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Introduction
Metabolic engineering and synthetic biology are important 

complementary platforms in the current Fourth Industrial Revolution 
to translate research into commercially viable products,1,2 with many 
researchers calling for the utilization of both fields3–5 to access 
nature’s diversity.6 As engineered circuits are becoming increasingly 
complex, our limited knowledge in optimizing complex circuits 
often impedes current efforts and computational models are seen as a 
means of screening potential designs.7 Several recent studies had used 
computational models to aid in designing engineering strategies. For 
example, Kim et al.8 used genome-scale metabolic model (GSM) to 
improve lipid production in Yarrowia lipolytica and Wayman et al.9 
used GSM to improve glycan production in Escherichia coli while 
Tian et al.10 used kinetic model (KM) to improve N-acetylneuraminic 
acid production in Bacillus subtilis. 

Modelling refers to the mathematical construction of a model 
while simulation is the execution and solving of the model.11 GSMs 
and KMs are the two main modelling approaches for metabolic 
engineering. GSMs are concerned with the distribution of intracellular 
fluxes of metabolites while KMs are concerned with the interactions of 
metabolites. GSMs, also known as constraint-based models, are based 
largely on metabolic stoichiometries and mass balance12 while KMs 
are largely based on rate equation.13 As such, GSMs cannot capture 
the relationship between flux, enzyme expression, metabolite levels, 
and regulation that is possible with KMs.14 Hence, GSMs generally 
provides only steady-state distribution of metabolic fluxes while KMs 
provide time series of metabolite concentrations. Kerkhoven et al.15 
surmised GSMs as top-down approach while KMs as bottom-up 
approach. Sier et al.16 has demonstrated that coupling both approaches 
can yield novel insights.

Due to the fundamental differences in modelling philosophies, 
computational tools for GSMs and KMs are largely disjoint. The core 
tool for GSM is COBRA Toolbox17 for MATLAB and its subsequent 
version, COBRApy18 for Python programming language. A large 
repertoire of tools had been developed for GSMs over the last 2 
decades19 since the publication of the first GSM in 1999.20 Cameo21 
builds on top of these tools and presents a high-level interface for GSM 
usage. Yet, Python programming knowledge is required to use Cameo 
as it is a Python library. On the KM front, the most well-known tool is 

COPASI22 which had been used in many studies.23 However, despite 
providing a user-friendly interface to simulate models and present 
results, it is difficult to merge multiple existing models in COPASI as 
it requires finding the common metabolites between the two models 
and rewriting the affected equations.

To address these difficulties, AdvanceSyn Toolkit is presented as a 
high-level command-line tool to develop KMs, and to analyse GSMs 
and KMs. AdvanceSyn Toolkit wraps key operations in Cameo21 into 
a unified command-line interface; thus, elevating the need to know 
Python programming. As a command-line interface tool, AdvanceSyn 
Toolkit can be incorporated into computational biology and 
bioinformatics pipelines.24 AdvanceSyn Model (ASM) specification 
is based on Antimony language25 used in Tellurium,26 which is simple 
and modular; and initialization file structure. This makes ASM a code 
file format rather than a data-exchange file format; such as JSON, 
which is substantially more verbose, requires more structure, and data 
type formatting. Moreover, AdvanceSyn Toolkit provides a method to 
merge two or more ASM files, a feature not found in existing tools, 
which allows for more effective reuse of existing models.

Results
AdvanceSyn Toolkit is open source software written in Python and 

Python-Fire module (https://github.com/google/python-fire), which 
aims to simplify the implementation of command-line interface in 
Python 3. This combination has been used in several other tools.27,28 
AdvanceSyn Toolkit has two main sets of operations (Figure 1; 
Supplementary materials S2 to S21); namely, 10 operations for KMs, 
and 9 operations for GSMs via Cameo.21 Here, three use cases are 
presented to illustrate core features of AdvanceSyn Toolkit. 

Use Case #1; Development and Analysis of KM: Here, two separate 
KMs were developed, one for glycolysis pathway (Supplementary 
material S22) and another for pentose phosphate pathway 
(Supplementary material S23). Glycolysis pathway consists of nine 
reaction steps while pentose phosphate pathway consists of six reaction 
steps (Figure 2). However, there is one reaction linking glycolysis, 
from glucose-6-phosphate (g6p), to 6-phosphogluconolactone (pgl6) 
in pentose phosphate pathway. For simplicity, co-factor(s) and co-
substrate(s) such as ATP and NADP are not modelled. Each reaction 
step is mathematically modelled as a rate expression, also known as 
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rate law,29 which corresponds to the kinetic law in System Biology 
Markup Language (SBML).30 This allows the concentration of each 
metabolite is modelled as a rate equation in the form of 

where each production and usage term represents a reaction step 
and in this use case, is modelled as a product of the concentration 
of enzyme and substrate(s) in the general form of 
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For example, the concentration of glucose-6-phosphate (g6p) over 
time is modelled as                                                       where 
HK, PGI, and G6PD are hexokinase (converting glucose to glucose-6-
phosphate), phosphoglucoisomerase (converting glucose-6-phosphate 
to fructose-6-phosphate), and glucose 6-phosphate dehydrogenase 
(converting glucose-6-phosphate to 6-phosphogluconolactone), 
respectively. AdvanceSyn Toolkit does not assume any specific type 
of rate expression as each reaction is defined by the user in the model, 
making it possible to have a different type of rate expression for each 
reaction.

Figure 1 Overview of functionality.

The concentration of all metabolites and enzymes are fixed at 1 
micromolar; except glucose, which is given at 1 millimolar. Glycolysis 
pathway model and pentose phosphate pathway model were merged 
(Supplementary material S24) based on common metabolites across 
the two models before generating a simulation script (Supplementary 
material S25) for simulation (Supplementary material S26). Merging 
is performed under the assumption that units used in both models 
are identical. Briefly, the models are merged using the union set of 
the metabolites as nodes and re-coding each reaction as edges and 
parameters as attributes. Our simulation results suggest that the rate of 
6-phosphogluconolactone (pgl6) increases faster than both pyruvate 
(pyr) and xylulose-5-phosphate (x5p) given the current conditions. 
Sensitivity analysis (Supplementary material S27) using One-Factor-
at-a-Time method31,32 was used to evaluate the effects of varying 
enzyme concentrations (as listed in the Variables section of the model) 
on the overall metabolite distribution. Mean square error (MSE) 
between the metabolites in each variation of enzyme concentration 
and that of the original model, which is directly proportional to 
the impact of the enzyme concentration on the overall metabolite 
distribution, were calculated as 

                                                                                                                                               . 

Our sensitivity analysis suggests that hexokinase concentration has 
the most impact followed by phosphoglucoisomerase and glucose 
6-phosphate dehydrogenase. The results of both simulation and 
sensitivity analysis are given as comma-delimited files to enable 
analysis by other statistical software. This also allows the user 

to determine the effect of the concentration of each enzyme on a 
metabolite of interest, which can be useful in informing engineering 
strategies (Figure 2).33

Figure 2 Merging and analysis of KMs.The acronyms for metabolites in the 
models are as follow (in alphabetical order): bpg13 (D-1,3-bisphosphoglycerate), 
dhap (Dihydroxyacetone-phosphate), ery4p (erythose-4-phosphate), g6p 
(D-Glucose-6-phosphate), gadp (D-glyceraldehyde-3-phosphate), glucose 
(D-glucose), gly3p (glyceraldehyde-4-phosphate), f16p (D-Fructose-1,6-
bisphosphate), f6p (D-Fructose-6-phosphate), pep (phosphoenolpyruvate), pg2 
(2-phosphoglycerate), pg3 (3-phosphoglycerate), pg6 (6-phosphogluconate), 
pgl6 (6-phosphogluconolactone), pyr (pyruvate), r5p (ribulose-5-phosphate), 
ri5p (ribose-5-phosphate), sedo7p (sedoheptulose-7-phosphate), and x5p 
(xylulose-5-phosphate) (Figure 3).

Figure 3 Splitting and merging of model gives identical simulation results.

Use Case #2; Merging of KMs: To further emphasize merging of 
KMs, the simplified vanillin producing cell factory KM by Yeoh 
et al.34 was implemented in totality (Supplementary material S28) 
and simulated. The original model was split into two constituent 
models of cell growth model (Supplementary material S29) and 
vanillin producing model (Supplementary material S30). These 
two constituent models were then merged (Supplementary material 
S31) and simulated. Simulation results from the original and merged 
models were compared. Our result (Figure 3) shows that simulation 
results from the original model is identical (MSE = 0) to that of the 
merged model, demonstrating that the model merging algorithm is 
functioning correctly. In addition, this also demonstrate an important 
usage of AdvanceSyn Toolkit where cloned gene cassette(s), vanillin 
producing pathway in this case, can be merged with cell host model. 
Moreover, Yeoh et al.34 use Hill equation,35 which is different to that 
in Use Case #1; this further emphasizes that AdvanceSyn Toolkit does 
not assume any specific type of rate expression.

Use Case #3; Analysis of GSM: GSMs are commonly used for 
evaluating knockout strategies36 or media components37 to optimize 
yield of a metabolite of interest. AdvanceSyn Toolkit is built on top of 
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the functions of Cameo21 to evaluate the biomass objective function,38 
which is a proxy for growth rate, or fluxes when one or more media 
component(s) or enzyme expression(s) were changed. Chang and 
Ling39 had used AdvanceSyn Toolkit to explain the effects of varying 
glucose concentration in media, using cameo-medium-fba or cameo-
medium-pfba operations, to the fluxes of Escherichia coli MG1655 
using the GSM model, iAF1260.40 It is essentially an attempt to 
explain Monod Equation in terms of metabolism and found a strong 
correlation (r = 0.972) between Monod’s predicted growth rate and 
biomass objective value from GSM. Moreover, Chang and Ling39 
suggests that Monod’s predicted growth rate of E. coli MG1655 
can be predicted by the fluxes of 14 enzymes. This illustrates that 
AdvanceSyn Toolkit can use operations from Cameo21 for GSM 
analysis without the need to learn Python programming.

Conclusion
AdvanceSyn Toolkit is an open-source, high-level command-

line tool to develop KMs, and to analyse GSMs and KMs. The 
ability to merge two or more KMs into a unified KM is a unique 
feature of AdvanceSyn Toolkit as this feature allows for incremental 
development of more advanced models. AdvanceSyn Toolkit is a 
project under active development. However, it is not possible to 
merge GSMs with KMs or to merge multiple GSMs at this moment. 
Other future work includes interfacing with existing tools to accept a 
diverse range of model specifications in order to be an effective model 
translator, and to expand the repertoire of existing tools by chaining 
operations across various existing tools.

Supplementary materials and data
The supplementary materials and data set for this article are 

available at http://bit.ly/ADSToolkit_Supplement and http://bit.ly/
ADSToolkit_DataSet respectively.

Availability and license 

AdvanceSyn Toolkit is licensed under the Apache License, Version 
2.0 for academic and not-for-profit use only, and is available at https://
bit.ly/ADSToolkit.
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