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Training for performance at extreme altitude

Abstract

Elite athletes frequently utilize both the classical altitude training method of live high, train
high (LHTH) and the newer model of live high, train low (LHTL) in order to optimize
performance at sea level. However, if competitions are held at altitude, athletes adopt
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altitude-specific training strategies. When ascending to extremely high altitudes (>5000 m),

alternative strategies may be necessary. Successful adaptation to extreme altitude depends
on several factors, including maximal oxygen consumption (VO2max) or its percentage
utilization, hypoxic ventilatory response (HVR), respiratory muscle endurance, myoglobin
concentration, and muscular strength. All of these characteristics are trainable.
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Introduction

As altitude increases, the partial pressure of oxygen decreases.
Combined with increased UV radiation, appetite suppression, and
temperature variations, individuals may experience various health
and work-capacity issues. The most common problems include
acute mountain sickness, increased oxidative stress, a higher risk of
infection, and a reduction in body weight and tissue mass.'® While
athletes develop various altitude training strategies to enhance
performance both at altitude and at sea level, mountaineers must
develop alternative strategies to ascend and descend safely from
extreme altitudes.

Altitude training approaches for performance
at sea level

Today, elite athletes frequently incorporate altitude training into
their annual training plans to enhance performance at sea level. The
classical approach, LHTH, has been used for many years. Although
some athletes have benefited from this method, many scientific studies
have questioned its effectiveness inimproving sea-level performance.”®
However, when the LHTH approach is carefully planned, it has been
shown that top-level athletes can achieve performance improvements
at sea level.® Conversely, the LHTL method, which gained popularity
in the 1990s, has demonstrated a positive impact on performance at
sea level through studies conducted on both humans®'? and rodents.'

The LHTL strategy has been shown to cause non-haematological
(respiratory, cardiorespiratory neurophysiology, skeletal muscle and
lactate metabolism) and haematological (haemoglobin and EPO)
adaptations.'

This approach eliminates the risk of detraining or overtraining
while providing metabolic and physiological advantages associated
with altitude, such as increases in red blood cells, hemoglobin, muscle
buffering capacity, and capillary density. Additionally, training quality
is not compromised, making this model superior.

However, if competitions are to be held at altitude, the live low,
train high (LLTH) strategy is more effective.'* Hypoxic air simulations
using masks at low altitudes have also introduced two distinct
methods: (1) Intermittent Hypoxic Exposure (IHE), which mimics
altitudes of 4000-6000 m for 1-3 hours in 1-10 minute intervals;
and (2) Intermittent Hypoxic Training (IHT), which involves exercise
while breathing hypoxic air equivalent to 2500-3000 m. Although
IHE has shown hematological changes, its impact on performance is

debated.' In contrast, IHT has shown promising results in enhancing
exercise performance.'”!®

Training for extreme altitude

For those aiming to ascend or stay at extremely high altitudes
(=5000 m), different training approaches are required. Success at
extreme altitude depends on several key factors: VO.max, percentage
of VO:max utilization, hypoxic HVR, respiratory muscle endurance,
myoglobin concentration, and muscular strength. All of these traits
are trainable. In addition, equipment, technique, and psychological
traits also play significant roles in altitude success.

Elite mountaineers often exhibit VO.max levels comparable to
amateur marathon runners. One study showed that climbers with
high VO:max levels were able to reach an 8200 m summit without
breaks or frostbite.!” However, Cymerman et al.” found no correlation
between high VO2max and successful ascents between 6100-8848 m,
suggesting that VO.max alone is not the key determinant of success
at altitude.

Nevertheless, a strong HVR is positively associated with
mountaineering success. Higher HVR improves alveolar and arterial
oxygenation, enhancing both altitude performance and ascent
capability. Mountaineers with high HVR are also less likely to suffer
from acute mountain sickness and pulmonary edema. Those with high
HVR at sea level tend to achieve greater heights.?'?> Two strategies
have been identified to improve HVR: (1) training at altitude
(4500m)*? and (2) the LHTL method at 2500-600 m.>

However, endurance training at low altitude may reduce HVR,
although a two-week break has been shown to restore it.?

Individuals with high myoglobin levels also benefit from increased
oxygen availability during altitude training and competition. Marine
mammals such as seals and whales, whose muscle mass contains up
to 8% myoglobin, illustrate this adaptation. Likewise, high-altitude
natives possess elevated myoglobin levels. No training approach
at sea level has succeeded in increasing human myoglobin levels,
although such increases have been observed in rats. However, high-
intensity training conducted at altitudes of 2300-3850 m, for 4-6
weeks, 3—4 days per week, 30 minutes per day, has been shown to
increase myoglobin levels in humans.*?

Respiratory muscle fatigue is another factor limiting endurance
performance at altitude. Staying at altitudes above 8000 m for extended
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periods can induce respiratory muscle fatigue. For mountaineers, the
endurance of these muscles directly affects performance. At altitude,
both respiratory force and ventilation increase compared to sea level
It has been shown that respiratory muscle endurance can be improved
within 4-5 weeks through hyperpnea training, performed 4-5 times
per week for 30 minutes until fatigue sets in.?’

Altitude-induced adaptations in skeletal muscle primarily support
aerobic metabolic functions.”®? However, altitude has a negative
effect on muscle strength. Following the second Everest expedition,
reductions of 25% were observed in both type I and type II muscle
fibers®*? and mountaineers who stayed above 5000 m for 8 weeks
experienced a 20% decrease in muscle cross-sectional area.*

These findings indicate diminished muscle strength due to impaired
force production. While muscle strength can be improved via neural
adaptations and hypertrophy, muscle atrophy remains a serious issue
at extreme altitudes. Thus, preventing muscle atrophy becomes
particularly important. In a study by Colak et al.>' the application of
heat stress was found to prevent protein degradation in rats exposed
to 6000 m conditions for 15 days, suggesting a potential method for
preventing muscle atrophy at extreme altitude.

Conclusion

Although altitude training is widely used by athletes to enhance
performance at both sea level and altitude, it is essential to mitigate
the negative metabolic effects of altitude on the human body. These
effects become especially critical at extreme altitudes due to the
risk of muscle atrophy. To reduce or eliminate altitude-induced
disadvantages, athletes and mountaineers must implement various
strategies. Enhancing respiratory muscle strength and endurance,
increasing myoglobin content, improving HVR, and preventing
muscle atrophy are among the top priorities. Most of these adaptations
can be achieved through specific training regimens, while additional
strategies (e.g., heat stress applications) may be necessary for
preventing muscle loss. Such practices are crucial for safe and
effective performance at high altitude.
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