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Introduction
The protein landscape changes continuously as new and 

hypothetical proteins appear every day. IMG1 today hosts 55,482 
Bacterial genomes, 1,580 Archaeal, 258 Eukaryotic, 1,222 Plasmids, 
7,521 Viruses, 1,196 genome fragments and 14,265 private and public 
met genomes and meta transcriptomes. With a very approximate 
estimation, this corresponds to ~70Million non-redundant proteins 
at 100% similarity for the isolate side and ~3billion non-redundant 
proteins for the met genome/metatranscriptome side (coming from 
scaffolds of length ~500). Release 15-Feb-2017 of UniProtKB/
TrEMBL2 contains 77,483,538 sequence entries. This number 
corresponds to 1,465,039 (2%) Archaeal proteins, 49,717,238 (64%) 
Bacterial proteins, 22,299,253 (29%) Eukaryotic proteins, 2,918,867 
(4%) Viral proteins and 1,083,141 (<1%) others. Moreover, Uniparc3 
contains 148,791,725 protein entries. The UniProt Archive (UniParc) 
is a comprehensive and non-redundant database that contains most 
of the publicly available protein sequences in the world. Protein 
families can be characterized by molecules which share significant 
sequence similarity.4 Notably, this biological problem is very difficult 
to solve and most available clustering techniques fail in the case of 
eukaryotic proteins, which contain large numbers of protein domains.5 
Nevertheless, ongoing efforts in detecting the best and more accurate 
protein clustering are still a very active research field. PFAM6 version 
31.0 for example, a database of a large collection of protein families, 
organizes proteins in families by similar domains and includes 
16,712 entries. Several tools today, follow various methodologies and 
strategies to perform protein clustering.7 Outstanding tools such as 
the CD-HID,8 UCLUST,9 kClust10 and the newly developed MMSEQ/
LinClust11 follow a k-mer and dynamic programming-based sequence 
alignment approach whereas tools such as the MCL12 clustering 
algorithm and others a network topology based clustering.13–18 In 
the second case, prior to clustering, a pairwise similarity matrix is 
required. While such similarities can be calculated in various ways, 
BLAST+19 and LAST20 are the most widely used. In this article, in 
order to encourage users getting familiar with several tools and avoid 

troubleshooting, simple command lines to perform such analyses are 
provided.

Protein clustering
Input File 

Prior to any clustering, organization of protein sequences organized 
in a FASTA file format is required. 

Sequence-based clustering

CD-HIT: It clusters proteins into clusters that meet a user-defined 
similarity threshold. Each cluster has one representative sequence. 
The input is a protein dataset in fasta format and the output produces 
two files: a fasta file of representative sequences (centroids) and a 
text file (.clstr) with a list of clusters. The basic command to cluster 
the proteins in the example. fasta file with similarity down to 50% is: 

cd-hit -i example.fasta -o clusters -c 0.5 
-n 2

UCLUST: Given a user defined identity threshold, the UCLUST 
algorithm divides a set of sequences into clusters and is more effective 
in clustering proteins down to 50% similarity. The steps are:

a.	 Sort sequences by length

uclust --sort example.fasta --output seqs_
sorted.fasta

b.	 Cluster de novo at 50% identity

uclust --input seqs_sorted.fasta --uc 
results.uc --id 0.5

c.	 Like in CD-HIT, clusters can be stored in a 
.clstr file after reformatting the result. uc file: 
uclust --uc2clstr results.uc --output 
clusters.clstr
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Abstract

Proteins are the key molecules that facilitate most biological processes within a 
cell. Therefore, the discovery, annotation and characterization of them, is of great 
importance. In System Biology, protein clustering by sequence at a large-scale in order 
to detect homology, orthology, families, common domains or functional similarities 
is becoming a great challenge, especially when living in the -Omics era where the 
exponential growth of sequences produced is indisputable. Despite the great plethora 
of applications with different strengths to serve this purpose that is available today, a 
steep learning curve to get familiar with such tools is often required. Users often quit 
when they get lost in the README files prior to any analysis. To help the community 
overcome this hesitance, this article describes tools and ways to cluster proteins into 
groups or families and emphasizes on their basic commands that can be executed in a 
simple Unix terminal. Notably, both graph-based and sequence-based approaches are 
described..
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KCLUST: It is a method to cluster large protein sequence databases 
such as UniProt within days. It can cluster proteins down to 20%-30% 
maximum pairwise sequence identity. For example, to cluster a set of 
proteins proteins down to 50% identity, the basic command is:

kClust -i example.fasta -d tmp –s 0.5

KCLUST will create a /tmp folder with the clustering results in it. 
The headers.dmp file will contain the index for each protein, and the 
clusters.dmp file the clustering results in a two-column format. The 
first column contains the index of centroid sequence for each cluster 
whereas the second column the index of every member of this cluster.

USEARCH: It is a unique sequence analysis tool with thousands of 
users worldwide. USEARCH offers search and clustering algorithms 
that are often orders of magnitude faster than BLAST. A typical 
command to run USEARCH would be: 

usearch -cluster_fast example.fasta -id 0.5 
-centroids out.fasta –uc clusters.uc

In this case, example. fasta is the input file whereas out. 
fastacontains the centroids for each cluster and clusters. uc the final 
clusters. 

MMSEQ/LINCLUST: It claims to be able to cluster billion proteins 
down to 50% sequence identity in two days. It runs in linear time and 
has been tested against UCLUST and CD-HIT. The basic commands 
are: 

mmseqs createdb example.fasta DB

mkdir tmp

mmseqs cluster/linclust DB clu tmp --min-
seq-id 0.5 --target-cov 0.5

mmseqs createtsv DB DB clu clu.tsv

All results are stored in clu.tsv file. The first column represents the 
centroid of each cluster whereas the second column every member of 
this cluster. Thus by using command: cut -f1 clu.tsv | wc 
-l 

one can count the number of clusters. 

Graph-based clustering

Another approach to cluster proteins into groups is to take advantage 
of the topological features of a constructed network containing all pair 
wise similarities in a binary form. To do that, BLAST+ and LAST 
tools are recommended. BLAST+ does not scale for huge datasets 
whereas LAST and mega blast21 tools do. BLAST+ is more sensitive 
though. For smaller datasets and for much higher quality results at the 
cost of a much slower speed, ssearch36 or glsearch36 implementation 
of Smith-Waterman algorithm is recommended.

Similarities

LAST: Step 1: Database building. Assuming that one has a fast a file 
called example. fasta. First users need to build a database (DB) with 
the following command:

lastdb -p -C 2 DB example.fasta

Step 2: A pair wise similarity matrix must be created and used as an 
input for graph-based clustering. A typical representation would be a 
tab-delimited format such as:

proteinA ProteinB 0.3

proteinA ProteinC 0.2

proteinB ProteinD 0.3...

By using last, in order to create such matrix holding information 
about proteins down to 50% identity the command must look like:  
lastal –m200 -pBLOSUM62 -P 0 -f blasttab DB 
example.fasta | awk ‘{if($1!~/^#/ && $3>=50) 
print $1”\t”$2”\t”($3/100)}’ > hits.list

The hits.list will be a 3-column tab delimited file (1st 
column: source, 2nd column: target, 3rd column: identity).  
Another way to create an adjacency similarity matrix is to use 
BLASTP instead of LAST.

Step 1: Users must create a blast database using the command: 
makeblastdb -in example.fasta -dbtype ‘prot’ 
-out DB

Step 2: The binary adjacency list can be created by querying the DB 
database like: blastp -query example.fasta -db DB 
-outfmt ‘6 std qlen slen’ -out output_tmp.list 
-evalue 1.0e-05

Hits are firstly stored in a BLASTAB file format called output_
tmp.list

Step 3: Similarly to the previous example, users can create the 
similarity matrix, which will be used as a graph clustering input like:

awk ‘{if($1!~/^#/ && $3>=50) print 
$1”\t”$2”\t”($3/100)}’ output_tmp.list>hits.
list

Note that if one wants to take into account the best hits only, then 
he/she might want to filter the file by best similarity first like:

sort -nrk 3 hits.list | sort -k 1,2 –u >best_
hits.list

Network clustering 

While many graph clustering algorithms exist, MCL algorithm is 
by far the most widely used for protein clustering. Notably, MCL is 
inflation-value sensitive and often memory greedy when it comes to 
Millions of sequences. To Run MCL with inflation value 1.8, a typical 
command is:

mcl hits.list –I 1.8 --abc -o clusters.txt

Clusters are stored in clusters.txt. Each line is a cluster and the 
members in each line are tab separated. Thus, the number of lines 
corresponds to the number of clusters. To filter singletons and keep 
the clusters with two or more members for example, users can 
filter as: awk ‘{if(NF>=2) print}’ clusters.txt > 
clusters_after_threshold.txt

Similarly to MCL, the highly scalable SPICi density-based 
clustering algorithm22 can be utilized like:

spici -ihits.list -o out.spici

Density is by default set to 0.5. To keep members of clusters 
greater than a number, the –s parameter must be used.

Cluster centroids

For the network-based approach, a potential centroid of a cluster 
could be determined by the number of hits within a cluster above a 
certain similarity. 
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Conclusion
In this article, the very basic commands from various tools to 

perform protein sequence clustering are presented. While this guide 
might be of a great help for many users, the commands should not 
be used blindly as all tools are sensitive upon parameterization and 
results can vary significantly. USEARCH, UCLUST and CD-HIT 
should perform nearly the same algorithm. They all cluster the shorter 
sequences to the longer if the global alignment identity >0.5% is 
fulfilled.  However, kClust, MMSeqs and LAST compute sequence 
identity in a local way. In order to directly compare clustering 
between each other, Rand Index, Variation of Information, F-Score 
and other metrics can be used. Such metrics are extensively explained 
elsewhere.23
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