

Lower limb strength asymmetry and Functional Movement Screen values in professional soccer players

Abstract

Aim: The Functional Movement Screen (FMS) protocol consists of 7 tests. At higher values mean higher quality of execution. The lower limb functional asymmetry (FA) is monitored to control the athlete's injury risk. This study aims to examine the correlation between the FMS score and strength asymmetry in professional soccer players (PSP).

Methods: n=31 PSP (age:22.2±4.6; weight:74.3±10.1kg; height:176.1±8.7cm), n=4 were excluded for joint or muscle injury in the last 18 months. The FMS protocol identifies athletes at risk of injury when the total score is≤14. The Hop Test (HT), Side Hop Test (SH) and Crossover Hop Test (CH) are considered a valid assessment of the single lower limb FA.

Results: It revealed a significant inverse correlation between FMS score and HT ($r = -0.56$, $p<0.01$), between FMS score and SH asymmetry percentage ($r = -0.74$, $p<0.01$) and the CH asymmetry percentage ($r = -0.60$, $p<0.01$). Significant correlation were found between HT asymmetry and SH asymmetry ($r = -0.54$, $p<0.01$), CH asymmetry ($r = -0.59$, $p<0.01$); significant correlation were found between SH asymmetry and CH asymmetry ($r = -0.76$, $p<0.001$).

Conclusion: Low scores in the FMS test are correlated with high levels lower limb strength asymmetry in the soccer player; it can be assumed that movement accuracy influences jump performance. In the soccer players, the lower limb strength asymmetries are observed on the jumps performed in different planes and in different tasks.

Keywords: functional movement, jump, strength asymmetry

Volume 3 Issue 3 - 2019

Italo Sannicandro,^{1,2,3} Cofano Giacomo,^{2,3} Paolo Traficante^{2,3}

¹Clinical and experimental medicine department, University of Foggia, Italy

²Master's Degree of Preventive and Adapted Physical Activity, University of Foggia, Italy

³Professional Strength and Conditioning Soccer Coach, Italy

Correspondence: Italo Sannicandro, Clinical and experimental medicine department, University of Foggia, Italy, Email italo.sannicandr@unifg.it

Received: November 14, 2019 | **Published:** December 04, 2019

Introduction

In sports today, the attention of technical and medical staff is directed to performance improvement and to injuries prevention. Functional movement can be defined as the ability to produce and maintain a balance between mobility and stability along the kinetic chain while performing fundamental patterns with accuracy and efficiency.^{1,2} Functional movement is the key to performance and sports-related skills, and consists of the interaction between stability, flexibility, strength and motor control.¹ Dysfunction in fundamental movement patterns has been linked to an increased risk of athletic injury.^{3,4,5}

The functional movement screen (FMS) is a screening tool for injury risk that assesses the movement patterns of individuals and evaluates mobility and stability.^{6,7} The FMS assessment consists of 7 motor tasks (each of which is scored on a scale of 0-3 to yield a composite score out of 21;^{6,7} each scored based on the movement patterns within the kinetic chain, asymmetries between the left and right side, and compensatory movements. The validity of the FMS as a predictor of injury risk has been confirmed in several studies.^{4,8,9}

The functional asymmetry is a very significant topic in the Sport Science researches to reduce the injury risk in young and top level athletes.¹⁰⁻²⁰

Many studies have investigated which methodologies are most effective in reducing the strength asymmetry in various sports.^{11,12,21-30}

The lower limb strength asymmetry is measured by monopodal jump tests in both healthy subjects and in athletes who follow a post-injury rehabilitation path.^{17,31-33}

The effectiveness of the FMS as a predictor of injury risk has previously been demonstrated in many special and in physically active populations: this assessment has been used with professional American football players,^{8,34} NCAA athletes,^{4,35} rugby players,³⁶ runners³⁷ and military.^{9,38,39} Furthermore, the presence of one or more asymmetries has been linked to a higher risk of injury in professional American football players.³⁴

However, other Authors have shown limited FMS accuracy to predict sport injury risk^{37,40-42} while others have asserted that the FMS may lack the accuracy required to effectively assess individualized injury risk.⁴³⁻⁴⁷

In literature, an open problem remains to understand the accuracy of the FMS test and the relationship with other validated tests that are useful to disclose lower limb strength asymmetry. Another open problem concerns the relationship between FMS and lower limb strength asymmetry. Therefore, this study aims to examine

the correlation between the FMS score and strength asymmetry in professional soccer players.

Material and Methods

Participants

The sample is composed of 31 professional soccer players (age: 22.2±4.6; weight: 74.3±10.1kg; height: 176.1±8.7cm); n=4 were excluded for joint or muscle injury in the last 18 months. All participants were informed about the assessment risks associated. The study was conducted in compliance with the Helsinki Declaration principles.

Measures

The FMS tools were used to evaluate movement patterns and any asymmetries in professional soccer players. This assessment protocol uses seven motor task that combine major muscle groups; while a screener assigns points (0-3) based on how well the movements were performed. FMS scoring is quantitative, a higher score relates to increased functional movement, and a lower score point identifies dysfunctional body movement along with a prescription for the necessary exercises needed to restore proper movement and build strength for individuals.

A score lower or equal to 14 indicates a potential risk of injury.

Jump test were performed on artificial grass field. Hop test, Side hop test and Crossover test were performed on left and right limb, as well as protocol.^{17,32,33}

Hop test: the aim is to jump (as far as possible) on a single leg and landing on the same leg on sagittal plane: the distance is measured from the start line to the heel of the landing leg.

Side hop: test the aim is to jump (as far as possible) on a single leg and landing on the same leg on frontal plane: the distance is measured from the start line to lateral margin of the landing foot.

Crossover test: the aim is to jump as far as possible on a single leg three consecutive times; between each hop, the athlete has to jump across a midline, hence including side-to-side movement in this test. The distance is measured from the start line to the heel of the landing leg.^{17,32,33}

The degree of asymmetry between the dominant (D) and non-dominant (ND) leg in performance in each jump test was calculated applying the formula: (jump dominant-limb – jump non-dominant limb)/jump dominant-limb*100.⁴⁸

A difference greater than 15% indicates a potential injury risk.^{11,16,20,49}

Procedures

On the first day, the anthropometric variables were measured and the FMS assessment protocol was presented. The FMS tools assessment was performed in a gym at 22°C from 10 am to 1pm; after 24 hours all soccer players completed the jump tests in the following order: Hop test, Side Hop test, Crossover test.

Three repetitions were performed for each jump and the best was evaluated; after each test was given 10 minutes of recovery to eliminate fatigue effects.

Analysis

Descriptive statistics (M ±SD) were calculated for all assessed variables; Pearson's correlations were performed to test the strength of the linear relationships between the functional asymmetries values obtained from each jump test and the FMS values (SPSS 22.0, SPSS Institute Chicago, IL). Statistical significance was set at p≤0.05.

Results

The FMS protocol tasks showed scores equal to 14,5±2,1 points.

The average values of Hop test, Side Hop test and Crossover test were respectively equal to 181,3±16,1cm for the left limb, 178,4±18,8cm for the right limb, 154,1±14,7 for the left limb, 153,7±20,7cm for the right limb, 569,3±57,3cm for the left limb and 566,8±64,2cm for the right limb.

The mean asymmetry values of Hop test, Side Hop test and Crossover test were respectively equal to 4,1±4,9%, 8,9±8,1% and 5,6±5,5%.

The data are summarized in the table 1 and in the table 2.

Table 1 Test value (Hop L; hop test left limb, Hop R; hop test right limb, Asym: % Asymmetry value)

FMS score	Hop L (cm)	Hop R (cm)	Asym (%)
14,5±2,1	181,3±16,1	178,4±18,8	4,1±4,9

Table 2 Side L; Side Hop test left limb; Side R; Side Hop test right limb, CrOv L; Crossover test left limb, CrOv R; Crossover test right limb, Asym: % Asymmetry value

Side L (cm)	Side R (cm)	Asym (%)	CrOv L(cm)	CrOv R (cm)	Asym (%)
154,1±14,7	153,7±20,7	8,9±8,1	569,3±57,3	566,8±64,2	5,6±5,5

The correlation values are shown in the table 3.

Table 3 Correlation between FMS value and asymmetry values

	FMS	Hop As	Side As	CrOv As
FMS	-	-0,56**	-0,74***	-0,60**
Hop As		-	0,54**	0,59**
Side As			-	0,76***
CrOv As				-

FMS: value of FMS assessment, Hop As: Hop test asymmetry, Side As: Side test asymmetry, CrOv As: Crossover test asymmetry **p<0.01; ***p<0.001

Discussion

This is the first study that tries to understand the relationship between the FMS test and the unilateral jump test.

Both the FMS protocol and unilateral jumps are used to detect any asymmetries, both in the athletes and in active populations.^{37,49-51}

The attention to the quality of the movements is very high in professional sport; only physical and technical training cannot change the effectiveness of the movement.²

The presence of asymmetries, can result in health, and ultimately athletic performance compromise.^{15,21,22,52}

The Hop test asymmetry is well below the cut off value identified in the literature.

The average values asymmetry and above standard deviation values highlighted in the Side test and in the Crossover test are more relevant: it emerges a very heterogeneous scenario that exposes to a potential injury risk.

The asymmetry values identified in this study agree with similar studies conducted with professional footballers and recreational players.⁴⁹

The FMS score also indicates a potential injury risk and the need to provide supplementary and integrative training.

The FMS values agree with the data present in the soccer players literature.^{43,50} However, the literature does not agree on this point: some Authors do not consider needful a supplementary training because, in soccer, they have not identified a relationship between lower FMS scores and non-contact injuries;⁵³ other Authors who monitored a professional footballers sample for 9 months, did not find that the cut-off of the 14 points is necessarily associated with an injury risk;⁵ conversely, some Authors have observed that athletes with an asymmetry^{36,37,43} or individual score of 1 were 2.73 times more likely to sustain an injury ($p=0.001$) than those without.⁵¹

The correlation between FMS asymmetry and jump asymmetry has various values in the different jumps: the correlation between FMS asymmetry and jump asymmetry is higher for the Side test and Crossover test: in fact, the lateral jump (frontal plane) presents greater difficulties in lower limb stabilization.⁵⁴

On the frontal plane, the control and stability movements, due to the knee joint biomechanical characteristics, are more complex.

The correlation between the FMS values and the jump test results lead to think that the seven motor tasks quality execution have an important relevance in the unilateral jump skill; moreover, the significant correlations between FMS scores and the asymmetry values seem to indicate that the deficit in some movements may influence some sport-specific skill, such as the unilateral jump.

At last, the correlations between the asymmetry values in the different jump tests show that the strength deficits observed in the every jump assessment.

Conclusion

In conclusion, this is the first study that tries to understand the relationships between FMS and unilateral jump assessment: both evaluations are useful for understanding strength deficits and asymmetry in soccer players to structure individualized prevention training sessions. Low scores in the FMS test are correlated with high levels lower limb strength asymmetry in the soccer player; it can be assumed that movement accuracy influences jump performance. In the soccer players, the lower limb strength asymmetries are observed on the jumps performed in different planes and in different tasks.

Conflicts of interest

The authors of the following article have not received any funding and have no contractual relationship with the companies that produce the products mentioned in the text.

Authors' contribution

Italo Sannicandro contributed to research conception and design,

data acquisition, data analysis and interpretation, writing and critical review of the manuscript. Giacomo Cofano contributed to data acquisition and interpretation. Paolo Traficante contributed to data acquisition.

References

1. Mills JD, Taunton JE, Mills WA. The effect of a 10-week training regime on lumbo-pelvic stability and athletic performance in female athletes: a randomized-controlled trial. *Phys Ther Sport*. 2005;6:60–66.
2. Sprague PA, Mokha GM, Gatens DR. Changes in functional movement screen scores over a season in collegiate soccer and volleyball athletes. *J Strength Cond Res*. 2014;28(11):3155–3163.
3. Cook G. Movement: Functional Movement Systems. Aptos, CA: On Target Publishing. 2010.
4. Chorba RS, Chorba DJ, Bouillon LE, et al. Use of a functional movement screening tool to determine injury risk in female collegiate athletes. *N Am J Sports Phys Ther*. 2010;5(2):47–54.
5. Hammes D, Aus der Fünten K, Bizzini M, et al. Injury prediction in veteran football players using the Functional Movement Screen. *J Sports Sci*. 2016;34(14):1371–1379.
6. Cook G, Burton L, Hoogenboom B. Pre-participation screening: The use of fundamental movements as an assessment of function—part 1, *N Am J Sports Phys Ther*. 2006°;1(2):62–72.
7. Cook G, Burton L, Hoogenboom B. Pre-participation screening: the use of fundamental movements as an assessment of function—part 2, *N Am J Sports Phys Ther*. 2006b;1(3):132–139.
8. Kiesel K, Plisky PJ, Voight ML. Can serious injury in professional football be predicted by a preseason functional movement screen?, *N Am J Sports Phys Ther*. 2007;2(3):147–158.
9. Lisman P, O'Connor FG, Deuster PA, et al. Functional movement screen and aerobic fitness predict injuries in military training. *Med Sci Sports Exerc*. 2013;45(4):636–643.
10. Sannicandro I, Cofano G, Rosa AR. Lower limb functional asymmetry and sprint performance in young soccer players, Abstract Book of XXII International Conference on Sports Rehabilitation and Traumatology “Football medicine strategies for muscle & tendon injuries”:213–214, 20–21th April 2013, London. 2013.
11. Sannicandro I, Quarto A, Piccinno A, et al. Lower limb Functional Asymmetries in Young Soccer Players: Do differences exist between different age groups?, *Br J Sports Med*. 2014;48:657.
12. Sannicandro I, Cofano G, Rosa RA, et al. Balance training exercises decrease lower-limb strength asymmetry in young tennis players. *J Sports Sci Med*. 2014b;13:397–402.
13. Sannicandro I, Tisci V, Quarto A, et al. FIGC territorial centers: a pilot study determine the lower limb strength asymmetry in young soccer players; *Br J Sports Med*. 2017;51:281.
14. Rouissi M, Chtara M, Berriri A, et al. Asymmetry of the Modified Illinois Change of Direction Test Impacts Young Elite Soccer Players' Performance. *Acta Physiol Hung*. 2016;102:34–42.
15. Atkins S, Bentley I, Hurst H, et al. The presence of bilateral imbalance of the lower limbs in elite youth soccer players of different ages, *J Strength Cond Res*. 2016;30(4):1007–1013.
16. Hewit J, Cronin J, Hume P. Multidirectional leg asymmetry assessment in sport, *Strength & Cond J*. 2012;1:82–86.
17. Bishop C, Read P, Shyam C, et al. Asymmetries of the Lower Limb: The Calculation Conundrum in Strength Training and Conditioning. *Strength & Cond J*. 2006;38:27–32.

18. Zech A, Hübscher M, Vogt L, et al. Balance training for neuromuscular control and performance enhancement: a systematic review. *J Athl Train*. 2010;45:392–403.
19. Fousekis K, Tsepis E, Vagenas G. Lower limb strength in professional soccer players: profile, asymmetry, and training age. *J Sport Sci Med*. 2010;9(3):364–363.
20. Noyes FR, Barber SD, Magine RE. Abnormal lower limb symmetry determined by function hop tests after anterior cruciate ligament rupture. *Am J Sport Med*. 1991;19(5):513–518.
21. Bishop C, Turner A, Read P. Effects of inter-limb asymmetries on physical and sports performance: A systematic review. *J Sports Sci*. 2018;36(10):1135–1144.
22. Bishop C, Turner A, Maloney S, et al. Drop jump asymmetry is associated with reduced sprint and change-of-direction speed performance in adult female soccer players. *Sports(Basel)*. 2019;7(1):29.
23. Loturco I, Pereira L.A, Kobal R. Do asymmetry scores influence speed and power performance in elite female soccer players? *Biol Sport*. 2019;36(3):209–216.
24. Soylu, C, Altundağ, E, Akarçeşme, C, et al. The relationship between isokinetic knee flexion and extension muscle strength, jump performance, dynamic balance and injury risk in female volleyball players. *Journal of Human Sport and Exercise*, in press. 2019.
25. Svetlana K, Aleksandr C, Marina P, et al. Functional asymmetry and the sports result. *Journal of Physical Education and Sport*. 2018;18(Suppl 1):408–415.
26. Sugiyama T, Kameda M, Kageyama M, et al. Asymmetry between the Dominant and Non-Dominant Legs in the Kinematics of the Lower Extremities during a Running Single Leg Jump in Collegiate Basketball Players. *J Sports Sci Med*. 2014;13(4):951–957.
27. Muehlbauer M, Roth R, Bopp M, et al. An exercise sequence for progression in Balance Training. *J Strength Cond Res*. 2012;26(2):568–574.
28. Malliou, P, Gioftsidou, A, Pafis, G, et al. Proprioceptive training (balance exercises) reduces lower extremity injuries in young soccer players. *Journal of Back and Musculoskeletal Rehabilitation*. 2004;17(3–4):101–104.
29. Malliou VJ, Malliou P, Gioftsidou A, et al. Balance exercise program before or after a tennis training session? *Journal of Back and Musculoskeletal Rehabilitation*. 2008;21(2):87–90.
30. Malliou VJ, Beneka AG, Gioftsidou AF, et al. Young tennis players and balance performance. *Journal of Strength & Conditioning Research*. 2010;24(2):389–393.
31. Fitzgerald GK, Lephart SM, Hwang H, et al. Hop tests as predictors of dynamic knee stability. *J Orthop Sports Phys Ther*. 2001;31(10):588–597.
32. Gustavsson A, Neeter C, Thomee P, et al. A test battery for evaluating hop performance in patients with an ACL injury and patients who have undergone ACL reconstruction. *Knee Surg Sports Traumatol Arthrosc*. 2006;14(8):778–788.
33. Maulder P, Cronin J. Horizontal and vertical jump assessment: reliability, symmetry, discriminative and predictive ability. *Phys Ther Sport*. 6(2):74–82.
34. Kiesel KB, Butler RJ, Plisky PJ. Prediction of injury by limited and asymmetrical fundamental movement patterns in American football players. *J Sport Rehabil*. 2014;23(2):88–94.
35. Lehr ME, Plisky PJ, Butler RJ, et al. Field-expedient screening and injury risk algorithm categories as predictors of noncontact lower extremity injury. *Scand J Med Sci Sports*. 2013;23(4):e225–e232.
36. Duke SR, Martin SE, Gaul CA. Preseason functional movement screen predicts risk of time-loss injury in experienced male rugby union athletes. *J Strength Cond Res*. 2017;31(10):2740–2747.
37. Hotta T, Nishiguchi S, Fukutani N, et al. Functional movement screen for predicting running injuries in 18– to 24-year-old competitive male runners. *J Strength Cond Res*. 2015;29(10):2808–2815.
38. Butler RJ, Contreras M, Burton LC, et al. Modifiable risk factors predict injuries in firefighters during training academies. *Work*. 2013;46:11–17.
39. O'Connor FG, Deuster PA, Davis J, et al. Functional movement screening: Predicting injuries in officer candidates. *Med Sci Sports Exerc*. 2011;43(12):2224–2230.
40. Burton SL. Performance and injury predictability during firefighter candidate training in: Doctoral Dissertation. Blacksburg, VA: Virginia Polytechnic Institute and State University. 2006.
41. McGill SM, Andersen JT, Horne AD. Predicting performance and injury resilience from movement quality and fitness scores in a basketball team over two years. *J Strength Cond Res*. 2012;26(7):1731–1739.
42. Sorenson EA. Functional Movement Screen as a Predictor of Injury in High School Basketball Athletes, Doctoral Dissertation, University of Oregon. 2009.
43. Zalai D, Panics G, Bobak P, et al. Quality of functional movement patterns and injury examination in elite-level male professional football players. *Acta Physiol Hung*. 2015;102(1):34–42.
44. Hoover D, Clyde KB, Bourcier B, et al. Predictive validity of the functional movement screen in a population of recreational runners training for half marathon. *Med Sci Sports Exerc*. 2008;40:219–224.
45. Sannicandro I. La valutazione del movimento, Nonosolofitness Edizioni, Roma. 2017.
46. Frost DM, Beach TAC, Campbell TL, et al. An appraisal of the functional movement screen grading criteria —is the composite score sensitive to risky movement behavior? *Phys Ther Sport*. 2015;16(4):324–330.
47. Wright AA, Stern B, Hegedus EJ, et al. Potential limitations of the functional movement screen: A clinical commentary. *Br J Sports Med*. 2016;50(13):770–771.
48. Yamamoto T. Relationship between hamstring strains and leg muscle strength. A follow-up study of collegiate track and field athletes. *J Sports Med Phys Fit*. 1993;33(2):194–199.
49. Vaismor A, Guiloff R, Rojas J, et al. Comparison of muscular power between dominant and nondominant legs in healthy young adults associated with single-leg-dominant sports. *The Orthopaedic Journal of Sports Medicine*. 2017;5:1–6.
50. Marques VB, Medeiros TM, de Souza Stigger F, et al. The Functional Movement Screen (FMSTM) in elite young soccer players between 14 and 20 years: composite score, individual-test scores and asymmetries. *Int J Sports Phys Ther*. 2007;12(6):977–985.
51. Mokha M, Sprague PA, Gatens DR. Predicting Musculoskeletal Injury in National Collegiate Athletic Association Division II Athletes From Asymmetries and Individual-Test Versus Composite Functional Movement Screen Scores. *J Athl Train*. 2016;51(4):276–282.
52. Betancourt J.E, Betancourt J.P, Estrada L, et al. A functional movement screening on 6th grade students of a Caribbean elementary laboratory school. *International Journal of Physical Education, Fitness and Sports*. 2015;4(1):1–16.
53. Smith PD, Hanlon MP. Assessing the Effectiveness of the Functional Movement Screen in Predicting Noncontact Injury Rates in Soccer Players. *J Strength Cond Res*. 2017;31(12):3327–3332.
54. Huang PY, Chen WL, Lin CF, et al. Lower Extremity Biomechanics in Athletes With Ankle instability after a 6-week integrated training program. *J Athl Train*. 2014;49(2):163–172.