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Background
Use of biomarker-based tests to guide breast cancer therapy, 

including tests based on omics data, has steadily increased over 
the last decade in concert with efforts to personalize treatment 
strategies to maximize chances patients will receive treatments 
that most benefit them. In particular, the majority of patients with 
early breast cancer receive some form of systemic adjuvant therapy 
(chemotherapy and/or endocrine therapy), which may have important 
side effects and which puts considerable burden on health care 
costs. Although guidelines have been developed to assist clinicians 
in selecting patients who should receive adjuvant therapy, it still 
remains a challenge to distinguish those patients who would really 
need adjuvant systemic therapy from those who could be spared 
such treatment. Two independent groups conducted comprehensive 
genome- wide assessments of gene expression profiling to identify 
broadly applicable prognostic markers. The Netherlands Cancer 
Institute in Amsterdam and Rosetta identified a 70- gene prognostic 

signature reported by Van’t Veer at al.1,2 Thereafter, Erasmus Medical 
Center and Veridex identified a 76-gene prognostic signature that 
could be used to predict the development of distant metastases within 
5 years in N- primary breast cancer patients (irrespective of age and 
tumor size) who did not receive systemic treatment.3,4 Yu et al.5,6 
showed that in spite of the low number of overlapping genes between 
the various published gene signatures for breast cancer, the signatures 
had many pathways in common, implying that different prognostic 
gene signatures represent common biology. Identification of the key 
biological processes, rather than the assessment of sig- natures based 
on individual genes, allows not only to build a biological meaningful 
and robust gene biomarker from functionally related genes, but also 
provides in- sight into the mechanism of the disease development. 
The hallmarks of cancer are represented by pathways rather than 
individual genes and the crucial aspect of pathways is that their 
constituting genes are actively interacting with each other (Hanahan 
and Weinberg).7 In contrast, biomarkers based on individual genes 
neglect these completely. In this work, we develop an artificial 
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Abstract

Background: In spite of the low number of overlapping genes between the various 
published gene signatures for prediction of distant metastasis, the signatures had many 
pathways in common. Identification of the key biological processes, rather than the 
assessment of signatures based on individual genes, allows not only to build a biological 
meaningful and robust gene biomarker from functionally related genes, but also provides 
insight into the mechanism of the disease development.

Methods: In this work, we develop an artificial neural network framework for biomarker 
development to predict distant metastasis of breast cancer from gene expression data. Our 
intention for this structure is to potentially identify the underlying biological process in 
the design network. We follow the evaluation framework by McShane and Hayes from the 
National Cancer Institute to evaluate the proposed biomarker herein on three important 
aspects: analytical validity, clinical validity, and clinical utility.

Results: The Gene Recurrence Risk Score (GRRS) from the artificial neural network model 
developed herein has demonstrated significant association with the probability of distant 
metastasis within 10 years after adjustment of other standard clinical or pathological factors. 
On independent assessment TRANSBIG dataset, with distant metastasis within 10 years as 
clinical outcome, GRRS produced a sensitivity of 86% and a specificity of 37%, a 4% and 
3% improvement over Veridex risk score respectively for ER positive group. GRRS also 
produced a sensitivity of 91% and a specificity of 32%, a 4% and 5% improvement over 
Veridex risk score respectively for ER negative group. It also showed on par classification 
accuracy with Veridex risk score for prediction of distant metastasis within 5 years for both 
ER subgroups.

Conclusion: The Gene Recurrence Risk Score (GRRS) has demonstrated the prognostic 
value and high classification accuracy for prediction of distant metastasis within 5 years 
and within 10 years. The artificial neural network framework for biomarker development 
for this specific task proves to be robust and effective. The model building itself also reveals 
the necessity to stratify patients by their ER status for classification.
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neural network framework for biomarker development to predict 
distant metastasis of breast cancer from gene expression data. Our 
intention for this structure is to potentially identify and incorporate 
the underlying biological process in the design network. We follow 
the evaluation framework by Shane Mc & Hayes8 from the National 
Cancer Institute to evaluate the proposed biomarker herein on three 
important aspects: analytical validity, clinical validity, and clinical 
utility. There are couple of advantages of this framework:

a.	 It’s simple. We apply a single neural network for prediction and 
score generation from the gene expression data.

b.	 It’s synthetic. The neural network naturally incorporates the 
interactions among functionally related genes. The neural 
network is the most common approach for exact inference of 
gene regulatory network (GRN).

c.	 It’s robust. Regularization and Cross-Validation can also be easily 
incorporated into the network model building process to offset 
“over- fitting”.

Methods
Datasets

We select the Wang3 data set (GEO series GSE2034) as our 
training dataset and KJ125 of GEO series GSE29909 as our validation 
dataset for the training purpose. TRANSBIG (GEO series GSE7390)4 
is selected as our independent assessment dataset. All datasets contain 
gene expression data from patients with lymph-node-negative primary 
breast cancer having not received adjuvant or neoadjuvant therapy. 
Microarray analysis of all datasets were performed with Affymetrix 
U133A Genechips. We avoid datasets with heterogeneous mixture 
of standard clinical and pathological characteristics when trying 
to determine the clinical value added by a new test is difficult. The 
clinical outcome for both GSE2034 and KJ125 is distant metastasis 
within 5 years. TRANSBIG has longer follow-up time, hence both 
distant metastasis within 5 years and 10 years data are available. The 
date of diagnosis of metastasis was defined as that at confirmation 

of metastasis after symptoms reported by the patient, detection of 
clinical signs, or at regular follow-up. Even though the clinical 
outcome of the training datasets is distant metastasis within 5 years, 
we choose distant metastasis within 10 years as primary clinical 
outcome and distant metastasis within 5 years as secondary clinical 
outcome for assessment purpose. The reason is that we would like 
to see if the prognostic capability of the biomarker holds beyond 5 
years and eventually we would like to develop a marker which can 
provide classification accuracy of distant metastasis within 10 years 
or beyond, so that patients with longer “dormant” period will not be 
missed and proper targeted long-term therapy be put into place. The 
Wang data set contains gene expression and ER status data on 286 
women with lymph node negative breast cancer. The tumor samples 
were selected from the tumor bank at the Erasmus Medical Center 
from patients who were treated during 1980-95, but who didn’t receive 
systematic neoadjuvant or adjuvant therapy. KJ125 dataset consists of 
information obtained from a total of 125 patients with lymph-node-
negative primary operable invasive breast cancer, whose frozen tumor 
specimens were archived at the John Radcliffe Hospital (Oxford, UK) 
and the Uppsala University Hospital (Uppsala, Sweden). TRANSBIG 
dataset consists of information obtained from a total of 198 patients 
with lymph-node-negative primary breast cancer, whose frozen tumor 
specimens were sent to Border Institute to perform the microarray 
analysis. The median follow-up for the 198 patients included was 14.0 
years. And distant metastases were found in 51 (26%) of them, with 
35 of them showing progression within 5 years (18%). The patients 
were assessed to high and low genomic risk using 76-gene prognostic 
signature as described previously,3 and to high and low clinical risk, as 
defined by the Adjuvant! Online software using the pre-defined cutoff. 
We will name binary genomic risk group classification as Veridex risk 
score and binary clinical risk classification as AOL risk score. One 
hundred forty-three (72%) and 55 patients (28%) were classified as 
high and low genomic risk, whereas 152 (77%) and 46 (23%) patients 
were considered to be high and low clinical risk, respectively. Table 
1 shows ER status and distant metastasis outcome breakdown for all 
three datasets. 

Table 1 ER Status and Distant Metastasis Outcome of Three Data Sets 

  WANG KJ125 TRANSBIG

All patients 
(n=286)

ER+ 
(n=209)

ER- 
(n=77)

All patients 
(n=119)

ER+ 
(n=85)

ER- 
(n=34)

All patients 
(n=198)

ER+ 
(n=134)

ER- 
(n=64)

Metastasis 
within 5 years

Yes 107 (37%) 80 (38%) 27 (35%) 34 (29%) 19 (22%) 8 (24%) 35 (21%) 17 (13%) 18 (28%)

No 179 (63%) 129 (62%) 50 (65%) 85 (71%) 66 (78%) 26 (76%) 163 (79%) 117 (87%) 46 (72%)

Metastasis 
within 10 years

Yes 51 (26%) 28 (21%) 23 (36%)

No 147 (74%) 106 (79%) 41 (64%)

Gene recurrence risk Score development

We develop an Artificial Neural Network from gene expression 
data to predict the probability of distant metastasis of breast cancer 
(recurrence). Our intention for this structure is to potentially model 
the underlying biological process instead of individual genes in the 

design network. In order to facilitate the utility of the score, a Gene 
Recurrence Risk Score (GRRS) — the logarithmic of predicted 
probability of distant metastasis is created as the biomarker. The 
prediction accuracy and area under the curve (AUC) of the ROC 
curve are used to evaluate the model performance and classification 
capability of the GRRS. The confusion matrix is used to compare 
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GRRS classification accuracy with the Veridex risk score and AOL 
risk score. When a large feed forward neural network is trained on a 
small training set, it typically performs poorly on held-out test data. 
To address the problem of ‘overfitting’, we apply Dropout as our 
regularization technique.10,11 The key idea of Dropout is to randomly 
drop units (along with their connections) from the neural network 
during training. This prevents units from co-adapting too much. This 
also significantly reduces overfitting and gives major improvements 
over other regularization methods. We initially use the total samples 
of the Wang dataset to train the model, but there is a lot of variability 
in the model performance. We suspect there is heterogeneity due 
to ER status need to be account for as noted by Mosley et al.12 and 
Gruvberger et al.13,14 that estrogen receptor status in breast cancer is 
associated with remarkably distinct gene expression patterns. We split 
the training data stratified by ER status.

To determine the optimal structure of the neural network, we apply 
double cross- validation, i.e. there is an ‘outer loop’ of validation with 
ER positive/negative subgroup of KJ125 as the validation dataset to 
correct for optimism and an ‘inner loop’ of 5-fold cross-validation 
on the training dataset of oversampled ER positive/negative subgroup 
of the Wang dataset for tuning parameters of the network. The final 
neural network trained from ER positive subgroup (ERP model) 
has three layers with two hidden layers. The first hidden layer has 
300 nodes and second layer has 70 nodes. We then apply the final 
model on the independent assessment data set - ER positive subgroup 
of TRANSBIG dataset. Both distant metastasis within 5 years and 
within 10 years are used as the clinical outcomes. The classification 
accuracy is 87% and 79% and the area under the curve of the ROC is 
0.77	 and 0.69 respectively. Figure 1 shows the diagram of the final 
neural network. We use the same analysis approach with ER negative 
group. The final neural network model from ER negative subgroup 
(ERN model) has three layers with two hidden layers. The first 
hidden layer has 20o nodes. The second hidden layer has 70 nodes. 
We apply the final model obtained from training ER negative group 
on the independent assessment data set - ER negative subgroup of 
TRANSBIG dataset. Both distant metastasis within 5 years and within 
10 years are used as the clinical outcomes. The classification accuracy 
is 73% and 66% and the area under the curve of the ROC is 0.68 and 
0.64 respectively. 

Figure 1 The diagram of final neural network model for ER positive group.

Results
Statistical validity of the predictor

With the independent assessment data TRANSBIG ER positive 
subgroup, we build a cox proportional hazard model (COX) with the 

Gene Recurrence Risk Score (GRRS) as one covariate together with 
other standard clinical factors to assess the effect of potential factors 
on the hazard of distant metastasis within 10 years simultaneously.

The p-value (p = 0.048) of the likelihood is significant, indicating 
that the model is significant. Age, surgery type, grade, size, 
histopathological tumor type, ER status all fail to be significant. The 
p-value for GRRS score is 0.02, indicating a statistically significant 
association of GRRS score with the distant metastasis hazard after 
adjustment for standard clinical or pathological factors. The hazard 
ratio (HR) is 1.04, i.e. the hazard increases 4% with one unit increase 
in GRRS.

With the independent assessment data TRANSBIG ER negative 
subgroup, we build another Cox proportional hazard model with the 
Gene Recurrence Risk Score (GRRS) as one covariate together with 
other standard clinical factors. Again, age, surgery type, grade, size, 
histopathological tumor type, ER status all fail to be significant. The 
p-value for GRRS score is 0.04, indicating a statistically significant 
association of GRRS score with the distant metastasis hazard after 
adjustment for standard clinical or pathological factors. The hazard 
ratio (HR) is 1.04, i.e. the hazard increases 4% with one unit increase 
in GRRS. Figure 2 show the ranking of significance of cox regression 
coefficients and their confidence bands for ER positive and negative 
subgroup separately.

Figure 2 Cox regression coefficients and their ranges on TRANSBIG ER 
positive & negative subgroup separately.

Clinical validity and utility of the predictor

We then apply bootstrap resampling on TRANSBIG ER positive 
subgroup data to estimate the robustness of the predictor and 
determine the optimal cutoff value of GRRS for classification, i.e. at 
each iteration, predict on the resampled data to obtain GRRS score, 
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then classify each sample into high or low risk group with cutoff value 
at -40, -37, -35 and -34 respectively. At cutoff value -34, we obtain a 
confidence level of 80% that the sensitivity is greater than 80% and 
a confidence level of 80% that the specificity is greater than 33%. 
Figure 3 shows the empirical distribution of sensitivity and specificity 
of GRRS with cutoff value at -34 from bootstraps samples. Next, we 
apply bootstrap resampling on TRANSBIG ER negative subgroup 
data with the same approach as to the ER positive subgroup. At cutoff 
value -30, we obtain a confidence level of 80% that the sensitivity is 
greater than 86% and a confidence level of 80% that the specificity 
is greater than 26%. Figure 4 shows the empirical distribution of 
sensitivity and specificity of GRRS with cutoff value at-30 from 
bootstraps samples.

Figure 3 Empirical distribution of sensitivity and specificity of GRRS at cutoff 
point -34 for ER positive subgroup.

To assess the clinical validity and utility of the GRRS, we compare 
its classification accuracy with Veridex risk score and with AOL risk 
score using confusion matrix. We use distant metastasis within 10 
years as primary clinical outcome and within 5 years as secondary 
clinical outcome for comparison and assessment. With distant 
metastasis within 10 years as clinical outcome, on TRANSBIG ER 
positive subgroup, we obtain sensitivity at 86% and specificity at 
37% with GRRS at cutoff value -34. In comparison, the sensitivity 
and specificity is 82% and 34% with Veridex risk score, 78% and 
37% with AOL risk score. GRRS has a 4% and 3% improvement in 
sensitivity and specificity over Veridex risk score respectively, and 
8% improvement in sensitivity over AOL risk score. With distant 
metastasis within 10 years as clinical outcome, on TRANSBIG ER 
negative subgroup, we obtain sensitivity at 91% and specificity at 

32% with GRRS at cutoff value at -30. In comparison, the sensitivity 
and specificity is 87% and 27% with Veridex risk score. GRRS has a 
4% and 5% improvement in sensitivity and specificity over Veridex 
risk score respectively. Even though AOL risk score has assigned all 
distant metastasis patients to high risk, it also assigns all non- distant 
metastasis patients to high risk group, with specificity as 0%. With 
distant metastasis within 5 years as clinical outcome, for TRANSBIG 
ER positive subgroup, both GRRS and Veridex correctly identify all 
the patients who had distant metastasis within 5 years to high risk, but 
GRRS has specificity at 37% vs Veridex at 35%. AOL risk score failed 
to identify 3 patients with sensitivity at 82%. With distant metastasis 
within 5 years as clinical outcome, for TRANSBIG ER negative 
subgroup, both GRRS and Veridex have specificity at 28%, but GRRS 
failed to assign one distant metastasis patient to high risk. Once again, 
AOL risk score has assigned all distant metastasis patients to high 
risk, it also assigns all non- distant metastasis patients to high risk 
group, with specificity as 0%. Figure 5–8 show the confusion matrixes 
of GRRS with Veridex and AOL risk score at specified cutoff value/
clinical outcome/ER subgroup as specified above.

Figure 4 Empirical distribution of sensitivity and specificity of GRRS at cutoff 
point -30 for ER negative subgroup.

Discussion
The Gene Recurrence Risk Score (GRRS) from the artificial neural 

network model developed herein has demonstrated the significant 
association and the additional prognostic value for prediction of 
distant metastasis within 10 years from other standardly measured 
clinical factors. On the independent assessment data set TRANSBIG, 
GRRS has also produced better classification accuracy with higher 
sensitivity and specificity than Veridex risk score and AOL risk 
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score for prediction of distant metastasis within 10 years, and on par 
with Veridex risk score for prediction of distant metastasis within 5 
years, demonstrating a strong clinical utility potential. And the model 
building process itself is insightful. There are couple of insights 
worthwhile to be mentioned here:

Figure 5 GRRS classification accuracy comparison with multiple risk scores 
on TRANSBIG ER positive subgroup (distant metastasis within 10 years).

a.	 The variability of model performance training ER positive and 
negative together indicates the heterogeneity in the data need to 
be account for. When we use the modeled trained on ER positive 
to apply on ER negative subgroup, we end up with an AUC at 0.5 
indicating that the classification mechanism holds for ER positive 
doesn’t apply for ER negative and vice versa. All these indicate 
that the mechanisms for disease progression could differ for 
these two ER-based subgroups of breast cancer patients. And it’s 
necessary to stratify patients by their ER status for classification.

b.	 For all three datasets, Veridex risk score shows strong 
classification capability for ER positive subgroup. But it shows 
weaker prognostic capability for ER negative subgroup.

c.	 GRRS has better classification accuracy than Veridex risk score 
for prediction of distant metastasis within 10 years and on par 
with Veridex risk score for prediction distant metastasis within 
5 years. It indicates that we might have identified a biological 
process with the network capturing the interactions between 
genes vs ones based on individual genes.

Figure 6 GRRS classification accuracy comparison with multiple risk scores 
on TRANSBIG ER negative subgroup (distant metastasis with 10 years). 

Figure 7 GRRS classification accuracy comparison with multiple risk scores 
on TRANSBIG ER positive subgroup (Distant Metastasis within 5 years).
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Figure 8 GRRS classification accuracy comparison with multiple risk scores 
on TRANSBIG ER negative (distant metastasis within 5 years).

The artificial neural network we developed herein is a GRN 
following the definition by Emmert-Streib & Dehmer15 that “a network 
that has been inferred from gene expression data a gene regulatory 
network” which potentially provide information about regulatory 
interactions between regulators and their potential targets and gene-
gene interactions. The exact inference of real world and synthetic 
large scale GRN remains to be a difficult task to be achieved.16 Over 
the past few years, there has been a growing interest in approaches 
that integrate large scale inference information on molecular 
interactions into biomarker discovery.17,18 The main disadvantage of 
this approach is that the set of known interactions might be quite large, 
many of them might not be relevant to the biological conditions under 
investigation. However, the targeted gene expression prediction using 
neural network is comparatively easier task than network inferences.

The follow-up we would like to do next is to work with physicians to 
understand the biological representation of the nodes and interactions 
identified by the artificial neural network developed herein and 
provide deeper theoretical, biological, and casual understanding of 
the identified artificial neural network and the underlying biological 
process and explore more applications of the proposed development 

and evaluation framework, such as therapy-guiding biomarker 
developments.

Conclusion
The Gene Recurrence Risk Score (GRRS) has demonstrated the 

prognostic value and high classification accuracy for prediction of 
distant metastasis within 5 years and within 10 years. The artificial 
neural network framework for biomarker development for this 
specific task proves to be robust and effective. The model building 
itself also reveals the necessity to stratify patients by their ER status 
for classification.19–30 

List of abbreviations
GRRS, Gene Recurrence Risk Score is the logarithmic of the 

predicted probability of distant metastasis obtained from the artificial 
neural network developed herein.

Veridex Risk Score, High or low risk group classification according 
to 76-gen signature developed be Veridex using the pre-defined cutoff.

AOL risk score: High or low risk group classification according to 
Adjuvant online software using the pre-defined cutoff.

ER, Estrogen receptors.

GRN, A network that has been inferred from gene expression data 
a gene regulatory network, briefly denoted as GRN.

ROC curve, Receiver operating characteristic curve.

AUC, Area under the curve.

ERP model, The final neural network trained from ER positive 
subgroup. ERN model: The final neural network trained from ER 
negative subgroup. COX model: The cox proportional hazard model
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