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Introduction 
Ultra-high molecular weight polyethylene (UHMWPE) polymer 

is widely used in medical applications such as orthopedic implant in 
recent years due to its tensile strength, bio-compatibility, low friction 
coefficient, long life durability, chemical resistance and wear resistance. 
In addition, it is also successfully used in engineering application such 
as bearing material applications.1,2 These properties enable the material 
to be used in a range of high-tech industrial applications. Knee joints 
are the only solution for patients who are completely worn out and 
are commonly used in prosthetic applications. Prosthesis geometry 
and type of loading determine the size of prosthetic contact stresses 
and contact areas.3 On the other hand, the tribological performance of 
the prosthetic material is very important in applications where wear 
occurs. In such applications, there should be no abrasion or very low 
wear and the debris particles produced mustn’t be toxic. Excessive 
wear on prosthetic materials causes the loosening of the prosthesis in 
the bone. This causes pain in the patient, makes life difficult and can 
reduce the quality of life.

UHMWPE polymer is very useful material for bio-material 
applications. It has bio-compatibility, excellent resistance to most 
biological solutions such as chemical resistance, high toughness 
and low friction coefficient.4 Understanding the wear and friction 
properties and mechanical properties of the UHMWPE polymer 
will be important to reduce the pain of patients suffering from joint 
discomfort. 

ANNs have been increased to use predict for engineering 
applications due to finding more suitable and better.5 Therefore, the 
ANN is getting an efficient method for the prediction of the tribological 
behavior of medical grade polymer. There are a few studied in this 

area. Sabouhi et al.6 are proposed a method for the polymer-carbon 
nanotube composites by using artificial neural networks (ANN) 
and they evaluated the mechanical and physical properties on the 
composites. They found that their model was a successful prediction 
on elastic modulus values of polymer-carbon nanotube composites in 
their studied range. Velten et al.7 were studied to predict wearing on 
polymer composites by using artificial neural networks and found the 
effect of the wear volume on reinforced thermoplastics having short 
fiber with particles. They used an ANN model and applied on wear 
volume results depending on the mechanical properties and the test 
conditions. Zhang et al.8 have predicted wear rate and COF short fibre 
reinforced polyamide by using measured data by using a multiple-
layer feed forward neural network. They showed that the predicted data 
was good acceptable when comparing with the experimental values. 
Lada & Friedrich9 presented the prediction results on the polymer 
composites for sliding friction and wear rate. They used a pin-on-
disc test machine to get data for sliding wear rate of poly-phenylene 
sulfide matrix composites by using artificial neural networks (ANNs). 
They found their model has good agreement comparing with test 
results. Artificial neural network analysis (ANN) is performed on the 
tribological behavior of medical grade, GUR 1020, medical grade 
UHMWPE polymer by using a feedforward with back propagation 
structure of neural network structure. Artificial neural networks 
results show good agreement comparing with real test data. A good 
structure with well-trained the artificial neural networks is provided 
to be very suitable results to get an optimum design of composite 
materials and particular tribological applications. Also, it can give a 
lead to systematic parameter studies.

There is lots of study about wear of polymer and especially medical 
grade polymer material. In addition, there are also a lot of studies 
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Abstract

In this study, the tribological behavior of medical grade ultra-high molecular weight 
polyethylene (UHMWPE) polymer was used. A pin-on-disc wear test machine was used 
for the tribological tests. Medical grade UHMWPE as a polymer pin material and DIN 
X2 CrNiMo 17 13 2 stainless steel as a disc material were used. Friction and wear tests 
were done under distilled water, egg albumen and dry sliding conditions at 0.5, 1.0 and 
2.0 m/s sliding speeds and under 50, 100 and 150 N applied loads. The results showed 
that the coefficient of friction (COF) for medical grade UHMWPE is more significantly 
influenced by the sliding speeds and applied loads under dry sliding condition rather 
than distilled water and egg albumen lubrication conditions. Furthermore, both the 
COF and wear rate values increased with the increment of applied load and sliding 
speed. For the range of applied load and sliding speed values of this study, the lower 
wear rate values were obtained using an egg albumen lubricant when compared to 
distilled water and dry sliding conditions. In this study, numerical analysis contains 
an artificial neural network (ANN) and linear regression respectively. In addition, 
both of numerical methods compared with experimental results for predicting both 
COF and wear rate values of medical grade UHMWPE polymer material in different 
sliding conditions. The developed ANN method is presented in the study. ANN results 
showed that the predicted data are perfectly suitable with experimental results than 
linear regression results. 
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about the prediction of the tribological performance of polymers but 
there are a few studies about artificial neural networks (ANN) of 
medical grade polymer materials in the literature. In this experimental 
study the aim is to investigate the tribological performances of GUR 
1020 commercial code UHMWPE polymer in different lubricant 
environments against steel disc. The wear tests were done on a pin-
on-disc wear machine. DIN X2 CrNiMo 17 13 2 stainless steel disc 
was used as a counter-face material. Tribological experiments were 
performed in dry media conditions, distilled water and egg albumen 
lubricant environments. The tribological tests were done under various 
loads such as 50N, 100N and 150N, and at three different speeds, 
such as 0.5, 1.0 and 2.0 m/s, at ambient temperature. Wear rate values 
were obtained for the GUR 1020 medical UHMWPE at dry conditions 
and different lubricated conditions such as distilled water and egg 
albumen. In the study, numerical analysis contains an artificial neural 
network ANN and linear regression respectively. In addition, both of 
numerical methods compared with experimental results for predicting 
both COF and wear rate values of medical UHMWPE polymer in 
different sliding conditions. The developed ANN method is presented 
in the study. ANN results showed that the predicted data are perfectly 
suitable with experimental results than linear regression results.

Experimental details
Materials

In this experimental study, medical grade UHMWPE for surgical 
implants according to ISO 5834 and ASTM F 648 compressed molded 
low calcium GUR (CHIRULEN) 1020 (Quadrant PHS, Germany), 
was used as the base material. The basic properties of the material, as 
claimed by the supplier, are listed in Table 1. The diameter and length 
of UHMWPE polymer pin material is 6 mm and 50 mm respectively. 
X2 CrNiMo 17 13 2 stainless steel disc material with DIN symbol 
was used as a counter-face material. Disc material was machined to 
100 mm diameter and 5mm thickness. The Vickers hardness of the 
counter-face disc material is average HV 297. Before friction and 
wear testing, each pin and steel disc materials were cleaned with 
alcohol. Tribological test condition of the ultra-high molecular weight 
polyethylene thermoplastic polymer is shown in Table 2. 

Table 1 Properties of GUR 1020 UHMWPE polymer

Properties Unit

Tensile stress at yield (tensile strength) >21MPa

Tensile stress at break (ultimate tensile strength) >35MPa

Elongation at break >300%

Tensile modulus  ̴ 720MPa

Shore-Hardness D, 15 s value 60-65

Water absorption at 23°C until saturation <0,01%

Sterilization, Superheated steam 121/134°C No

Sterilization, Gamma (inert atmosphere) yes

Sterilization, Ethylene oxide yes

Sterilization, Gas plasma yes

Average molecular weight (average molecular 
mass) according to Margolie's equation ̴5x106g/mol 

Table 2 Test parameters of GUR 1020 UHMWPE polymer material

Test parameters Values

Applied load, N 50, 100, 150

Sliding speed, m/s 0.5, 1.0, 2.0

Humidity, RH 56±2%

Ambient temperature, °C 21±2

Dropping velocity of water, drops/min 20

The tribometer and tests

Pin-on-disc sliding wear test machine was used for the sliding 
wear study of medical grade UHMWPE polymer. The coefficient of 
friction (µ) of the UHMWPE polymer was directly obtained from the 
equipment that records the µ value by using the following formula

			   / Fµ Ff n= 		   (1)

In the formula, Ff is frictional force and Fn is the applied load on 
the sample. Generally, the wear rate is defined by the fact that the 
wear loss (Δm) is divided by the normal load (Fn), the sliding distance 
(L) and the polymer pin density (ρ). The following formula was 
used to estimate the wear rate (Wr) of ultra-high molecular weight 
polyethylene polymer samples;

		            /Wr m FnxLxρ= 		  (2)

The polymer samples were cleaned by using a soft brush to 
remove the worn particles before and after each run of 2km sliding 
distance. In addition, friction surfaces of stainless steel were polished 
by corundum paper to obtain a surface roughness of 0.25µm. The 
UHMWPE polymer pin samples and stainless steel discs were cleaned 
with alcohol and then installed in the pin-on-disc wear test device. 
The tribological tests of UHMWPE polymer material were performed 
at the sliding speed of 0.5, 1.0 and 2.0m/s under the applied loads of 
50N, 100N and 150N for dry sliding condition and distilled water and 
egg albumen conditions. Friction and wear tests were carried out at 
room temperature Figure 1 shows a schematic diagram of the pin-on-
disc wear test device. As shown in Figure 1, pin-on-disc wear device is 
specially designed and manufactured for tribological tests. As shown in 
this figure, the device consists of a table made of stainless steel which 
is mounted on a turntable and a variable speed electric motor which 
provides the unidirectional motion to the turntable, hence to the disk 
sample and a pin sample holder which is rigidly attached to a pivoted 
loading arm. This loading arm is supported in bearing arrangements 
to allow loads to be applied to the polymer pin sample. During the 
test, friction force was measured by a load cell which is mounted on 
the loading arm. The friction force readings on the loading arm were 
taken as the average of 30 readings every one second for a period of 
sliding wear testing time. For this, a microprocessor controlled data 
acquisition system was used. The wear rates of ultra-high molecular 
weight polyethylene polymer material were calculated from mass 
loss measurements of the pin material. Wear rate and COF data of the 
materials are obtained from the average of at least three runs.

Artificial neural network structure 
Recently, the backpropagation structure is applied training 

feedforward networks to modeling and the method is the most 
suitable method for these studies. The feedforward network with 
backpropagation structure was developed from available different 
kinds of literature.10–14 An artificial neural network modeling to the 
prediction of tribological data, the friction and the wear, is performed 
for this study. An artificial neural network is performed for processes 
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of the learning and training structures. Developed the codes of the 
computer using visual C program used for solve the model network 
structure. The method is explained following. 

Figure 1 Schematic diagram of the friction and wear test machine.

A.	 Compose a training model and advance over the network to 
obtain outputs 

B.	 Set the start: all weights adjust to small random and the 
threshold value. The training group data group sets are normalized to 
values between 0.1 and 0.9 for processing.

C.	 Net inputs to on the hidden layer`s jth nodes 
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where; NETj is the net input to hidden layer, wij is weight values 
connection from the ith input nodes to the jth nodes on hidden layer, xi 
is the input node value, jθ  is the threshold between input layer and 
hidden layer. i and j are nodes on input and hidden layers. 

D.	 The output of the jth nodes on the hidden layer:
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where; Vj is the neuron vectors on hidden layer, hf  is a logistic-
sigmoid activation function from input layer to hidden layer, hλ  is a 
variable, it controls the slope of the sigmoid function on hidden layer 

E.	 The net inputs on hidden layer`s kth nodes 

 		           
n
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where; Netk is the net input to hidden layer, wkj is weight values 
connection from the jth nodes on hidden layer to the kth nodes on 
output layer and θk  is the threshold between the hidden layer and 
output layer.

F.	 The output on the output layer`s kth nodes
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where; OUTk is the neuron`s output of from output layer, kF  is a 
logistic sigmoid activation function from hidden layer to the output 
layer, λk  is a variable, it controls the slope of the sigmoid-function 
on the output layer.

G.	 Computed error values between the output and the obtained 
output on output layer:

 		         	  
( ) ( )1 1   1k k k k k k kt OUT f and f OUT OUTϕ = − − = − 	         (7)

where; ϕk  is the vector errors from each output neurons, tk is the 

target activation of the output layer, ′kf  is the local node`s activation 
slope of function from output nodes.

For errors on the hidden layer
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where; ϕ j  is the vector`s error from every hidden neurons, ϕk  is a 
sum of weighted the nodes, ′hf  is the local node`s activation function 
slope from hidden nodes. 

H.	 Regulation of thresholds and weights on output layer

	   ( )1 1t t t t
kj kj k j kj kjW W V W Wδϕ α− −= + + − 	 	         (9) 		
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where; δ  is the multiplier learning value, α  is the multiplier 
momentum value and t is the time. The multiplier learning value 
and the multiplier momentum value are used to change the previous 
weights to adjust the weight values in the time cycles. These 
procedures repeat to obtain the errors of the output layer inside the 
target tolerance for each step.

The feedforward and backpropagation structure of neural network 
within a three-layer for the COF and wear rate are shown in Figure 2. 

Figure 2 The feedforward and backpropagation artificial neural network 
within a three-layer schema for input and output variables.

The two input variables are the load and sliding speed. The two 

output variables, the COF and the wear rate, were used at the network 
structure. The weights, number of nodes and biases make adjustments 
to minimize errors between the target values and the valid data. the 
configurations structure of the neural network are set by selecting 
the multiplier learning value, the multiplier momentum coefficient, 
number of hidden to obtain the least error convergences. 54 situations 
were created from data and then it was divided into six groups. These 
groups are the dry, the distilled water and the egg albumen for the 
COF and the specific wear. All data are separated into two groups, the 
first group selected randomly from a quarter of all data which were 
used for training of the neural network. The second group selected 
randomly from rest of training data of all data which were used for 
verifying the ANN model. Initialize of the model network are the two 
inputs, two outputs, and nine hidden layers. The multiplier of learning 
values and the multiplier momentum coefficients are 0.6 for learning 
processes. The processes run with 500,000 iterations to obtain well fit 
in the structure. Generally, more than one error measuring parameters 
are used for evaluation of the performance neural network.15 In this 
study, three error measuring parameters; mean relative error (MRE), 
the standard deviations in the relative (STD) errors and the absolute 
fraction of variance (R2) are used for evaluation of the performance 
various neural network.

The performances of neural network configurations were 
compared with experimental results using MRE, STD and R2 in Table 
3 are defined respectively as follows:
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 Table 3 Comparison of MRE, R2 and (STD) for the COF and the wear rate

Tribological test Load Sliding speeds 
(m/s) Coefficient of friction Wear rate

Conditions (N) Experimental 
results ANN model results Experimental 

results (10-6)
ANN model results 
(10-6)

50 0.5 0.205 0.205115 4.33 4.326

Dry sliding 50 1 0.22 0.219815 6.14 6.1458

50 2 0.23 0.230053 7.39 7.3878

100 0.5 0.19 0.189916 3.32 3.3269

100 1 0.2 0.200023 3.74 3.7373

100 2 0.22 0.220078 6.28 6.2774

150 0.5 0.18 0.179941 2.91 2.9158

150 1 0.195 0.195127 3.32 3.3068

150 2 0.21 0.209893 3.94 3.9479

Mean relative error, MRE (%) 4,47 1.485

Standard deviations in the relative (STD) 0.21805 4.87562

Absolute fraction of variance (R2) 0.999998 0.999969

50 0.5 0.16 0.160057 3.52 3.5195

Distilled water 50 1 0.169 0.168929 4.05 4.0507

50 2 0.19 0.190008 5.97 5.9698

100 0.5 0.15 0.149924 2.78 2.7814

100 1 0.158 0.158088 3.14 3.1386

100 2 0.17 0.169979 4.05 4.05

150 0.5 0.14 0.140028 2.22 2.2193

150 1 0.153 0.152956 2.76 2.7605

150 2 0.16 0.160004 3.45 3.4498

Mean relative error, MRE (%) 2,79 2.06

Standard deviations in the relative (STD) 0.1709 3.76413

Absolute fraction of variance (R2) 0.999999 0.999999

50 0.5 0.136 0.136156 3.83 3.83

Egg albumen 50 1 0.147 0.146866 4.56 4.5603

50 2 0.154 0.154046 4.84 4.8399

100 0.5 0.13 0.129738 2.14 2.1388

100 1 0.14 0.140146 2.65 2.6506

100 2 0.15 0.14999 3.47 3.4699

150 0.5 0.125 0.125105 1.64 1.6422

150 1 0.135 0.134988 2.27 2.2696

150 2 0.145 0.144976 2.73 2.7303
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Tribological test Load Sliding speeds 
(m/s) Coefficient of friction Wear rate

Mean relative error, MRE (%) 7,3 2.76

Standard deviations in the relative (STD) 0.14872 3.31523

Absolute fraction of variance (R2) 0.999992 0.999998

Table Continued
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Where, B is equal to ( ) /pre T TC C C− . The parameter preC  is the 
predicted output from the artificial neural network model depending 
on input values while BT is the target output (experimental results), ie  
is the target output, it  is the experimental result, n is the number of 
data values and C  is the arithmetic mean of the numbers.

Results of the neural network model	
The experimental results are compared with the neural network as 

shown in Table 3. The three error measuring parameters; MRE, STD 
and R2 are showed that the development model is very well agreements 
with experimental results. The model has 4.47, 2.79 and 7.3 of the 
mean relative error percentage (MRE %) result in dry sliding, distilled 
water, and egg albumen respectively. The average MRE% is 4.853. 
Absolute fractions of variances are almost 1.0 at all conditions and 
average the standard deviation in the relative errors (STD) is 0.18589 
at all conditions for the COF with comparing experimental results. For 
the wear rate; The ANN model has 2.102 of the average mean relative 
error percentage (MRE %), and absolute fractions of variances are 
almost 1, and the average standard deviations in the relative (STD) 
errors is 3.985 results dry sliding, distilled water, and egg albumen 
respectively. The average MRE% is 4.853 in all conditions. Absolute 
fractions of variances are almost 1 at all conditions and average 
the standard deviation in the relative errors (STD) is 0.18589 at all 
conditions by comparing experimental results. 

Artificial neural network general gives better results with 
comparing the other numerical methods, So artificial neural network 
can use all sciences. Comparisons of the COF results of the developed 
neural network model with experimental data at 50 N, 100 N, and 
150 N of the load various for dry sliding condition and distilled water 
and egg albumen conditions are shown in Figure 3–5 respectively. 
Comparisons of the wear rate results of the developed neural network 
model with experimental data at 50 N, 100 N, and 150 N of the load 
various for dry sliding condition and distilled water and egg albumen 
conditions are shown in Figure 6–8 respectively. Figures show that 
ANN results are good agreements with experimental data. Linear 
regression analyses are performed to compare with ANN results using 

fraction of variance (R2) as shown in Table 4. Average the fraction 
of variance for ANN results has a 0.9999 both the COF and the wear 
rate. Average of linear regression results have 0.9516 for the COF and 
0.9526 for the wear rate results for as shown in Table 4.

Figure 3 Comparison of the friction coefficient results of the ANN model 
with experimental data at 50N of the load various the sliding speeds.

Figure 4 Comparison of the friction coefficient results of the ANN model 
with experimental data at 100N of the load various the sliding speeds.

Figure 5 Comparison of the friction coefficient results of the ANN model 
with experimental data at 150N of the load various the sliding speeds.
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Table 4 Comparison of absolute fraction of variance (R2) for ANN and linear regression results for the COF and the wear rate

Load (N) Tribological test conditions Coefficient of friction Wear rate

Linear 
regression

ANN model 
results

Linear 
regression

ANN model 
results 

50 Dry sliding 0.9097 0.9999 0.9152 0.9999

Egg albumen 0.9024 0.9999 0.8171 0.9999

Distilled water 0.9986 1 0.9841 1

100 Dry sliding 0.992 10,000 0.9597 0.9999

Egg albumen 0.9642 0.9999 0.9968 1

Distilled water 0.9943 1 0.9969 1

150 Dry sliding 0.9651 0.9999 0.9946 1

Egg albumen 0.9632 0.9999 0.9236 0.9999

Distilled water 0.8748 0.9999 0.9857 0.9999

Average fraction of variance (R2) 0.9516 0.9999 0.9526 0.9999
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Figure 6 Comparison of the wear rate values results of the ANN model with 
experimental data at 50N of the load various the sliding speeds.

Figure 7 Comparison of the wear rate values results of the ANN model with 
experimental data at 100N of the load various the sliding speeds.

Figure 8 Comparison of the wear rate values results of the ANN model with 
experimental data at 150N of the load various the sliding speeds.

Conclusion
The following conclusions can be drawn from the tribological 

study. 

a.	 Under egg albumen conditions, the friction coefficient of 
medical grade UHMWPE polymer material is obtained lower 
than that of under the distilled water and dry lubrication 
conditions. 

b.	 The lowest wear rate is obtained 1.64x10−6mm3/Nm for ultra-
high molecular weight polyethylene polymer under the egg 
albumen lubricated conditions at the sliding speed of 0.5m/s 
and under the load of150N. In contrast, the biggest wear rate 
is also obtained for ultra-high molecular weight polyethylene 
polymer at the sliding speed of 2m/s and under the applied 
load of 100N and the dry sliding condition with a value of 
6.280x10−6mm3/Nm. 

c.	 For among of lubrication media used in this experimental 
study, the wear rate is influenced highly by the variation of 
applied load and the lubrication media. 

d.	 Egg albumen is the most effective lubricant among the 
lubricants used in this experimental investigation. 

e.	 A feedforward and backpropagation artificial neural network 
structure are developed and applied for the COF and the wear 
rate on UHMWPE polymer. 

f.	 The present neural network model compares with experimental 
data and the artificial neural network has provided very well 
agreement for the COF and the wear rate with the experimental 
data.

g.	 ANN model has 4.85% of mean relative error and 0.9999 of 
absolute fraction of variance (R2) for COF. Also, the model has 
2.10% of mean relative error and 0.9999 of absolute fraction 
of variance (R2) for wear rate. The results are showed that the 
model is a perfectly acceptable method.

	 ANN model is better than linear regression with compared    
results.
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