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Introduction
Black Silicon (BSi), a surface modification of silicon, is being 

used in a variety of applications including image sensors, bio–sensors, 
Micro–Electro Mechanical Structures (MEMS), light–emitting 
devices, anti–reflection coatings and antibacterial coatings.1–4 The 
unusually low reflectance and high absorptance of BSi make it an 
attractive candidate in silicon solar cell technology.5–8 Several methods 
have been used to process BSi. These methods include the following: 
Metal Assisted Chemical Etching,9–16 Electrochemical Etching17–19 
and Laser Method.19–27 Non–conventional etching techniques may be 
hazardous, complex and not easily scalable.28 

In the present study, we utilize the conventional Reactive Ion 
Etching (RIE) method for the processing of BSi. The formation of 
BSi structures with varying etch conditions is presented. An Oxford 
PlasmaPro NGP0 RIE system is utilized in these experiments. The 
Oxford PlasmaPro NPG80 RIE is an open–load medium plasma 
density system configured for fluorine–based etch chemistries, which 
can accommodate pieces to wafers up to 8” in diameter and 3 cm 
thick. The rate of flow of gases, SF6, O2 and CHF3, is fixed. The 
chamber pressure and etch time have been varied to study the surface 
structure formation. 

Reactive ion etching

The use of RIE for the formation of grass like BSi structures 
was first reported by Jansen et al. around 1995.29,30 The RIE system 
consists of two parallel–plate electrodes. One wafer may be loaded 
onto the bottom electrode, called the cold cathode, for each run. A 
high vacuum is formed using a turbomolecular pump. The gases are 
supplied from the edge of the upper electrode.31 The RIE process can 
provide high rates of isotropic etching, which makes it possible to 
vary the etch directionality between isotropic and anisotropic etching 
using SF6/O2 at various flow rates.32 In SF6/O2/CHF3 plasma, each 
gas has its specific function and influence. The etch profile may be 
controlled by varying the flow rates of the gases. 

SF6 produces F* radicals for the chemical etching of silicon by 
forming volatile SiF4. O2 creates O* radicals to passivate the surface 
of Si wafer with SiOxFy. SFx radicals remove the oxyflouride. The 
CHF3 gas is almost an independent source of oxyflouride etch ions. 

These gases are responsible for the highly controllable profiles at 
very low ion energies and also high etch rates. The low ion energy 
prevents substrate damage, and makes it easy to change the profile 
of the trench. The ion energy is governed by the potential which is 
developed between the plasma and the powered electrode, the DC 
self–bias. Gases such as O2 and CHF3 are used at high bias voltages, 
whereas SF6 requires very low voltage. The SF6/O2/CHF3 etching 
mechanism is shown in Figure 1.

Figure 1The SF6/O2/CHF3 chemistry {based on Figure from}.29

Experimental details

In the present study, single side polished p–type <100> CZ wafers 
with substrate resistivity of 0.010–0.020 Ω–cm, 5–inch diameter 
and 600 μm thickness are used. The wafers are cut to 1 square inch 
samples after standard cleaning. SF6, O2 and CHF3 gases are used for 
the etching process with flow rates of 33 sccm, 11 sccm and 13 sccm 
respectively. Chamber pressures are varied from 60 mTorr to 100 
mTorr. The plasma power is maintained at 100 W for all the etching 
processes. Various conditions of etching, implemented in this study, 
are summarized in Table 1. Fifteen to twenty samples were prepared for 
each process run. Out of these, five were used for AFM measurements. 
The AFM results, presented in this study, represent a characteristic 
image for each process. Average of the results of roughness has been 
presented in Table 2. A Bruker Atomic Force Microscope, Model – 
Dimension FastScan, has been utilized in acquiring the AFM images.
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Abstract

Black silicon (BSi), a surface modification of silicon, can be fabricated by various 
methods such as Electrochemical Etching, Metal Assisted Chemical Etching, Laser 
Method, etc. The fabrication of BSi by Reactive Ion Etching (RIE), under various 
pressures and for different etch durations, is presented in this study. The influence of 
pressure and etch time on the surface roughness of the resulting BSi is investigated 
and compared with the literature.
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Table 1 Summary of etch conditions used in the present study.

Sample Pressure 
(mTorr)

Etch time 
(minutes)

Sample A 100 10

Sample B 100 20

Sample C 100 30

Sample D 80 10

Sample E 60 10

Sample F 60 15

Table 2 Summary of roughness and structure profile.

Sample Roughness 
(nm) Structure profile

Sample A 20.4 Columnar

Sample B 29.1 Pyramidal

Sample C 11 Non-uniform pyramids

Sample D 69 Columnar

Sample E 45.9 Pyramidal

Sample F 51.1 Pyramidal

Results and discussion
AFM images of six samples, processed in this study, are presented 

in Figure 2. This figure shows the distribution of varying surface 

roughness for the samples. It may be observed that, at higher 
pressures, the trenches are wider than that at lower pressures. The 
roughness varies between 11 nm to 69 nm. The 3D view of the AFM 
image, showing the roughness, is presented in Figure 3.

	

Figure 2 Top view of Samples A-F. The corresponding viewing areas of samples, imaged under the AFM, are 4 μm2.

Figure 3 3D view of Samples A-F. The corresponding viewing areas of samples, imaged under the AFM, are 4 μm2. 

https://doi.org/10.15406/mseij.2018.02.00046


Atomic force microscopy studies of formation of black silicon by reactive ion etching 136
Copyright:

©2018 Bañobre et al.

Citation: Bañobre A, Marthi SR, Ravindra NM. Atomic force microscopy studies of formation of black silicon by reactive ion etching. Material Sci & Eng. 
2018;2(4):134‒137. DOI: 10.15406/mseij.2018.02.00046

At a pressure of 100 mTorr, for 10 minute etch duration (sample 
A), the resulting structures are columnar structures of roughness 20.4 
nm. For higher etch durations, viz., 20 minutes and 30 minutes, the 
structures are pyramidal and non–uniform pyramidal structures with 
roughness of 29.1 nm and 11 nm respectively. Further, at 80 mTorr, 
for 10 minute etch duration, the structures formed are columnar. The 
roughness of the sample is about 69 nm. With further decrease in 
chamber pressure, at 60 mTorr, 10 minute etch results in pyramidal 
structures with roughness of 45.9 nm. At the same pressure, for longer 
etch time of 15 minutes; the resulting structures are pyramidal with 
roughness of ~51 nm.

For higher pressures, i.e. 100 mTorr in these experiments, the 
surface of the silicon sample consists of holes of increasing diameter 
throughout its surface area. Increase in pressure and etch time leads to 
increase in the recombination of F* radicals. Since all the processes 
have similar gas flow rates, the uncombined F* and O* radicals have 
increased times to react with the silicon as the etch times increase. 
However, for etch times greater than 20 minutes, the holes formed 
are larger and the roughness of the surface is decreased as the higher 
pressure reduces the energy of the delivered ions. 

The roughness is observed to be maximum for a pressure of 80 
mTorr for etch time of ten minutes. The summary of roughness and 
structure of the resulting profile is summarized in Table 2.

Figure 4 shows the AFM images of microstructures of black silicon 
wafers with different texturing conditions. Zhong et al.,33 have utilized 
Plasma Immersion Ion Implantation method33 for processing black 
silicon. Figure 4 shows that the black silicon surfaces are covered 
with dense nano hillocks, and the roughnesses of the nano hillocks are 
150 nm, 300 nm and 600 nm for the surfaces of the C1 textured, C3 
textured and C5 textured, respectively. 

Figure 4 AFM images of microstructures of black silicon wafers with different 
texturing conditions.33

Figure 5 shows AFM surface scans obtained by Dekkers et al.,34 
for different RIE etching conditions. The profile of the resulting BSi 
structure in both the studies is pyramidal. The structure and roughness 
of BSi obtained by various research groups, in the literature, is tabulated 
and is compared with the present study in Table 3. The difference in 
the size of roughness of BSi structures is due to the difference in the 
rate of flow of gases and difference in applied chamber pressure.

Table 3 Comparison of structure profile and roughness of BSi.

Study Roughness Process Structure
profile

Present Study  69.0 nm* RIE Columnar

Study Roughness Process Structure
profile

Zhong et al. 33 600 nm PIII Nano hillocks

Mazur et al.21  40 μm Laser Spikes

Su et al.4 470 nm
Wet 
Etching Micro-columns

*best obtained

Figure 5 AFM surface scans, obtained by different RIE conditions.34

Conclusions
Reactive Ion Etching (RIE) has been utilized to form BSi with 

varying morphologies. RIE can produce nano needles of silicon 
of varying heights and very low reflectance (less than 5%) can be 
achieved. RIE is the most suitable process for obtaining low reflectance 
and is also cost effective. The change in the surface morphology, as 
function of process parameters, has been studied. The influence of 
pressure and etch time on the surface roughness and structure profile 
has been examined. The obtained roughness is compared with the 
study in the literature.
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