 11 nm respectively. Further, at 80 mTorr,
for 10 minute etch duration, the structures formed are columnar. The
roughness of the sample is about 69 nm. With further decrease in
chamber pressure, at 60 mTorr, 10 minute etch results in pyramidal
structures with roughness of 45.9 nm. At the same pressure, for longer
etch time of 15 minutes; the resulting structures are pyramidal with
roughness of ~51 nm.

For higher pressures, i.e. 100 mTorr in these experiments, the
surface of the silicon sample consists of holes of increasing diameter

throughout its surface area. Increase in pressure and etch time leads to *

increase in the recombination of F* radicals. Since all the processes
have similar gas flow rates, the uncombined F* and O* radicals have
increased times to react with the silicon as the etch times increase.
However, for etch times greater than 20 minutes, the holes formed
are larger and the roughness of the surface is decreased as the higher
pressure reduces the energy of the delivered ions.

The roughness is observed to be maximum for a pressure of 80
mTorr for etch time of ten minutes. The summary of roughness and
structure of the resulting profile is summarized in Table 2.

Figure 4 shows the AFM images of microstructures of black silicon
wafers with different texturing conditions. Zhong et al.,?3 have utilized
Plasma Immersion Ion Implantation method® for processing black
silicon. Figure 4 shows that the black silicon surfaces are covered
with dense nano hillocks, and the roughnesses of the nano hillocks are
150 nm, 300 nm and 600 nm for the surfaces of the C1 textured, C3
textured and C5 textured, respectively.

Figure 4 AFM images of microstructures of black silicon wafers with different
texturing conditions.®

Figure 5 shows AFM surface scans obtained by Dekkers et al.,**
for different RIE etching conditions. The profile of the resulting BSi
structure in both the studies is pyramidal. The structure and roughness
of BSiobtained by various research groups, in the literature, is tabulated
and is compared with the present study in Table 3. The difference in
the size of roughness of BSi structures is due to the difference in the
rate of flow of gases and difference in applied chamber pressure.

Table 3 Comparison of structure profile and roughness of BSi.

Study Roughness  Process Stru_c ture
profile
Present Study 69.0 nm* RIE Columnar
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Table Continued

Study Roughness Process Stru‘c ture
profile
Zhong et al. * 600 nm Plll Nano hillocks
Mazur et al.?! 40 pm Laser Spikes
Su et al* 470 nm Wet. Micro-columns
Etching

*best obtained

Figure 5 AFM surface scans, obtained by different RIE conditions.**

Conclusions

Reactive Ion Etching (RIE) has been utilized to form BSi with
varying morphologies. RIE can produce nano needles of silicon
of varying heights and very low reflectance (less than 5%) can be
achieved. RIE is the most suitable process for obtaining low reflectance
and is also cost effective. The change in the surface morphology, as
function of process parameters, has been studied. The influence of
pressure and etch time on the surface roughness and structure profile
has been examined. The obtained roughness is compared with the
study in the literature.
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