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Abstract

Nitric oxide (NO), carbon monoxide (CO) and hydrogen sulfide (H2S), the three
members in gasotransmitter family, have emerged as important regulators of
cellular functions and pathophysiological responses. In this mini-review, the current
understanding on the roles of these gasotransmitters in regulating cellular events via
post-translational modification proteins is summarized. NO chemically reacts with
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specific cysteine residue(s) in target proteins via S-nitrosylation. CO alters protein

conformation and activity by forming carbonylation in unique amino acids. H2S
binds with the free thiol group in active cysteine residue of target protein to form
hydropersulfide group, termed as S-sulfhydration. The mechanisms for gasotransmitter
modification of proteins and their reversible process are also highlighted.
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Introduction

Gasotransmitters are a subfamily of endogenous gaseous signaling
molecules, including nitric oxide (NO), carbon monoxide (CO),
hydrogen sulphide (H2S), and possibly some other gases.'* These
gases were traditionally considered to toxic with environmental
hazard, however at extremely lower concentration, these gaseous
molecules have emerged as important mediators of a variety of
cellular signal transduction and pathophysiological responses. These
gasotransmitters share many common features in their production and
function, but they fulfill their physiological tasks in unique ways that
differ from those of classical signaling molecules.? Due to their high
lipid solubility and unique chemical activity, these gasotransmitters
can move rapidly throughout cells and tissues binding with proteins/
enzymes through reactions with specific amino acids.>® In this
review, the endogenous production of these gasotransmitters and their
cellular functions through protein post-translational modifications are
discussed.

NO and protein S-nitrosylation

NO is a very small, lipophilic, chemically unstable molecule with
a very short half-life (seconds), which can be endogenously produced
by NO synthases from the amino acid L-arginine in a large number of
different tissues.”® NO plays a relevant role in regulating many cellular
functions and pathophysiological responses, including cell growth
and apoptosis, inflammation, vasodilation, ischemic damage, and
respiration, etc.® Protein S-nitrosylation, the incorporation of an NO
moiety to a cysteine thiol group, has emerged as a central mechanism
of NO-dependent cellular regulation.”® NO may also regulate cellular
functions via the activation of soluble guanylyl cyclase (sGC) leading
to the production of cyclic guanosine monophosphate (¢cGMP)."> Up to
now, numerous proteins together with the target cysteine residues have
been demonstrated. By forming a new —SNO group, S-nitrosylation
can alter protein conformation leading to different enzymatic activities,
protein interaction with other macromolecules, protein stability, and
protein subcellular location, etc.’ Post-translational modifications of
protein cysteine residues are very common for regulation of diverse
cellular functions. Beside with S-nitrosylation, the free thiol group

in a substantial proportion of cysteine residues can easily undergo
many other biological modification, including S-palmitoylation,
S-glutathionylation, S-sulfhydration, S-sulfenylation, and oxidation
etc.>?

Although the exact mechanism of NO interaction with thiol group
in target protein is not fully resolved, no evidence has been provided
for S-nitrosylation formation by enzymatic catalysis.!” S-nitrosylation
of proteins is relatively unstable, the nitrosothiol bond can be quickly
changed to more stable disulfide bonds or be oxidized by reacting
with other active molecules.'"'? It is clear that several enzymes
are involved in protein transnitrosylation and/or de-nitrosylation,
including the thioredoxin reductase system and S-nitrosoglutathione
reductase (GSNOR). Transnitrosation is the process in which an
NO+ equivalent is transferred from S-nitrosylated protein to different
cysteine/protein or other molecules. Thioredoxin reductase catalyzes
the denitrosylation of caspase-3, maintains a low steady-state amount
of S-nitrosylation, and promotes apoptosis.'® On the other hand,
thioredoxin reductase has been shown to trans-nitrosylates caspase-3
and block apoptosis.!! GSNOR modulates the transnitrosylation
equilibrium among S-nitrosylated proteins and provides an important
defense mechanism against nitrosative stress.! Protein disulfide
isomerase is also implicated into transnitrosation reactions.” More
recently, reductase sulfiredoxin was shown to act an enzyme that
denitrosylates peroxiredoxin-2 and protects neural cells from NO-
induced hypersensitivity to oxidative stress.'

CO and protein carbonylation

CO is highly poisonous and odorless known as a “silent killer”
due to its strong affinity to hemoglobin in red blood cells. Just in the
last decades, CO is shown to be endogenously produced by heme
oxygenases with heme as substrate.> Compared with NO, CO is the
most biologically stable gasotransmitter due to its weak chemical
reactivity. CO generates wide effects in cellular functions and
physiological roles in the body. Abnormalities of CO metabolism have
been linked to a diverse array of diseases, including hypertension,
atherosclerosis, heart disorders, and inflammation.'>'* The diverse
actions of CO are mainly due to its stimulation of sGC and alteration
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of oxidative stress and ion channel activity. CO may also exerts its
biological actions by inducing direct carbonylation of cysteine, lysine,
histidine, and arginine residues in target proteins.”*"'” Carbonylation
of specific amino acids is an irreversible and non-enzymatic process,
forming carbonyl derivatives (aldehydes and ketones) and leading
to protein damage, aggregation, and even proteolytic degradation.'®
Specially, protein carbonylation could offer additional mechanism for
oxidant-mediated signal transduction.'”!® In compare, there is also
report that CO is not involved in protein carbonylation at all."

Although protein carbonyls are quite stable, decarbonylation
may also occur in natural way with the aid of two thiol-dependent
enzymes, thioredoxin reductase and glutaredoxin. Blockage of
thioredoxin reductase promotes protein carbonylation, and siRNA-
mediated knockdown of glutaredoxin inhibits the decarbonylation of
peroxiredoxin.!>!7

H2S and protein S-sulfhydration

H2S as a novel gasotransmitter is mainly produced with the
metabolism of L-cysteine by the enzymes cystathionine beta-
synthase, cystathionine gamma-lyase and 3-mercaptopyruvate
sulfurtransferase.***?! H2S has been shown to be endogenously
generated in cardiovascular, neuronal, immune, respiratory,
gastrointestinal, liver, and endocrine systems, and influence a number
of cellular signaling pathways. H2S can be present as a free form of gas
or bound form of sulfane sulfur inside the cells.” Similar to NO and
CO, H2S may directly regulate target proteins by S-sulthydration to
elicit its biological and pharmacological responses.??* In this protein
post-translational modification, H2S reacts with a free thiol group in
active cysteine residue of target protein to form hydropersulfide group
(-SSH).» Tt also has been reported that sulfane sulfur-containing
compounds have more reactive activity in mediating protein
S-sulfhydration in comparison with H2S.**** The modified biotin
switch assay, mleimide assay, and mass spectrometry are often used
to detect protein S-sulfhydration.?! Thus far, a handful of proteins
have been demonstrated to be targeted by H2S for S-sulfhydration,
including Keapl, GAPDH, NF-xB, MEK1, Parkin, PTP-1B, pyruvate
carboxylase, and many others.>*

Although protein S-sulfhydration has been showing its biological
significance, the formation and removal of hydropersulfide in target
proteins are not clear yet.> It is questioned on the direct reaction
of H2S with free thiol group to form hydropersulfide. Cysteine
S-sulfhydration may occur only when the free thiol group is oxidized
to sulfenic acid, disulfide, mixed disulfide or nitrosothiol, which
needs further evidence to validate.® Protein S-sulfhydration is
unstable due to the increased nucleophilicity when compared to un-
sulfhydrated proteins. It is highly possible that protein S-sulthydration
can be quickly removed or further oxidized. Not only acting as an
S-denitrosylase, thioredoxin has been shown to facilitate protein
S-desulfhydration by direct interaction with S-sulfhydrated proteins.?’
Overexpression of thioredoxin showed higher reactivity in removing
cysteine hydropersulfide, while blockage of the thioredoxin system
enhanced the level of intracellular persulfides, indicative the critical
role of thioredoxin as a de-sulfhydrase in regulating H2S signalling.?
Indeed, thioredoxin has been shown to induce H2S generation by
cleaving persulfide group in 3MST.

Future directions and prospects

Given the breadth and complexity of gasotransmitter in cellular
functions, the precise and unique targets by gasotransmitters and the
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interaction among different gasotransmitters in post-translational
modification of proteins need to be thoroughly explored. A mutually
competitive but also cooperative relationship among different post-
translational modification by gasotransmitters can exist depending
on cellular redox environment. In addition, rational drug design by
targeting the modified proteins for therapeutic intervention of human
diseases related with abnormal gasotransmitter signaling is greatly
demanded.
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