
Submit Manuscript | http://medcraveonline.com

Introduction
The protein landscape changes continuously as new and

hypothetical proteins appear every day. IMG1 today hosts 55,482
Bacterial genomes, 1,580 Archaeal, 258 Eukaryotic, 1,222 Plasmids,
7,521 Viruses, 1,196 genome fragments and 14,265 private and public
met genomes and meta transcriptomes. With a very approximate
estimation, this corresponds to ~70Million non-redundant proteins
at 100% similarity for the isolate side and ~3billion non-redundant
proteins for the met genome/metatranscriptome side (coming from
scaffolds of length ~500). Release 15-Feb-2017 of UniProtKB/
TrEMBL2 contains 77,483,538 sequence entries. This number
corresponds to 1,465,039 (2%) Archaeal proteins, 49,717,238 (64%)
Bacterial proteins, 22,299,253 (29%) Eukaryotic proteins, 2,918,867
(4%) Viral proteins and 1,083,141 (<1%) others. Moreover, Uniparc3
contains 148,791,725 protein entries. The UniProt Archive (UniParc)
is a comprehensive and non-redundant database that contains most
of the publicly available protein sequences in the world. Protein
families can be characterized by molecules which share significant
sequence similarity.4 Notably, this biological problem is very difficult
to solve and most available clustering techniques fail in the case of
eukaryotic proteins, which contain large numbers of protein domains.5
Nevertheless, ongoing efforts in detecting the best and more accurate
protein clustering are still a very active research field. PFAM6 version
31.0 for example, a database of a large collection of protein families,
organizes proteins in families by similar domains and includes
16,712 entries. Several tools today, follow various methodologies and
strategies to perform protein clustering.7 Outstanding tools such as
the CD-HID,8 UCLUST,9 kClust10 and the newly developed MMSEQ/
LinClust11 follow a k-mer and dynamic programming-based sequence
alignment approach whereas tools such as the MCL12 clustering
algorithm and others a network topology based clustering.13–18 In
the second case, prior to clustering, a pairwise similarity matrix is
required. While such similarities can be calculated in various ways,
BLAST+19 and LAST20 are the most widely used. In this article, in
order to encourage users getting familiar with several tools and avoid

troubleshooting, simple command lines to perform such analyses are
provided.

Protein clustering
Input File

Prior to any clustering, organization of protein sequences organized
in a FASTA file format is required.

Sequence-based clustering

CD-HIT: It clusters proteins into clusters that meet a user-defined
similarity threshold. Each cluster has one representative sequence.
The input is a protein dataset in fasta format and the output produces
two files: a fasta file of representative sequences (centroids) and a
text file (.clstr) with a list of clusters. The basic command to cluster
the proteins in the example. fasta file with similarity down to 50% is:

cd-hit -i example.fasta -o clusters -c 0.5
-n 2

UCLUST: Given a user defined identity threshold, the UCLUST
algorithm divides a set of sequences into clusters and is more effective
in clustering proteins down to 50% similarity. The steps are:

a.	 Sort sequences by length

uclust --sort example.fasta --output seqs_
sorted.fasta

b.	 Cluster de novo at 50% identity

uclust --input seqs_sorted.fasta --uc
results.uc --id 0.5

c.	 Like in CD-HIT, clusters can be stored in a
.clstr file after reformatting the result. uc file:
uclust --uc2clstr results.uc --output
clusters.clstr

MOJ Proteomics Bioinform. 2017;5(5):158‒160. 158
© 2017 Pavlopoulos. This is an open access article distributed under the terms of the Creative Commons Attribution License, which
permits unrestricted use, distribution, and build upon your work non-commercially.

How to cluster protein sequences: tools, tips and
commands

Volume 5 Issue 5 - 2017

Georgios A Pavlopoulos
Lawrence Berkeley National Lab, DOE Joint Genome Institute,
USA

Correspondence: Georgios A Pavlopoulos, Lawrence Berkeley
National Lab, DOE Joint Genome Institute, 2800 Mitchell Drive,
Walnut Creek, CA 94598, USA, Email g.pavlopoulos@lbl.gov

Received: April 04, 2017 | Published: June 02, 2017

Abstract

Proteins are the key molecules that facilitate most biological processes within a
cell. Therefore, the discovery, annotation and characterization of them, is of great
importance. In System Biology, protein clustering by sequence at a large-scale in order
to detect homology, orthology, families, common domains or functional similarities
is becoming a great challenge, especially when living in the -Omics era where the
exponential growth of sequences produced is indisputable. Despite the great plethora
of applications with different strengths to serve this purpose that is available today, a
steep learning curve to get familiar with such tools is often required. Users often quit
when they get lost in the README files prior to any analysis. To help the community
overcome this hesitance, this article describes tools and ways to cluster proteins into
groups or families and emphasizes on their basic commands that can be executed in a
simple Unix terminal. Notably, both graph-based and sequence-based approaches are
described..

Keywords: protein clustering, protein sequences, plasmids, genome

MOJ Proteomics & Bioinformatics

Mini Review Open Access

https://creativecommons.org/licenses/by-nc/4.0/
https://crossmark.crossref.org/dialog/?doi=10.15406/mojpb.2017.05.00174&domain=pdf

How to cluster protein sequences: tools, tips and commands 159
Copyright:

©2017 Pavlopoulos

Citation: Pavlopoulos GA. How to cluster protein sequences: tools, tips and commands. MOJ Proteomics Bioinform. 2017;5(5):158‒160.
DOI: 10.15406/mojpb.2017.05.00174

KCLUST: It is a method to cluster large protein sequence databases
such as UniProt within days. It can cluster proteins down to 20%-30%
maximum pairwise sequence identity. For example, to cluster a set of
proteins proteins down to 50% identity, the basic command is:

kClust -i example.fasta -d tmp –s 0.5

KCLUST will create a /tmp folder with the clustering results in it.
The headers.dmp file will contain the index for each protein, and the
clusters.dmp file the clustering results in a two-column format. The
first column contains the index of centroid sequence for each cluster
whereas the second column the index of every member of this cluster.

USEARCH: It is a unique sequence analysis tool with thousands of
users worldwide. USEARCH offers search and clustering algorithms
that are often orders of magnitude faster than BLAST. A typical
command to run USEARCH would be:

usearch -cluster_fast example.fasta -id 0.5
-centroids out.fasta –uc clusters.uc

In this case, example. fasta is the input file whereas out.
fastacontains the centroids for each cluster and clusters. uc the final
clusters.

MMSEQ/LINCLUST: It claims to be able to cluster billion proteins
down to 50% sequence identity in two days. It runs in linear time and
has been tested against UCLUST and CD-HIT. The basic commands
are:

mmseqs createdb example.fasta DB

mkdir tmp

mmseqs cluster/linclust DB clu tmp --min-
seq-id 0.5 --target-cov 0.5

mmseqs createtsv DB DB clu clu.tsv

All results are stored in clu.tsv file. The first column represents the
centroid of each cluster whereas the second column every member of
this cluster. Thus by using command: cut -f1 clu.tsv | wc
-l

one can count the number of clusters.

Graph-based clustering

Another approach to cluster proteins into groups is to take advantage
of the topological features of a constructed network containing all pair
wise similarities in a binary form. To do that, BLAST+ and LAST
tools are recommended. BLAST+ does not scale for huge datasets
whereas LAST and mega blast21 tools do. BLAST+ is more sensitive
though. For smaller datasets and for much higher quality results at the
cost of a much slower speed, ssearch36 or glsearch36 implementation
of Smith-Waterman algorithm is recommended.

Similarities

LAST: Step 1: Database building. Assuming that one has a fast a file
called example. fasta. First users need to build a database (DB) with
the following command:

lastdb -p -C 2 DB example.fasta

Step 2: A pair wise similarity matrix must be created and used as an
input for graph-based clustering. A typical representation would be a
tab-delimited format such as:

proteinA ProteinB 0.3

proteinA ProteinC 0.2

proteinB ProteinD 0.3...

By using last, in order to create such matrix holding information
about proteins down to 50% identity the command must look like:
lastal –m200 -pBLOSUM62 -P 0 -f blasttab DB
example.fasta | awk ‘{if($1!~/^#/ && $3>=50)
print $1”\t”$2”\t”($3/100)}’ > hits.list

The hits.list will be a 3-column tab delimited file (1st
column: source, 2nd column: target, 3rd column: identity).
Another way to create an adjacency similarity matrix is to use
BLASTP instead of LAST.

Step 1: Users must create a blast database using the command:
makeblastdb -in example.fasta -dbtype ‘prot’
-out DB

Step 2: The binary adjacency list can be created by querying the DB
database like: blastp -query example.fasta -db DB
-outfmt ‘6 std qlen slen’ -out output_tmp.list
-evalue 1.0e-05

Hits are firstly stored in a BLASTAB file format called output_
tmp.list

Step 3: Similarly to the previous example, users can create the
similarity matrix, which will be used as a graph clustering input like:

awk ‘{if($1!~/^#/ && $3>=50) print
$1”\t”$2”\t”($3/100)}’ output_tmp.list>hits.
list

Note that if one wants to take into account the best hits only, then
he/she might want to filter the file by best similarity first like:

sort -nrk 3 hits.list | sort -k 1,2 –u >best_
hits.list

Network clustering

While many graph clustering algorithms exist, MCL algorithm is
by far the most widely used for protein clustering. Notably, MCL is
inflation-value sensitive and often memory greedy when it comes to
Millions of sequences. To Run MCL with inflation value 1.8, a typical
command is:

mcl hits.list –I 1.8 --abc -o clusters.txt

Clusters are stored in clusters.txt. Each line is a cluster and the
members in each line are tab separated. Thus, the number of lines
corresponds to the number of clusters. To filter singletons and keep
the clusters with two or more members for example, users can
filter as: awk ‘{if(NF>=2) print}’ clusters.txt >
clusters_after_threshold.txt

Similarly to MCL, the highly scalable SPICi density-based
clustering algorithm22 can be utilized like:

spici -ihits.list -o out.spici

Density is by default set to 0.5. To keep members of clusters
greater than a number, the –s parameter must be used.

Cluster centroids

For the network-based approach, a potential centroid of a cluster
could be determined by the number of hits within a cluster above a
certain similarity.

https://doi.org/10.15406/mojpb.2017.05.00174

How to cluster protein sequences: tools, tips and commands 160
Copyright:

©2017 Pavlopoulos

Citation: Pavlopoulos GA. How to cluster protein sequences: tools, tips and commands. MOJ Proteomics Bioinform. 2017;5(5):158‒160.
DOI: 10.15406/mojpb.2017.05.00174

Conclusion
In this article, the very basic commands from various tools to

perform protein sequence clustering are presented. While this guide
might be of a great help for many users, the commands should not
be used blindly as all tools are sensitive upon parameterization and
results can vary significantly. USEARCH, UCLUST and CD-HIT
should perform nearly the same algorithm. They all cluster the shorter
sequences to the longer if the global alignment identity >0.5% is
fulfilled. However, kClust, MMSeqs and LAST compute sequence
identity in a local way. In order to directly compare clustering
between each other, Rand Index, Variation of Information, F-Score
and other metrics can be used. Such metrics are extensively explained
elsewhere.23

Acknowledgements
This work was partially supported by the U.S. Department of

Energy Joint Genome Institute, a DOE Office of Science User Facility,
under Contract No. DE-AC02-05CH11231.

Conflict of interest
The author declares no conflict of interest.

References
1.	 Chen IA, Markowitz VM, Chu K, et al. IMG/M: integrated genome

and Meta genome comparative data analysis system. Nucleic Acids Res.
2017;45:D507–D516.

2.	 Bairoch A, Apweiler R. The SWISS–PROT protein sequence data bank
and its supplement TrEMBL in 1999. Nucleic Acids Res. 1999;27(1):49–
54.

3.	 Leinonen R, Diez FG, Binns D, et al. UniProt archive. Bioinformatics.
2004;20(17):3236–3237.

4.	 Dayhoff MO. The origin and evolution of protein superfamilies. Fed
Proc. 1976;35(10):2132–2138.

5.	 Apic G, Gough J, Teichmann SA. “Domain combinations in archaeal,
eubacterial and eukaryotic proteomes. J Mol Biol. 2001;310(2):311–325.

6.	 Finn RD, Coggill P, Eberhardt RY, et al. The Pfam protein families
database: towards a more sustainable future. Nucleic Acids Res.
2016;4(44):D279–D285.

7.	 Li W, Fu L, Niu B, et al. Ultrafast clustering algorithms for metagenomic
sequence analysis. Brief Bioinform. 2012;13(6):656–668.

8.	 Li W, Godzik A. Cd–hit: a fast program for clustering and comparing
large sets of protein or nucleotide sequences. Bioinformatics.
2006;22(13):1658–1659.

9.	 Edgar RC. Search and clustering orders of magnitude faster than BLAST.
Bioinformatics. 2010;26(19):2460–2461.

10.	 Hauser M, Mayer CE, Soding J. kClust: fast and sensitive clustering of
large protein sequence databases. BMC Bioinformatics. 2013;14:248.

11.	 Steinegger M, Soding J. Linclust: clustering protein sequences in linear
time. bio Rxiv preprint. 2017.

12.	 Enright J, Van Dongen S, Ouzounis CA. An efficient algorithm for large–
scale detection of protein families. Nucleic Acids Res. 2002;30(7):1575–
1584.

13.	 Moschopoulos AN, Pavlopoulos GA, Iacucci E, et al. Which clustering
algorithm is better for predicting protein complexes? BMC Res Notes.
2011;4:549.

14.	 Pavlopoulos GA, Malliarakis D, Papanikolaou N, et al. Visualizing
genome and systems biology: technologies, tools, implementation
techniques and trends, past, present and future. Gigascience. 2015;4:38.

15.	 Pavlopoulos GA, Moschopoulos CN, Hooper SD, et al. jClust: a
clustering and visualization toolbox. Bioinformatics. 2009;25(15):1994–
1996.

16.	 Pavlopoulos GA, Secrier M, Moschopoulos CN, et al. Using graph
theory to analyze biological networks. BioData Min. 2011;4:10.

17.	 Frech A, Chen N. Genome–wide comparative gene family classification.
PLoS One. 2010;5(10):e13409.

18.	 Bader GD, Hogue CW. An automated method for finding molecular
complexes in large protein interaction networks. BMC Bioinformatics.
2003;4:2.

19.	 Camacho C, Coulouris G, Avagyan V, et al. BLAST+: architecture and
applications. BMC Bioinformatics. 2009;10:421.

20.	 Frith MC. Gentle masking of low–complexity sequences improves
homology search. PLoS One. 2011;6(12):e28819.

21.	 Zhang Z, Schwartz S, Wagner L, et al. A greedy algorithm for aligning
DNA sequences. J Comput Biol. 2000;7(1–2):203–214.

22.	 Jiang P, Singh M. SPICi: a fast clustering algorithm for large biological
networks. Bioinformatics. 2010;26(8):1105–1111.

23.	 Wagner S, Wagner D. Comparing Clusterings– An Overview. Universität
Karlsruhe (TH); 2007.

https://doi.org/10.15406/mojpb.2017.05.00174
https://www.ncbi.nlm.nih.gov/pubmed/9847139/abstract
https://www.ncbi.nlm.nih.gov/pubmed/9847139/abstract
https://www.ncbi.nlm.nih.gov/pubmed/9847139/abstract
https://www.ncbi.nlm.nih.gov/labs/articles/15044231/
https://www.ncbi.nlm.nih.gov/labs/articles/15044231/
https://www.ncbi.nlm.nih.gov/pubmed/181273
https://www.ncbi.nlm.nih.gov/pubmed/181273
https://www.ncbi.nlm.nih.gov/pubmed/11428892
https://www.ncbi.nlm.nih.gov/pubmed/11428892
https://www.ncbi.nlm.nih.gov/pubmed/26673716/
https://www.ncbi.nlm.nih.gov/pubmed/26673716/
https://www.ncbi.nlm.nih.gov/pubmed/26673716/
https://www.ncbi.nlm.nih.gov/pubmed/22772836/
https://www.ncbi.nlm.nih.gov/pubmed/22772836/
https://www.ncbi.nlm.nih.gov/pubmed/16731699
https://www.ncbi.nlm.nih.gov/pubmed/16731699
https://www.ncbi.nlm.nih.gov/pubmed/16731699
https://www.ncbi.nlm.nih.gov/pubmed/20709691
https://www.ncbi.nlm.nih.gov/pubmed/20709691
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-14-248
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-14-248
http://biorxiv.org/content/early/2017/01/29/104034
http://biorxiv.org/content/early/2017/01/29/104034
https://www.ncbi.nlm.nih.gov/pubmed/11917018
https://www.ncbi.nlm.nih.gov/pubmed/11917018
https://www.ncbi.nlm.nih.gov/pubmed/11917018
https://bmcresnotes.biomedcentral.com/articles/10.1186/1756-0500-4-549
https://bmcresnotes.biomedcentral.com/articles/10.1186/1756-0500-4-549
https://bmcresnotes.biomedcentral.com/articles/10.1186/1756-0500-4-549
https://www.ncbi.nlm.nih.gov/pubmed/26309733
https://www.ncbi.nlm.nih.gov/pubmed/26309733
https://www.ncbi.nlm.nih.gov/pubmed/26309733
https://www.ncbi.nlm.nih.gov/pubmed/19454618
https://www.ncbi.nlm.nih.gov/pubmed/19454618
https://www.ncbi.nlm.nih.gov/pubmed/19454618
https://www.ncbi.nlm.nih.gov/pubmed/21527005
https://www.ncbi.nlm.nih.gov/pubmed/21527005
https://www.ncbi.nlm.nih.gov/pubmed/20976221/
https://www.ncbi.nlm.nih.gov/pubmed/20976221/
https://www.ncbi.nlm.nih.gov/pubmed/12525261/
https://www.ncbi.nlm.nih.gov/pubmed/12525261/
https://www.ncbi.nlm.nih.gov/pubmed/12525261/
https://www.ncbi.nlm.nih.gov/pubmed/20003500/
https://www.ncbi.nlm.nih.gov/pubmed/20003500/
https://www.ncbi.nlm.nih.gov/pubmed/22205972
https://www.ncbi.nlm.nih.gov/pubmed/22205972
https://www.ncbi.nlm.nih.gov/pubmed/10890397
https://www.ncbi.nlm.nih.gov/pubmed/10890397
https://www.ncbi.nlm.nih.gov/pubmed/20185405
https://www.ncbi.nlm.nih.gov/pubmed/20185405

	Title
	Abstract
	Keywords
	Introduction
	Protein clustering
	Input File
	Sequence-based clustering
	Graph-based clustering
	Similarities
	Network clustering
	Cluster centroids

	Conclusion
	Acknowledgements
	Conflict of interest
	References

