

Match performance in racket sports: Crosstalk between current situation and future prospect

Editorial

Racket sports are among the most popular sports around the world. Over the last decade, there has been a remarkably increasing number of publications that addressed various aspects of these sports. Generally, racket sports have been categorized into a four main sports; tennis, badminton, table tennis and squash in which the game of all types consists commonly of activities involving a lot of an intermittent efforts and break events. The play event in these sports during the game structured as a unique characteristic referred to rally. The rally attributes are investigated using different technologies for establishing training strategies during the game with respect to the structure of every sport. During the match duration that varies between 20 to 90 min across these sports,¹ superior player should perform different important activities over the match play including moving quickly as possible, accelerate, decelerate, multiple change direction, maintain static and dynamic balance, and perform optimum stroke generation.² In main racket sports, match performance characteristics were investigated³⁻⁷ tennis,⁸⁻¹¹ badminton,¹²⁻¹⁵ table tennis, and¹⁶⁻²¹ squash. Match performance outline data is formulated into more essential variables in tennis, badminton, table tennis and squash respectively, for instance rally time (5-12, 4-8, 3-4, and 15-20 sec), recovery time between ball or shuttlecock hit to the end of point (15-20, 10-16, 6-8, and 8-10 sec), percentage of the effective playing time (20-30, 40-50, 30-35, and 50-70 %), a work-rest ratio (1:4, 1-2, 1-3, and 1-1 W:R).²²⁻²⁶ The player movement and the covered distance in these sports dictated during last years with a little attention for more reasons such as the match rules of federations and the limitation during capturing motion with GPS units in indoor environments, Nevertheless, for example in tennis,²⁷⁻²⁹ badminton,^{30,31} table tennis,³² and squash.³³

In addition, the physiological responses in racket sports players were assessed during match play and noticed significantly differ based on the match duration and the natural of each sport. The physiological important elements such as the exercise intensities percentage of maximum capacity (%HRmax and %VO2max) have been reported respectively for racket sports tennis, badminton, table tennis and squash as follow, %HRmax (70-85, 75-90, 80-85, and 85-92 %) and %VO2max (60-80, 75-85, 60-75, and 80-85 %).¹⁻³¹ Currently and besides to the continuous growth of publications in racket sports, skill tests modifications were developed to simulate the performance during matches in these sports. Prospectively, future studies should examine the relationship between outcome variables of the match play and the simulation modified test batteries results in each sport based on player performance in order to improve the training components for each sport according to the match demands. In this context, Brink and Lemmink³⁴ proposed that the match performance variables such as covered distance, acceleration, declaration, directional changes could derive the physical performance characteristics of players according to match analysis. In other hand, it has been indicated that the lower extremities mechanical load could be determined by the inertial measurement units that also captured some technical performance indicators like passing, kicking, and ball control in soccer sport,³⁵ with respect to the external factors from match to match variation. Briefly, what interesting researcher in racket sports field should be keeping in their mind for future studies?

Volume 3 Issue 1 - 2019

Ibrahim Hamed Ibrahim Hassan

Department of Theories and Applications of Racket Sports,
Faculty of Physical Education, Zagazig University, Zagazig, Egypt

Correspondence: Ibrahim Hamed Ibrahim Hassan,
Department of Theories and Applications of Racket Sports,
Faculty of Physical Education, Zagazig University, Zagazig, Sharkia,
Egypt, Email: dr.ibrahim.univ@gmail.com

Received: December 21, 2018 | **Published:** January 04, 2019

In racket sports, the simulation applications according to the match performance outputs which used during player investigation and training intervention are essential key for successes in these sports and using the application of new technologies and sensors during the training or competitive is vital to these sports for technical and tactical analysis. In line with the technological revolution in racket sports and with consistent to the recommendation since 2003 which was approved by McGarry, O'Donoghue,³⁶ Kovalchik and Reid³⁷ have predicted the emotions of professional players in tennis sport by observed the facial expressions of players using 17 facial action units in match broadcasts. In addition, Lin, Huang³⁸ determined the fatigue by the driver's eyes with percentage of eye closure time method and currently this year Gravina and Li³⁹ have used multisensory fusion to determine the emotion relevant activity. Consequently, further experiments in racket sports should consider the remarkable improvement in the sport technology applications that offer better understanding of the game event (rallies) during these sports owing to the accurate tracking data during match performance.

Acknowledgments

None.

Conflicts of interest

The author declares there is no conflict of interest.

References

1. Lees A. Science and the major racket sports: a review. *J Sports Sci*. 2003;21(9):707-732.
2. Girard O, GP Millet. Neuromuscular fatigue in racquet sports. *Phys Med Rehabil Clin N Am*. 2009;20(1):161-173.
3. Fernandez J, A Mendez-Villanueva, B Pluim. Intensity of tennis match play. *British journal of sports medicine*. 2006;40(5):387-391.
4. Smekal G, von Duvillard SP, Rihacek C, et al. A physiological profile of tennis match play. *Med Sci Sports Exerc*. 2001;33(6):999-1005.
5. Hoppe MW, Baumgart C, Bornfeld J, et al. Running activity profile of adolescent tennis players during match play. *Pediatric exercise science*. 2014;26(3):281-290.
6. Hornery DJ, Farrow D, Mujika I, et al. Fatigue in tennis: mechanisms of fatigue and effect on performance. *Sports Med*. 2007;37(3):199-212.
7. Fernandez-Fernandez J, Mendez-Villanueva A, Fernandez-Garcia B, et al. Match activity and physiological responses during a junior female singles tennis tournament. *Br J Sports Med*. 2007;41(11):711-716.

8. Faude O, Meyer T, Rosenberger F, et al. Physiological characteristics of badminton match play. *Eur J Appl Physiol*. 2007;100(4):479–85.
9. Laffaye G, M Phomsoupha, F Dor. Changes in the Game Characteristics of a Badminton Match: A Longitudinal Study through the Olympic Game Finals Analysis in Men's Singles. *Journal of sports science & medicine*. 2015;14(3):584–590.
10. Lin RZ. *Neuromuscular fatigue following a singles badminton match*. 2014.
11. Ming CL, CC Keong, AK Ghosh. Time motion and notational analysis of 21 point and 15 point badminton match play. *International Journal of Sports Science and Engineering*. 2008;2(4):216–222.
12. Shieh SC, JP Chou, YH Kao. *Energy expenditure and cardiorespiratory responses during training and simulated table tennis match*. 2010;22(2.58):186.
13. Sperlich B, Karsten Koehler, Joachim Mester, et al. Table tennis: cardiorespiratory and metabolic analysis of match and exercise in elite junior national players. *International journal of sports physiology and performance*. 2011;6(2):234–242.
14. Zagatto AM, EA Morel, CA Gobatto. Physiological responses and characteristics of table tennis matches determined in official tournaments. *The Journal of Strength & Conditioning Research*. 2010;24(4):942–949.
15. Kondric M, AM Zagatto, D Sekulic. The physiological demands of table tennis: a review. *J Sports Sci Med*. 2013;12(3):362–370.
16. Chin MK, Steininger K, So RC, et al. Physiological profiles and sport specific fitness of Asian elite squash players. *British journal of sports medicine*. 1995;29(3):158–164.
17. Girard O, Chevalier R, Habrard M, et al. Game analysis and energy requirements of elite squash. *J Strength Cond Res*. 2007;21(3):909–914.
18. Sinclair P. *A quantitative analysis of squash shot accuracy in 33rd Conference of the International Society of Biomechanics in Sports*. International Society of Biomechanics in Sports. 2015.
19. Vučković G, B Dezman, J Pers, et al. *Motion analysis of the international and national rank squash players in Image and Signal Processing and Analysis, 2005. ISPA 2005*. Proceedings of the 4th International Symposium on. 2005. IEEE.
20. Wilkinson M, Cooke M, Murray S, et al. Physiological correlates of multiple-sprint ability and performance in international-standard squash players. *J Strength Cond Res*. 2012;26(2):540–547.
21. Wollstein J, L Ellis. *Applied physiology and fitness training for all squash players*. AS Coach, editor. Australia. 1995. p. 5–7.
22. Cabello Manrique D, JJ Gonzalez-Badillo. Analysis of the characteristics of competitive badminton. *Br J Sports Med*. 2003;37(1):62–66.
23. Fernandez-Fernandez J, V Kinner, A Ferrauti. The physiological demands of hitting and running in tennis on different surfaces. *J Strength Cond Res*. 2010;24(12):3255–3264.
24. Phomsoupha M, G Laffaye. The science of badminton: game characteristics, anthropometry, physiology, visual fitness and biomechanics. *Sports Med*. 2015;45(4):473–495.
25. Alexandru R, H Cosmin, G Vasilica. *Analysis of technical level of romanian squash players in 5th International Congress of Physical Education Sports and Kinetotherapy*. Bucharest: European Proceedings of the Social and Behavioral Sciences. 2015.
26. Lucas A Pereira, Victor Freitas, Felipe A Moura LA, et al., Match analysis and physical performance of high-level young tennis players in simulated matches: a pilot study. *Journal of Athletic Enhancement*. 2016.
27. Hoppe M, C Baumgart, J Freiwald. Do Running Activities of Adolescent and Adult Tennis Players Differ During Play? *International journal of sports physiology and performance*. 2015;11(6):1–3.
28. Lucas A Pereira, Victor Freitas, Felipe A Moura LA, et al. Match analysis and physical performance of high-level young tennis players in simulated matches: a pilot study. 2017.
29. Ponzano M, MJ OPAIS, Gollin. *Movement analysis and metabolic profile of tennis match play: comparison between hard courts and clay courts*. 2017;17(3):220–231.
30. Abdullahi Y, BJJOS Coetzee, C research. *Relationships between Results Of An Internal And External Match Load Determining Method In Male, Singles Badminton Players*. 2017.
31. Rampichini S1, Limonta E1, Pugliese L, et al. Heart rate and pulmonary oxygen uptake response in professional badminton players: comparison between on-court game simulation and laboratory exercise testing. *Eur J Appl Physiol*. 2018;118(11):2339–2347.
32. Galé-Ansodi C. Physical profile of young tennis players in the tennis match-play using global positioning systems. *Journal of Physical Education and Sport*. 2017;17(2):826.
33. Vučković G. Measurement error associated with the SAGIT/Squash computer tracking software. *Journal European Journal of Sport Science*. 2010;10(2):129–140.
34. Brink MS, KA Lemmink. Performance analysis in elite football: all in the game? 2018. *Taylor & Francis*. 2018;2(4):253–254.
35. Blair S, Duthie G, Robertson S, et al. Concurrent validation of an inertial measurement system to quantify kicking biomechanics in four football codes. *J Biomech*. 2018;73:24–32.
36. McGarry T, P O'Donoghue, ANJDE. *Sampaio, Routledge handbook of sports performance analysis*. New York: Routledge. 2013.
37. Kovalchik S, M Reid. *Going inside the inner game: Predicting the emotions of professional tennis players from match broadcasts*. MIT Sloan Sports Analytics Conference. 2018.
38. Lin L, Huang C, Ni X, et al. Driver fatigue detection based on eye state. *Technol Health Care*, 2015;23(Suppl 2):S453–S463.
39. Gravina R, QJIF Li. *Emotion-relevant activity recognition based on smart cushion using multi-sensor fusion*. 2018;48:1–10.