
Submit Manuscript | http://medcraveonline.com

the final cell product. Moreover, advanced AI-driven sensors and 
spectrometry tools maximize the monitoring of cell culture that 
improve the control of cell growth and viability.6

Real-time and personalized process control and production 
scheduling are necessary to scale up CAR-T cell manufacturing, 
and this becomes the responsibility of AI. Relevant to this context, 
the AIDPATH project has been implementing digital twins to 
bioreactors for CAR-T cell expansion based on nutrient consumption 
and metabolite production that can allude timely predictions of 
cell expansion completion to achieve cell dose targets (UC1).7A 
second system uses “soft sensors,” which build upon available 
bioreactor sensors to combine multiple sensor inputs into real-time 
notifications (UC2).8,9 Scheduling algorithms (UC3) are able to align 
parallel manufacturing cycles across different patients to cope with 
these uncertainties through the cell-expansion process time and the 
time they will be ready to treat the patients.10

Progress will include dynamic control of bioreactor parameters 
based upon individual patient needs to enable highly individualized 
CAR-T cell therapies. In the context in which personalized 
patient-centered therapies are paramount, AI-powered clinical 
decision support systems (UC5) assist in matching the CAR-T cell 
characteristics and complementary therapies to individual patients 
in accordance to their profiles by establishing a balance between 
efficacious therapeutic effect and safety.11,12

These advancements in AI-driven personalization do not end with 
the manufacturing and preparatory stages. AI is also proving crucial 
for monitoring and adjusting CAR-T therapy post-administration. 
Following infusion, the therapeutic journey of CAR-T cells within a 
patient is highly individualized, involving complex interactions with 
the host’s immune system. AI-enabled systems monitor patients for 
any early signs of potential complications, such as cytokine release 
syndrome (CRS) and neurotoxicity, which are common adverse 
effects associated with CAR-T therapy.13 Real-time data analysis, 
derived from patient biomarkers and physiological indicators, 

provides predictive alerts to healthcare teams, enabling rapid 
responses that can mitigate the severity of these complications. 
This is especially beneficial for managing cases remotely, where 
AI-driven wearables and monitoring devices continuously track 
patient health indicators, thus ensuring prompt intervention when 
necessary.14

In addition to immediate patient safety, AI enhances the long-
term monitoring of patients by predicting therapeutic outcomes 
and relapse risk. Through sophisticated algorithms that integrate 
genomic, proteomic, and metabolic data, AI is instrumental in 
identifying patients at risk for recurrence. Predictive modeling 
can guide follow-up care, suggesting additional interventions or 
alternative therapies as needed. These approaches not only increase 
the safety and effectiveness of CAR-T treatments but also provide 
a more sustainable, individualized approach to post-therapy 
management.15

The integration of AI into CAR-T cell therapy represents a 
significant advancement in precision medicine, facilitating highly 
individualized treatment protocols. By synthesizing patient-
specific data from diverse sources-such as genetic profiles, 
cellular characteristics, and clinical biomarkers-AI constructs a 
comprehensive patient profile that optimally guides each stage of the 
therapeutic process.16 This data-driven, tailored approach ensures 
that CAR-T therapy precisely targets cancer cells while aligning 
with the patient’s unique biological profile, thereby minimizing 
adverse reactions and maximizing therapeutic efficacy. Additionally, 
AI-enhanced CRISPR-Cas9 technology further advances CAR-T 
therapy by reducing off-target gene edits, thereby increasing 
treatment safety and expanding the applicability of CAR-T cells to 
target solid tumors and a broader array of cancer types.17,18

The future of AI-driven CAR-T therapy holds promising potential 
for further personalization.19 Emerging research is focused on using 
AI to dynamically adapt CAR-T cell dosages and combinations with 
other immunotherapies in real-time based on a patient’s response to 
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Introduction
Artificial intelligence (AI) is playing a larger role in CAR-T cell 

therapy, contributing to different stages of the pipeline regarding 
patient selection, in-vivo activity, and post CAR-T cell treatment 
monitoring. Much of the work is centered around the use of AI 
in patient follow-up, particularly in being able to predict adverse 
effects including cytokine release syndrome (CRS) and sepsis after 
therapy. Instrumented wearable systems are built to keep track of 
physiological parameters so that quick changes can be remotely 
monitored and acted upon.1–3

During the selection of the patient, biomarker analysis driven 
by AI is essential to choose the right patients, which improves 
therapeutic effectiveness, resulting from an optimized CAR-T cell 
selection. During the preparatory stages, selection and timing of 
healthy CD3-T cell extraction—proposed to maximize therapeutic 
impact—is aided by AI algorithms to refine accuracy.4,5 In addition, 
some examples of predictive assessments during genetic engineering 
and expansion of cells predict the quality and clinical activity of 
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treatment.20 This adaptability could lead to even greater efficacy in 
fighting resistant cancer types and improving patient quality of life. 
As AI technologies evolve, they are expected to seamlessly integrate 
with healthcare practices, making personalized CAR-T therapy a 
practical reality for broader patient populations.

As AI-driven technologies continue to evolve, the potential 
for CAR-T therapy to offer truly personalized cancer treatments 
expands. Current research explores how AI might predict not only 
adverse effects and therapeutic efficacy but also patient-specific 
therapeutic timelines.21 Through deep learning and machine learning 
algorithms, AI is enabling CAR-T therapy to adapt dynamically over 
time, adjusting to each patient’s unique physiological responses to 
optimize therapeutic outcomes.22 With this adaptability, CAR-T 
cells may one day be capable of on-the-fly adjustments in dosage, 
timing, and even genetic modifications based on real-time feedback 
from the patient’s condition, ensuring precision on an unprecedented 
scale.23,24

In clinical practice, AI-enabled digital twins—virtual models that 
replicate the biological systems of CAR-T patients—are starting to 
simulate individual responses to CAR-T therapy, allowing clinicians 
to test and tweak treatment variables without risk to the patient. 
These digital twins are created by integrating a range of patient 
data, including genomic information, immune system biomarkers, 
and treatment response histories, into predictive AI models. By 
simulating how a specific CAR-T therapy might interact with a 
patient’s unique biology, digital twins empower clinicians to refine 
treatment protocols for better precision.25–27

Moreover, as CAR-T therapy continues to expand beyond 
hematologic malignancies to solid tumors, AI plays a pivotal role 
in overcoming the challenges specific to these cancers. Solid tumors 
present obstacles like physical barriers and immunosuppressive 
microenvironments, which can reduce CAR-T efficacy.28 AI is being 
harnessed to identify and engineer CAR-T cells with enhanced 
targeting capabilities and adaptability to the tumor environment, 
allowing these cells to penetrate and function effectively within solid 
tumors. This marks a significant shift in CAR-T therapy applications, 
broadening its scope to a wider array of cancer types.29,30

Conclusion
Ultimately, as AI-driven CAR-T therapy develops, there are 

implications for regulatory and ethical frameworks. AI introduces 
complex considerations around data security, patient consent, 
and algorithmic transparency.31 As treatment becomes more 
individualized, ensuring that AI models operate fairly and safely 
across diverse patient populations will be essential. Regulations are 
adapting to meet these challenges, with AI governance frameworks 
emerging to safeguard patient rights and ensure equitable access to 
advanced therapies.

Acknowledgments
None.

Conflicts of interest
The authors declare that there are no conflicts of interest.

References
1. Banerjee R, Shah N, Dicker AP. Next-generation implementation of chi-

meric antigen receptor T-cell therapy using digital health. JCO Clin Can-
cer Informatics. 2021;5:668–678.

2. Santomasso BD, Nastoupil  LJ, Adkins S, et al. Management of im-
mune-related adverse events in patients treated with chimeric antigen re-
ceptor T-cell therapy: ASCO guideline. J Clin Oncol. 2021;39(35):3978–
3992.

3. Tedesco VE, Mohan C. Biomarkers for predicting cytokine release 
syndrome following CD19-targeted CAR T cell therapy. J Immunol. 
2021;206(7):1561–1568.

4. Turicek DP, Giordani VM, Moraly J, et al. CAR T-cell detection scoping 
review: An essential biomarker in critical need of standardization. J Im-
munother Cancer. 2023;11:e006596.

5. Menon AP, Moreno B, Meraviglia-Crivelli D, et al. Modulating T cell 
responses by targeting CD3. Cancers (Basel). 2023;15(4):1189.

6. Nettleton DF, Mari Buye N, Marti Soler H, et al. Smart sensor control 
and monitoring of an automated cell expansion process. Sensors (Basel, 
Switzerland). 2023;23(24):9676.

7. Zhang C, Zhou G, Jing Y, et al. A digital twin-based automatic program-
ming method for adaptive control of manufacturing cells. IEEE Access. 
2022;10:80784–80793.

8. Sun Q, Ge Z. A survey on deep learning for data-driven soft sensors. IEEE 
Trans Ind Informatics. 2021;17:5853–5866.

9. Schiemer R, Weggan JT, Schmitt KM, et al. An adaptive soft-sensor for 
advanced real-time monitoring of an antibody-drug conjugation reaction. 
Biotechnol Bioeng. 2023;120:1914–1928.

10. Yu Q, Xhnag Y, Zhao H, et al. A robust optimal scheduling system based 
on multi-performance driving for complex manufacturing systems. Sci 
Rep. 2023;13(1):16911.

11. Nukala U, Rodriguez Messan M, Yogurtcu ON, et al. A systematic review 
of the efforts and hindrances of modeling and simulation of CAR T-cell 
therapy. AAPS J. 2021;23(3):52.

12. Hort S, Herbst L, Vackel N, et al. Toward rapid, widely available au-
tologous CAR-T cell therapy-– Artificial intelligence and automation 
enabling the smart manufacturing hospital. Front Med. 2022;9:913287.

13. Shaik T, Tao X, Higgins N, et al. Remote patient monitoring using artifi-
cial intelligence: Current state, applications, and challenges. WIREs Data 
Mining Knowl Discov. 2023;13(2):e1485.

14. Paludo J, Bansal R, Holland AT, et al. Pilot implementation of remote 
patient monitoring program for outpatient management of CAR-T cell 
therapy. Blood. 2021.

15. Schena FP, Manno C, Strippoli GFM. Understanding patient needs and 
predicting outcomes in IgA nephropathy using data analytics and artificial 
intelligence: A narrative review. Clin Kidney J. 2023;16(Suppl 2):ii55-
ii61.

16. Boretti A. Improving chimeric antigen receptor T-cell therapies by using 
artificial intelligence and internet of things technologies: A narrative re-
view. Eur J Pharmacol. 2024;974:176618.

17. Bäckel N, Hort S, Kis T, et al. Elaborating the potential of artificial in-
telligence in automated CAR-T cell manufacturing. Front Mol Med. 
2023;3:1250508.

18. Boretti A. The transformative potential of AI-driven CRISPR-Cas9 
genome editing to enhance CAR T-cell therapy. Comput Biol Med. 
2024;182:109137.

19. Strzelec A, Helbig G. Are we ready for personalized CAR‐T therapy? Eur 
J Haematol. 2023;112(2):174–183.

20. Cai Q, Wearren S, Pietrobon V, et al. Building smart CAR T-cell 
therapies: The path to overcome current challenges. Cancer Cell. 
2023;41(10):1689–1695.

21. Bäckel N, Hort S, Kis T, et al. Elaborating the potential of artificial in-
telligence in automated CAR-T cell manufacturing. Front Mol Med. 
2023;3:1250508.

22. Bhinder B, Gilvary C, Madhukar NS, et al. Artificial intelligence in cancer 
research and precision medicine. Cancer Discov. 2021;11(4):900–915.

https://doi.org/10.15406/mojs.2025.13.00284
https://pubmed.ncbi.nlm.nih.gov/34110929/
https://pubmed.ncbi.nlm.nih.gov/34110929/
https://pubmed.ncbi.nlm.nih.gov/34110929/
https://pubmed.ncbi.nlm.nih.gov/34724386/
https://pubmed.ncbi.nlm.nih.gov/34724386/
https://pubmed.ncbi.nlm.nih.gov/34724386/
https://pubmed.ncbi.nlm.nih.gov/34724386/
https://pubmed.ncbi.nlm.nih.gov/33692146/
https://pubmed.ncbi.nlm.nih.gov/33692146/
https://pubmed.ncbi.nlm.nih.gov/33692146/
https://pubmed.ncbi.nlm.nih.gov/37217245/
https://pubmed.ncbi.nlm.nih.gov/37217245/
https://pubmed.ncbi.nlm.nih.gov/37217245/
https://pubmed.ncbi.nlm.nih.gov/36831533/
https://pubmed.ncbi.nlm.nih.gov/36831533/
https://www.mdpi.com/1424-8220/23/24/9676
https://www.mdpi.com/1424-8220/23/24/9676
https://www.mdpi.com/1424-8220/23/24/9676
https://ieeexplore.ieee.org/document/9847215
https://ieeexplore.ieee.org/document/9847215
https://ieeexplore.ieee.org/document/9847215
https://ieeexplore.ieee.org/document/9329169
https://ieeexplore.ieee.org/document/9329169
https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/abs/10.1002/bit.28428
https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/abs/10.1002/bit.28428
https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/abs/10.1002/bit.28428
https://www.nature.com/articles/s41598-023-43853-w
https://www.nature.com/articles/s41598-023-43853-w
https://www.nature.com/articles/s41598-023-43853-w
https://pubmed.ncbi.nlm.nih.gov/33835308/
https://pubmed.ncbi.nlm.nih.gov/33835308/
https://pubmed.ncbi.nlm.nih.gov/33835308/
https://pubmed.ncbi.nlm.nih.gov/35733863/
https://pubmed.ncbi.nlm.nih.gov/35733863/
https://pubmed.ncbi.nlm.nih.gov/35733863/
https://wires.onlinelibrary.wiley.com/doi/full/10.1002/widm.1485
https://wires.onlinelibrary.wiley.com/doi/full/10.1002/widm.1485
https://wires.onlinelibrary.wiley.com/doi/full/10.1002/widm.1485
https://ashpublications.org/blood/article/138/Supplement%201/568/480201/Pilot-Implementation-of-Remote-Patient-Monitoring
https://ashpublications.org/blood/article/138/Supplement%201/568/480201/Pilot-Implementation-of-Remote-Patient-Monitoring
https://ashpublications.org/blood/article/138/Supplement%201/568/480201/Pilot-Implementation-of-Remote-Patient-Monitoring
https://pubmed.ncbi.nlm.nih.gov/38053972/
https://pubmed.ncbi.nlm.nih.gov/38053972/
https://pubmed.ncbi.nlm.nih.gov/38053972/
https://pubmed.ncbi.nlm.nih.gov/38053972/
https://pubmed.ncbi.nlm.nih.gov/38679117/
https://pubmed.ncbi.nlm.nih.gov/38679117/
https://pubmed.ncbi.nlm.nih.gov/38679117/
https://pubmed.ncbi.nlm.nih.gov/39086671/
https://pubmed.ncbi.nlm.nih.gov/39086671/
https://pubmed.ncbi.nlm.nih.gov/39086671/
https://pubmed.ncbi.nlm.nih.gov/39260044/
https://pubmed.ncbi.nlm.nih.gov/39260044/
https://pubmed.ncbi.nlm.nih.gov/39260044/
https://pubmed.ncbi.nlm.nih.gov/37431655/
https://pubmed.ncbi.nlm.nih.gov/37431655/
https://pubmed.ncbi.nlm.nih.gov/37714150/
https://pubmed.ncbi.nlm.nih.gov/37714150/
https://pubmed.ncbi.nlm.nih.gov/37714150/
https://pubmed.ncbi.nlm.nih.gov/39086671/
https://pubmed.ncbi.nlm.nih.gov/39086671/
https://pubmed.ncbi.nlm.nih.gov/39086671/
https://pubmed.ncbi.nlm.nih.gov/33811123/
https://pubmed.ncbi.nlm.nih.gov/33811123/


AI-driven precision and personalization in CAR-T therapy 10
Copyright:

©2025 Anurogo.

Citation: Anurogo D. AI-driven precision and personalization in CAR-T therapy. MOJ Surg. 2025;13(1):8‒10. DOI: 10.15406/mojs.2025.13.00284

23. Dagar G, Gupta A, Masoodi T, et al. Harnessing the potential of CAR-T 
cell therapy: Progress, challenges, and future directions in hematological 
and solid tumor treatments. J Transl Med. 2023;21(1):449.

24. Baker DJ, Arany Z, Baur JA, et al. CAR T therapy beyond cancer: The 
evolution of a living drug. Nature. 2023;619(7971):707–715.

25. Turab M, Jamil S. A comprehensive survey of digital twins in healthcare 
in the era of metaverse. BioMedInformatics. 2023;3(3):563–584.

26. Attaran M, Celik BG. Digital twin: Benefits, use cases, challenges, and 
opportunities. Decis Anal J. 2023:6.

27. Katsoulakis E, Wang Q, Wu H, et al. Digital twins for health: A scoping 
review. NPJ Digit Med. 2024;7(1):77.

28. Hou AJ, Chen LC, Chen YY. Navigating CAR-T cells through the sol-
id-tumour microenvironment. Nat Rev Drug Discov. 2021;20(7):531–550.

29. Peng L, Sferruzza G, Yang L, et al. CAR-T and CAR-NK as cellular cancer 
immunotherapy for solid tumors. Cell Mol Immunol. 2024;21(10):1089–
1108.

30. Chen T, Wag M, Chen Y, et al. Current challenges and therapeutic advances 
of CAR-T cell therapy for solid tumors. Cancer Cell Int. 2024;24(1):133.

31. Williamson SM, Prybutok V. Balancing privacy and progress: A review 
of privacy challenges, systemic oversight, and patient perceptions in 
AI-driven healthcare. Appl Sci. 2024;14(2):675.

https://doi.org/10.15406/mojs.2025.13.00284
https://pubmed.ncbi.nlm.nih.gov/37420216/
https://pubmed.ncbi.nlm.nih.gov/37420216/
https://pubmed.ncbi.nlm.nih.gov/37420216/
https://www.nature.com/articles/s41586-023-06243-w
https://www.nature.com/articles/s41586-023-06243-w
https://www.mdpi.com/2673-7426/3/3/39
https://www.mdpi.com/2673-7426/3/3/39
https://docs.rwu.edu/seccm_fp/202/
https://docs.rwu.edu/seccm_fp/202/
https://www.nature.com/articles/s41746-024-01073-0
https://www.nature.com/articles/s41746-024-01073-0
https://pubmed.ncbi.nlm.nih.gov/33972771/
https://pubmed.ncbi.nlm.nih.gov/33972771/
https://pubmed.ncbi.nlm.nih.gov/39134804/
https://pubmed.ncbi.nlm.nih.gov/39134804/
https://pubmed.ncbi.nlm.nih.gov/39134804/
https://pubmed.ncbi.nlm.nih.gov/38622705/
https://pubmed.ncbi.nlm.nih.gov/38622705/
https://www.mdpi.com/2076-3417/14/2/675
https://www.mdpi.com/2076-3417/14/2/675
https://www.mdpi.com/2076-3417/14/2/675

	Title
	Introduction 
	Conclusion 
	Acknowledgments 
	Conflicts of interest 
	References 

