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Introduction
In the Current era of post genomics, there is an exponential growth in 

the area of genomics and proteomics data and hence there was a major 
advancement in the field of understanding the molecular mechanisms 
of complex diseases in humans. There raised an increase in pace to 
develop new technologies to diagnose the molecular signatures of 
complex diseases to initiate the therapy with respect to the principle of 
personalized medicine and hence the new era of molecular medicine 
laid the path for detection of disease, diagnosis of complex disorders 
and performing treatment with respect to the molecular profile of each 
and every individual.1–4 This revolution had laid the foundation for the 
availability and application of new and novel biomarkers to predict 
the behavior of disease using advanced technologies to perform rapid 
diagnosis and detection. The evolutions of modern therapies to target 
cells were based on the principles of biocomputing. In order to address 
the molecular profiling and diagnostics, a major challenge was raised 
in characterization by histologic lesions in complex disorders because 
those lesions are heterogeneous at the cellular and molecular levels. 
In cancerous tumors, malignant cells are intermixed with blood 
vessels, stroma, and inflammatory cells.5–8 Current technologies like 
Gene microarrays and Real–Time Polymerase Chain Reactions (RT–
PCR) were not designed to handle the heterogeneic nature of cancer 
lesions and hence the development of nanotechnology provided 
a new opportunity to integrate morphological profile of diseased 
contion and molecular signatures and it is also used for correlating the 
observed cellular and molecular changes with respect to the behavior 
of pathological condition in complex disorders.9–11 In particular, the 
application of bio conjugated quantum dots (QDs)12–15 quantifies 
the presence of multiple biomarkers in intact tissue specimens and 
cancer cells and it allows us to conduct a comparative test between 
traditional histopathology V.S. molecular signatures of the same 
tissue.16–20 Nanotechnology is being used in the fields of molecular 
imaging and therapy and it can be also be used to improve the toxicity 
and efficacy profiles of chemotherapeutic agents because these agents 
can be covalently attached or encapsulated.21–23

The present major task in biomedical nanotechnology is to 
understand the interaction of nanoparticles with cells, organs and 
blood under the physiological conditions in vivo and the need to 
overcome their limitations with respect to their delivery to organs or 
diseased target sites.24–26 The next major challenge is to generate a 
series of critical studies to identify the clear link between biomarkers 
VS disease behaviors like the rate of progression in tumor and 
their different responses with respect to radiation, drug therapy or 
surgery.27 In this context, we discuss the ways and level of integration 
of biomarkers and bio computing with nanotechnology to perform 
high–throughput analysis of gene expression data. We also discuss 
the application of web–based bioinformatics tools for the discovery, 
optimization and clinical validation of biomarker.

Biomarker
Biomarker or Bio–molecular markers include mutant or genes, 

proteins, RNA, carbohydrates, lipids, small metabolites and the 
altered expression states of such markers can be correlated with 
respect to a clinical outcome or biological behavior.28–31 Most of 
the biomarkers were discovered by the molecular profiling studies 
based on correlation or association between a disease behavior and 
molecular signature. The first study on molecular profiling of complex 
diseases was reported by Golub et al.32 and the outcome of this study 
helped in identifying the gene expression patterns that could classify 
tumors and it served as a base for yielding a new and novel insights 
into tumor pathology such as grade, stage, response to treatment 
and further clinical course. Gene expression studies further revealed 
the fact that the molecular signatures of each and every tumor as an 
outcome of the combined stromal, tumoral and inflammatory factors 
of the original heterogeneous lesion.33 The initial correlation of gene 
expression patterns with clinical outcome was first reported for the 
diffusion of large B–cell lymphoma,34 a heterogeneous disease in 
clinical conditions. Whereas, most patients responded well to therapy 
had a prolonged survival. This variability in progression of disease 
can also be correlated with a distinct pattern of gene expression. The 
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Abstract

In the current era of post genomics, research in discovery of biomarker with respect to 
the application of principles in nanotechnology and bioinformatics raised opportunities 
in the field of personalized medicine in which diseases are detected, diagnosed and 
regular follow up of therapeutic regimen were tailored to each and every individual 
on the basis of their molecular profile. In Case of predictive medicine the usage 
of genetic/molecular information play a vital role in predicting the development 
of disease progression and clinical outcome. In this review, we discuss the recent 
advancement of tools developed on the principles of bioinformtics to accelerate the 
biomarker discovery of cancer and the usage of multiplexed nanoparticle probes for 
profiling the biomarker of cancer. Finally, with respect to future prospectives and 
further challenges in biomarker discover of Cancer, we correlate the signatures of 
biomolecules with their clinical outcome. So, the term Bio–Nano–Info is a promise 
for individualized therapy with respect to molecular diagnosis of cancer and the same 
principle can also be applied to other human diseases.
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concept of identifying a specific molecular portrait for a specific tumor 
in each patient was validated in later stage by Bittner, Perou and their 
coworkers by an array of clinical samples.35,36 Recent work in several 
groups identified a unique gene expression pattern to correlate with 
the clinical outcomes various tumors which includes lung, breast, 
prostate and liver cancers.37–41

Biomarkers are divided into 3 categories: Predictive, Prognostic 
and therapeutic response. Predictive biomarkers identify the 
probability of patients benefit with respect to a particular treatment. 
For example, breast cancer patients with HER2 (ERBB2) gene 
encodes tyrosine kinase receptor were expected to benefit from 
trastuzumab (Herceptin) treatment.42 Prognostic biomarkers allow 
the prediction of natural course needed for individual cancer and it 
can distinguish between aggressive tumors and indolent tumors. In 
case of gene encoding the estrogen receptor is over expressed by the 
tumor, the patients might be a better candidate to respond tamoxifen 
treatment.43 Pharmacodynamic biomarkers measure the short–term 
treatment effects of a drug has on tumor and these were used to guide 
the selection of dosage in the earlier stages of clinical development of 
new drugs from lead molecules.

In most cases, single biomarkers failed to provide the required 
sensitivity and specificity with respect to the substantial heterogeneity 
in various type of cancer. It is not realistic to expect a single 
biomarker to provide information about the tissue type and malignant 
transformation in the various stages of tumor progression and 
development. Hence, panels of biomarkers are required for diagnosis. 
The discovery and validation of biomarkers must be subjected to 
several key steps before their application in clinical practice. Here, 
the initial step involves the acquisition and experimental design of 
molecular data, i.e. large amount of proteomic or genomic expression 
data together with the case history of patient. The data need to be 
properly annotated and organized using the available web–based tools 
and databases. Further, the original data were improved and evaluated 
by combining multiple datasets to increase the statistical significance. 
In the second stage of data processing the concept of feature extraction 
and classification principles were used to identify the relevant 
biomarkers, which are differentially expressed. Prior to the clinical 
application of these biomarkers, their functional relevance is validated 
by determining their level of expression with the application of RT–
PCR (for nucleic acids) or multiplexed nanotechnology (for proteins). 
Hence, we elaborate on the web–based application of bioinformatics 
tools for the analysis of microarray data to initiate the discovery of 
biomarker and analyze their validation in clinical studies.

Bioinformatics
In the final stage of pre–genomic era, microarray data analysis 

using bioinformatics tools focused on the concept of unsupervised 
clustering technique (Eg. Kohonen Map and Self Propagation based 
learning) in “Machine Learning” and the initiative was to explore 
new technologies and discover new properties within the structure 
of expression data by neglecting the normalized dwelling factors for 
application in potential clinical studies. For example, Eisen et al.,44 
had developed a software application that combines several types 
of unsupervised clustering methods. A more recent development 
was the combination of clustering algorithms and visualization 
tools into a web–based application45 with a focus on unsupervised 
clustering method. Similar methods have been applied to analyze 
the high–throughput data of gene expression from different clinical 
scenarios and certain significant findings from these tools lead 
to the identification of cancer subtypes.46,47 As such, applications 

developed by the principle of unsupervised clustering are still used 
for visualization of expression data and biomarker discovery.

Recently, the major focus of microarray data analysis has shifted 
from unsupervised clustering to and supervised analysis (For 
Example Back Propagation Algorithm, Support Vector Machine 
and etc.). Consequently, a web–based application of bioinformatics 
shifted towards the development of new tools for the analysis of 
genes which are differentially expressed under the known conditions. 
Some of these tools are specific to the platforms of microarray (For 
example, ILOOP (Interwoven Loop) and MAGMA were web based 
applications designed for analyzing the two–channel microarrays).48,49 
ILOOP is an interface to assist the experimental design of two–channel 
microarrays and MAGMA incorporates the standard normalization 
procedure for converting statistical methods into an application for 
usability and reproducibility. Most of these web–based applications 
were implemented functionally to incorporate several common steps 
in the pipeline of data analysis. GEPAS (Gene Expression Profile 
Analysis Suite) includes the principles of data normalization, feature 
selection, class prediction, and unsupervised/supervised clustering.50

CARMA web (comprehensive R and bioconductor–based web) is 
another tool which was recently developed to perform the microarray 
data analysis,51 it uses several modules from Bioconductor (An 
open source bioinformatics software package incorporated in the R 
programming language–https:// carmaweb.genome.tugraz.at). The 
functions of microarray data analysis were available in Bio conductor 
and it includes the concept of background correction, quality control, 
normalization, differential gene detection, clustering, dimensionality 
reduction, and visualization.53 In bioinformatics application, the main 
contribution of CARMAweb is to integrate the numerous tools into 
a user–friendly interface in web. Gene Pattern53 is another tool to 
compile the analysis of different gene expression tools to reproduce 
integration in the cancer Bioinformatics Grid (caBIG), an initiative 
taken by the National Cancer Institute (NCI), to create a standard for 
bioinformatics software.54

It is a well established fact that, the candidate biomarkers were 
obtained from the outcome of microarray data analysis and they 
depend on the available samples and the selection algorithm.55 In fact, 
these biomarkers can also be highly unstable and often varies from 
sample to sample. Furthermore, platforms with highthroughput assay 
can handle ten thousand of genes and most of the assays were not 
completely understood. Hence, the task of interpreting their results 
needs improvisation in statistics. By associating each candidate 
gene with a biological function, one might be able to understand the 
underlying mechanisms of the associated disease and their biological 
relevance on the basis of the algorithm for feature selection. Databases 
such as the Gene Ontology (GO) were designed to facilitate the 
interpretation of gene functions in large scale.56 A diverse range of 
GO tools were also available to extract the statistically significant 
conclusions from the analysis of GO database. Modules for GO 
analysis are either web–based or downloadable packages which 
includes GoMiner,57,58 GOStat,59 AmiGO,60 BiNGO,61 and GOEAST.62 
There are similar applications that mine the literature. CoPub links the 
lists of candidate genes to keywords that are obtained by searching 
literature in Medline abstracts and visualizes the keywords that are 
overrepresented using a network structure and the web address is 
http://services.nbic.nl/cgi–bin/copub/CoPub.pl.63

Since there is an increase in the accumulation of gene expression 
data, certain applications have emerged with the objective to organize 
and integrate the heterogeneous datasets from various data sources in 
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an effective manner. As it was mentioned previously, the exponential 
increase in the sample size of data can improve the process of 
reproducibility in predictive models. Thus, there raised a demand 
for solutions to allow data sharing. Gene Expression Omnibus 
(GEO)64 and Array Express65 were the examples of large warehouses 
(repositories) to manage the the community of data standards such as 
MIAME (Minimum Information about a Microarray Experiment).66 
An alternative solution, ArrayWiki can allow the community of users 
to annotate gene expression metadata.67 Another initiative, caArray is 
a part of the caBIG initiative to become an interoperable standard for 
the storage of microarray in caBIG applications.54 There is an overlap 
between the analytical methods used in gene expression analysis 
and gene interpretation software. These overlaps are deposited 
in the data repositories using high–throughput methods. Further, 
a web–based application called the ‘Microarray Retriever’68 was 
developed to retrieve the gene expression data from GEO and Array 
Express repositories for maximizing the potential of large–sample in 
microarray studies. Similarly, GEO meta db is an improvement for 
increasing the querying capabilities in GEO repository.69 Although 
this application available only for GEO, it is anticipated that it can also 
be applied to meta–analysis applications to increase the usefulness of 
repositories.

In spite of the availability of software packages, it is still difficult 
to use the output of data after the process of normalization and 
quality without the application of a subsequent clustering feature for 
selection.70 Further, there is a need to translate the gene symbols on the 
basis of feature selection, prior to the interpretation of a particular GO 
application. Workflow applications, such as Taverna and Gene Trail 
Express address the issue of feature selection in various ways. Gene 
Trail Express is a web–based portal that implements its own process 
of statistical analysis, normalization, interpretation and visualization 
modules based on common methods.71 Taverna is more general and 
builds workflows for certified web services certified by caBIG.72

In order to identify a biomarker using a Web–based bioinformatics 
resource, omniBioMarker was developed by Phan et al.73 In this 
software, biomarkers are identified through several steps which 
include normalization, quality control, feature selection, biological 
interpretation, GO validation, and clinical prediction. Since a single 
path is not enough for the identification of biomarker, a pipeline was 
developed to perform well for all possible datasets,74 unique analysis 
of these parameters must be applied specifically for each clinical 
problem. The computational layout of omniBiomarker addresses the 
concept of fine–tuning in each and every step in the pipeline with 
respect to a particular dataset or clinical problem on the basis of 
prior knowledge in biology.73 Biological knowledge overcomes the 
“increase of dimensionality” to stabilize the results by increasing the 
reproducibility of clinical prediction.

The initial step in the pipeline for biomarker identification is 
quality control. Due to the stochastic nature (randomness) of high–
throughput data, it is important to analyze the quality of data, prior to 
further analysis. Moreover, the large quantity of high–throughput data 
requires the applications of specialized software. There are several 
existing applications to analyze the quality of data for microarrays 
within a population of samples. These applications may with respect 
to their complexity of model in usability and it ranging from web 
based downloadable software packages like RMA Express75 and 
dChip76 to web–based online portals such as caCorrect.77 Though the 
gene expression assays are generally reproducible78 their statistical 
artifacts were in smaller datasets and there rise a need for identifying 
the corrected data prior to further data analysis.

Impact of Nanotechnology in clinical 
validation by multipled molecular analysis

In case of large data sets (say >100,000 genes and proteins), 
computation tools should be used to select and optimize a small panel 
of biomarkers which predicts the patients outcome for therapeutic 
response. Conjugated Nanoparticles of antibodies can be designed 
with the purpose of targeted therapy and molecular diagnosis. In case 
of multiplexed QD probes, a selected biomarker panel of clinical 
specimens can be in needle biopsies and tissue microarrays. The use 
age of a minimum of five to a maximum of ten protein biomarkers 
have a significant impact in disease diagnosis and personalized 
treatment. In order to achieve these goals, Xing et al.18 have obtained 
a promising result for the molecular profiling of clinical paraffin–
embedded by fixed formalin (FFPE) specimens in prostate cancer. In 
this study, four conjugates of QD–antibodies were used to recognize 
and detect the four antigens which are responsible for causing tumor 
(the tumor–suppressor p53, the E3 ubiquitin ligase mdm–2, the 
zinc–finger transcription factor EGR–1 and the cyclin–dependent 
kinase inhibitor p21/CDN1A). These markers were known to vital in 
diagnosis of prostate cancer and they have also been correlated with 
the behavior of tumor.79,80 In case of molecular profiling, the results of 
QDs were consistent with results obtained by the fluorescence in situ 
hybridization (FISH) and traditional immunohistochemistry (IHC) and 
using human breast cancer cells.19 Finally, It is important to note that 
the classification of tumor with antigens which are expressed at low 
levels can also be subjective and therefore it requires an experienced 
observer to contribute a considerable amount of variations in clinical 
studies. In contrast, quantitative QD measurements allow the accurate 
and user–independent determination of tumor antigens for genes/
proteins that are expressed at low levels. Thus, the molecular profiling 
of quantitative QD can standardize the categorization of antigens 
on specimens. This factor is the key fundamental of management 
in breast cancer because the benefit of hormonal therapies and drug 
trastuzumab depends not only on the presence but also on the quantity 
of hormone or HER2 receptors.81–90

Challenges
In the mere the future, various directions are needed to carry 

out researches that are promising particularly in the application 
of biomedical science but still it requires additional effort with 
concentration to achieve success. The initial direction of research 
involves the design and development of nanoparticles by a single or 
multiple functionalities. 

In case of applications in cancer and other conditions in medical 
field, the functions of nanoparticle includes the concept of imaging 
(exist either as single or dual–modality) and therapy via drug delivery 
or a combination of several drugs to target ligands. 

By adding certain functions, nanoparticles can be designed to 
have novel properties for novel applications. For example, the binary 
nanoparticle with dual functions can be utilized for targeted therapy 
and molecular imaging. 

Bioconjugated QDs with drug target and imaging functions can be 
used for the applications involved in molecular profiling. 

In Contrast, the ternary nanoparticles that combine three functions 
can be designed for simultaneous imaging and targeted therapy.

The next stage of research must address the issues involved 
in optimizing the panels of biomarkers on the basis of quantitative 
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molecular profiling in bioinformatics along with the help of 
nanotechnology. For example, probes in bioconjugated nanoparticle 
can predict the treatment response and clinical outcome of cancer 
behavior in personalized therapy. 

The most important direction in future research of personalized 
medicine is to further investigate the process of distribution, excretion, 
metabolism, and pharmacodynamics of nanoparticle in the in–vivo 
studies of animal models. These studies will play a vital role in the 
development of nanoparticles for clinical applications in treating 
cancer. 
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