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metastasis of breast cancer from gene expression

data

Abstract

Background: In spite of the low number of overlapping genes between the various
published gene signatures for prediction of distant metastasis, the signatures had many
pathways in common. Identification of the key biological processes, rather than the
assessment of signatures based on individual genes, allows not only to build a biological
meaningful and robust gene biomarker from functionally related genes, but also provides
insight into the mechanism of the disease development.

Methods: In this work, we develop an artificial neural network framework for biomarker
development to predict distant metastasis of breast cancer from gene expression data. Our
intention for this structure is to potentially identify the underlying biological process in
the design network. We follow the evaluation framework by McShane and Hayes from the
National Cancer Institute to evaluate the proposed biomarker herein on three important
aspects: analytical validity, clinical validity, and clinical utility.

Results: The Gene Recurrence Risk Score (GRRS) from the artificial neural network model
developed herein has demonstrated significant association with the probability of distant
metastasis within 10 years after adjustment of other standard clinical or pathological factors.
On independent assessment TRANSBIG dataset, with distant metastasis within 10 years as
clinical outcome, GRRS produced a sensitivity of 86% and a specificity of 37%, a 4% and
3% improvement over Veridex risk score respectively for ER positive group. GRRS also
produced a sensitivity of 91% and a specificity of 32%, a 4% and 5% improvement over
Veridex risk score respectively for ER negative group. It also showed on par classification
accuracy with Veridex risk score for prediction of distant metastasis within 5 years for both
ER subgroups.

Conclusion: The Gene Recurrence Risk Score (GRRS) has demonstrated the prognostic
value and high classification accuracy for prediction of distant metastasis within 5 years
and within 10 years. The artificial neural network framework for biomarker development
for this specific task proves to be robust and effective. The model building itself also reveals
the necessity to stratify patients by their ER status for classification.
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Background

Use of biomarker-based tests to guide breast cancer therapy,
including tests based on omics data, has steadily increased over
the last decade in concert with efforts to personalize treatment
strategies to maximize chances patients will receive treatments
that most benefit them. In particular, the majority of patients with
early breast cancer receive some form of systemic adjuvant therapy
(chemotherapy and/or endocrine therapy), which may have important
side effects and which puts considerable burden on health care
costs. Although guidelines have been developed to assist clinicians
in selecting patients who should receive adjuvant therapy, it still
remains a challenge to distinguish those patients who would really
need adjuvant systemic therapy from those who could be spared
such treatment. Two independent groups conducted comprehensive
genome- wide assessments of gene expression profiling to identify
broadly applicable prognostic markers. The Netherlands Cancer
Institute in Amsterdam and Rosetta identified a 70- gene prognostic

signature reported by Van’t Veer at al.'? Thereafter, Erasmus Medical
Center and Veridex identified a 76-gene prognostic signature that
could be used to predict the development of distant metastases within
5 years in N- primary breast cancer patients (irrespective of age and
tumor size) who did not receive systemic treatment.>* Yu et al.>®
showed that in spite of the low number of overlapping genes between
the various published gene signatures for breast cancer, the signatures
had many pathways in common, implying that different prognostic
gene signatures represent common biology. Identification of the key
biological processes, rather than the assessment of sig- natures based
on individual genes, allows not only to build a biological meaningful
and robust gene biomarker from functionally related genes, but also
provides in- sight into the mechanism of the disease development.
The hallmarks of cancer are represented by pathways rather than
individual genes and the crucial aspect of pathways is that their
constituting genes are actively interacting with each other (Hanahan
and Weinberg).” In contrast, biomarkers based on individual genes
neglect these completely. In this work, we develop an artificial
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neural network framework for biomarker development to predict
distant metastasis of breast cancer from gene expression data. Our
intention for this structure is to potentially identify and incorporate
the underlying biological process in the design network. We follow
the evaluation framework by Shane Mc & Hayes® from the National
Cancer Institute to evaluate the proposed biomarker herein on three
important aspects: analytical validity, clinical validity, and clinical
utility. There are couple of advantages of this framework:

a. It’s simple. We apply a single neural network for prediction and
score generation from the gene expression data.

b. It’s synthetic. The neural network naturally incorporates the
interactions among functionally related genes. The neural
network is the most common approach for exact inference of
gene regulatory network (GRN).

c. It’s robust. Regularization and Cross-Validation can also be easily
incorporated into the network model building process to offset
“over- fitting”.

Methods

Datasets

We select the Wang® data set (GEO series GSE2034) as our
training dataset and KJ125 of GEO series GSE2990° as our validation
dataset for the training purpose. TRANSBIG (GEO series GSE7390)*
is selected as our independent assessment dataset. All datasets contain
gene expression data from patients with lymph-node-negative primary
breast cancer having not received adjuvant or neoadjuvant therapy.
Microarray analysis of all datasets were performed with Affymetrix
U133A Genechips. We avoid datasets with heterogeneous mixture
of standard clinical and pathological characteristics when trying
to determine the clinical value added by a new test is difficult. The
clinical outcome for both GSE2034 and KJ125 is distant metastasis
within 5 years. TRANSBIG has longer follow-up time, hence both
distant metastasis within 5 years and 10 years data are available. The
date of diagnosis of metastasis was defined as that at confirmation

Table | ER Status and Distant Metastasis Outcome of Three Data Sets
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of metastasis after symptoms reported by the patient, detection of
clinical signs, or at regular follow-up. Even though the clinical
outcome of the training datasets is distant metastasis within 5 years,
we choose distant metastasis within 10 years as primary clinical
outcome and distant metastasis within 5 years as secondary clinical
outcome for assessment purpose. The reason is that we would like
to see if the prognostic capability of the biomarker holds beyond 5
years and eventually we would like to develop a marker which can
provide classification accuracy of distant metastasis within 10 years
or beyond, so that patients with longer “dormant” period will not be
missed and proper targeted long-term therapy be put into place. The
Wang data set contains gene expression and ER status data on 286
women with lymph node negative breast cancer. The tumor samples
were selected from the tumor bank at the Erasmus Medical Center
from patients who were treated during 1980-95, but who didn’t receive
systematic neoadjuvant or adjuvant therapy. KJ125 dataset consists of
information obtained from a total of 125 patients with lymph-node-
negative primary operable invasive breast cancer, whose frozen tumor
specimens were archived at the John Radcliffe Hospital (Oxford, UK)
and the Uppsala University Hospital (Uppsala, Sweden). TRANSBIG
dataset consists of information obtained from a total of 198 patients
with lymph-node-negative primary breast cancer, whose frozen tumor
specimens were sent to Border Institute to perform the microarray
analysis. The median follow-up for the 198 patients included was 14.0
years. And distant metastases were found in 51 (26%) of them, with
35 of them showing progression within 5 years (18%). The patients
were assessed to high and low genomic risk using 76-gene prognostic
signature as described previously, and to high and low clinical risk, as
defined by the Adjuvant! Online software using the pre-defined cutoff.
We will name binary genomic risk group classification as Veridex risk
score and binary clinical risk classification as AOL risk score. One
hundred forty-three (72%) and 55 patients (28%) were classified as
high and low genomic risk, whereas 152 (77%) and 46 (23%) patients
were considered to be high and low clinical risk, respectively. Table
1 shows ER status and distant metastasis outcome breakdown for all
three datasets.

WANG KJ125 TRANSBIG
All patients  ER+ ER- All patients  ER+ ER- All patients ER+ ER-
(n=286) (n=209) (n=77) (n=119) (n=85) (n=34) (n=198) (n=134) (n=64)
Metastasis
within 5 years
Yes 107 (37%) 80 (38%) 27 (35%) 34 (29%) 19 (22%) 8 (24%) 35 (21%) 17 (13%) 18 (28%)
No 179 (63%) 129 (62%) 50 (65%) 85 (71%) 66 (78%) 26 (76%) 163 (79%) 117 (87%) 46 (72%)
Metastasis
within 10 years
Yes 51 (26%) 28 (21%) 23 (36%)
No 147 (74%) 106 (79%) 41 (64%)

Gene recurrence risk Score development

We develop an Artificial Neural Network from gene expression
data to predict the probability of distant metastasis of breast cancer
(recurrence). Our intention for this structure is to potentially model
the underlying biological process instead of individual genes in the

design network. In order to facilitate the utility of the score, a Gene
Recurrence Risk Score (GRRS) — the logarithmic of predicted
probability of distant metastasis is created as the biomarker. The
prediction accuracy and area under the curve (AUC) of the ROC
curve are used to evaluate the model performance and classification
capability of the GRRS. The confusion matrix is used to compare
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GRRS classification accuracy with the Veridex risk score and AOL
risk score. When a large feed forward neural network is trained on a
small training set, it typically performs poorly on held-out test data.
To address the problem of ‘overfitting’, we apply Dropout as our
regularization technique.'®!" The key idea of Dropout is to randomly
drop units (along with their connections) from the neural network
during training. This prevents units from co-adapting too much. This
also significantly reduces overfitting and gives major improvements
over other regularization methods. We initially use the total samples
of the Wang dataset to train the model, but there is a lot of variability
in the model performance. We suspect there is heterogeneity due
to ER status need to be account for as noted by Mosley et al.'? and
Gruvberger et al.'>! that estrogen receptor status in breast cancer is
associated with remarkably distinct gene expression patterns. We split
the training data stratified by ER status.

To determine the optimal structure of the neural network, we apply
double cross- validation, i.e. there is an ‘outer loop’ of validation with
ER positive/negative subgroup of KJ125 as the validation dataset to
correct for optimism and an ‘inner loop’ of 5-fold cross-validation
on the training dataset of oversampled ER positive/negative subgroup
of the Wang dataset for tuning parameters of the network. The final
neural network trained from ER positive subgroup (ERP model)
has three layers with two hidden layers. The first hidden layer has
300 nodes and second layer has 70 nodes. We then apply the final
model on the independent assessment data set - ER positive subgroup
of TRANSBIG dataset. Both distant metastasis within 5 years and
within 10 years are used as the clinical outcomes. The classification
accuracy is 87% and 79% and the area under the curve of the ROC is
0.77  and 0.69 respectively. Figure 1 shows the diagram of the final
neural network. We use the same analysis approach with ER negative
group. The final neural network model from ER negative subgroup
(ERN model) has three layers with two hidden layers. The first
hidden layer has 200 nodes. The second hidden layer has 70 nodes.
We apply the final model obtained from training ER negative group
on the independent assessment data set - ER negative subgroup of
TRANSBIG dataset. Both distant metastasis within 5 years and within
10 years are used as the clinical outcomes. The classification accuracy
is 73% and 66% and the area under the curve of the ROC is 0.68 and
0.64 respectively.

Input Layer ‘ ‘

The First Hidden Layer The Second Hidden Layer
Gene Expression Data 7!

00 nodes.

Output Layer
Predicted Probability
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Gene Recurrence Risk Score (GRRS) as one covariate together with
other standard clinical factors to assess the effect of potential factors
on the hazard of distant metastasis within 10 years simultaneously.

The p-value (p = 0.048) of the likelihood is significant, indicating
that the model is significant. Age, surgery type, grade, size,
histopathological tumor type, ER status all fail to be significant. The
p-value for GRRS score is 0.02, indicating a statistically significant
association of GRRS score with the distant metastasis hazard after
adjustment for standard clinical or pathological factors. The hazard
ratio (HR) is 1.04, i.e. the hazard increases 4% with one unit increase
in GRRS.

With the independent assessment data TRANSBIG ER negative
subgroup, we build another Cox proportional hazard model with the
Gene Recurrence Risk Score (GRRS) as one covariate together with
other standard clinical factors. Again, age, surgery type, grade, size,
histopathological tumor type, ER status all fail to be significant. The
p-value for GRRS score is 0.04, indicating a statistically significant
association of GRRS score with the distant metastasis hazard after
adjustment for standard clinical or pathological factors. The hazard
ratio (HR) is 1.04, i.e. the hazard increases 4% with one unit increase
in GRRS. Figure 2 show the ranking of significance of cox regression
coefficients and their confidence bands for ER positive and negative
subgroup separately.
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Figure | The diagram of final neural network model for ER positive group.

Results

Statistical validity of the predictor

With the independent assessment data TRANSBIG ER positive
subgroup, we build a cox proportional hazard model (COX) with the

Figure 2 Cox regression coefficients and their ranges on TRANSBIG ER
positive & negative subgroup separately.

Clinical validity and utility of the predictor

We then apply bootstrap resampling on TRANSBIG ER positive
subgroup data to estimate the robustness of the predictor and
determine the optimal cutoff value of GRRS for classification, i.e. at
each iteration, predict on the resampled data to obtain GRRS score,
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then classify each sample into high or low risk group with cutoff value
at -40, -37, -35 and -34 respectively. At cutoff value -34, we obtain a
confidence level of 80% that the sensitivity is greater than 80% and
a confidence level of 80% that the specificity is greater than 33%.
Figure 3 shows the empirical distribution of sensitivity and specificity
of GRRS with cutoff value at -34 from bootstraps samples. Next, we
apply bootstrap resampling on TRANSBIG ER negative subgroup
data with the same approach as to the ER positive subgroup. At cutoff
value -30, we obtain a confidence level of 80% that the sensitivity is
greater than 86% and a confidence level of 80% that the specificity
is greater than 26%. Figure 4 shows the empirical distribution of
sensitivity and specificity of GRRS with cutoff value at-30 from
bootstraps samples.
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32% with GRRS at cutoff value at -30. In comparison, the sensitivity
and specificity is 87% and 27% with Veridex risk score. GRRS has a
4% and 5% improvement in sensitivity and specificity over Veridex
risk score respectively. Even though AOL risk score has assigned all
distant metastasis patients to high risk, it also assigns all non- distant
metastasis patients to high risk group, with specificity as 0%. With
distant metastasis within 5 years as clinical outcome, for TRANSBIG
ER positive subgroup, both GRRS and Veridex correctly identify all
the patients who had distant metastasis within 5 years to high risk, but
GRRS has specificity at 37% vs Veridex at 35%. AOL risk score failed
to identify 3 patients with sensitivity at 82%. With distant metastasis
within 5 years as clinical outcome, for TRANSBIG ER negative
subgroup, both GRRS and Veridex have specificity at 28%, but GRRS
failed to assign one distant metastasis patient to high risk. Once again,
AOL risk score has assigned all distant metastasis patients to high
risk, it also assigns all non- distant metastasis patients to high risk
group, with specificity as 0%. Figure 5-8 show the confusion matrixes
of GRRS with Veridex and AOL risk score at specified cutoff value/
clinical outcome/ER subgroup as specified above.

Figure 3 Empirical distribution of sensitivity and specificity of GRRS at cutoff
point -34 for ER positive subgroup.

To assess the clinical validity and utility of the GRRS, we compare
its classification accuracy with Veridex risk score and with AOL risk
score using confusion matrix. We use distant metastasis within 10
years as primary clinical outcome and within 5 years as secondary
clinical outcome for comparison and assessment. With distant
metastasis within 10 years as clinical outcome, on TRANSBIG ER
positive subgroup, we obtain sensitivity at 86% and specificity at
37% with GRRS at cutoff value -34. In comparison, the sensitivity
and specificity is 82% and 34% with Veridex risk score, 78% and
37% with AOL risk score. GRRS has a 4% and 3% improvement in
sensitivity and specificity over Veridex risk score respectively, and
8% improvement in sensitivity over AOL risk score. With distant
metastasis within 10 years as clinical outcome, on TRANSBIG ER
negative subgroup, we obtain sensitivity at 91% and specificity at
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Figure 4 Empirical distribution of sensitivity and specificity of GRRS at cutoff
point -30 for ER negative subgroup.

Discussion

The Gene Recurrence Risk Score (GRRS) from the artificial neural
network model developed herein has demonstrated the significant
association and the additional prognostic value for prediction of
distant metastasis within 10 years from other standardly measured
clinical factors. On the independent assessment data set TRANSBIG,
GRRS has also produced better classification accuracy with higher
sensitivity and specificity than Veridex risk score and AOL risk
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score for prediction of distant metastasis within 10 years, and on par
with Veridex risk score for prediction of distant metastasis within 5
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Figure 6 GRRS classification accuracy comparison with multiple risk scores
on TRANSBIG ER negative subgroup (distant metastasis with [0 years).
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doesn’t apply for ER negative and vice versa. All these indicate
that the mechanisms for disease progression could differ for
these two ER-based subgroups of breast cancer patients. And it’s
necessary to stratify patients by their ER status for classification.
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for prediction of distant metastasis within 10 years and on par
with Veridex risk score for prediction distant metastasis within
5 years. It indicates that we might have identified a biological
process with the network capturing the interactions between
genes vs ones based on individual genes.

Figure 7 GRRS classification accuracy comparison with multiple risk scores
on TRANSBIG ER positive subgroup (Distant Metastasis within 5 years).
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Figure 8 GRRS classification accuracy comparison with multiple risk scores
on TRANSBIG ER negative (distant metastasis within 5 years).

The artificial neural network we developed herein is a GRN
following the definition by Emmert-Streib & Dehmer'? that “a network
that has been inferred from gene expression data a gene regulatory
network” which potentially provide information about regulatory
interactions between regulators and their potential targets and gene-
gene interactions. The exact inference of real world and synthetic
large scale GRN remains to be a difficult task to be achieved.'® Over
the past few years, there has been a growing interest in approaches
that integrate large scale inference information on molecular
interactions into biomarker discovery.!”!® The main disadvantage of
this approach is that the set of known interactions might be quite large,
many of them might not be relevant to the biological conditions under
investigation. However, the targeted gene expression prediction using
neural network is comparatively easier task than network inferences.

The follow-up we would like to do next is to work with physicians to
understand the biological representation of the nodes and interactions
identified by the artificial neural network developed herein and
provide deeper theoretical, biological, and casual understanding of
the identified artificial neural network and the underlying biological
process and explore more applications of the proposed development
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and evaluation framework, such as therapy-guiding biomarker
developments.

Conclusion

The Gene Recurrence Risk Score (GRRS) has demonstrated the
prognostic value and high classification accuracy for prediction of
distant metastasis within 5 years and within 10 years. The artificial
neural network framework for biomarker development for this
specific task proves to be robust and effective. The model building
itself also reveals the necessity to stratify patients by their ER status
for classification.'**

List of abbreviations

GRRS, Gene Recurrence Risk Score is the logarithmic of the
predicted probability of distant metastasis obtained from the artificial
neural network developed herein.

Veridex Risk Score, High or low risk group classification according
to 76-gen signature developed be Veridex using the pre-defined cutoff.

AOL risk score: High or low risk group classification according to
Adjuvant online software using the pre-defined cutoff.

ER, Estrogen receptors.

GRN, A network that has been inferred from gene expression data
a gene regulatory network, briefly denoted as GRN.

ROC curve, Receiver operating characteristic curve.
AUC, Area under the curve.

ERP model, The final neural network trained from ER positive
subgroup. ERN model: The final neural network trained from ER
negative subgroup. COX model: The cox proportional hazard model
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