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of raw mass data applied at a large scale, which ensures subtle data 
patterns arise from the data and not processing artifacts. Patterns 
should be visually clear to the human eye, which is still the very best 
data analysis tool.

Traditional analytics rely largely on search engine “similarity” 
scores (e.g. XCorr, ion-score, hyperscore) that quantify the degree of 
similarity between the measured spectrum and a predicted spectrum, 
the latter derived from a candidate peptide sequence using a sequence-
to-spectrum ionization model. They evolved mainly for abundant 
peptides with robust spectral signals. Efforts to improve the search 
engine score, for example by incorporating accurate fragment data, 
have had limited success or worse. Some ad hoc efforts identify 
unexpectedly numerous peptides having near-identical mass, charge, 
and chromatographic retention time - i.e. same isotopic envelopes at 
the same split-second in a multi-hour experiment - better explained by 
faulty analytics.

Current workflows have two intractable problems for LAMPs. 
First, similarity scores have a dependence on charge and peptide length 
that introduces complex artifacts impossible to reverse. Second, mass 
accuracy of fragment ions has been mainly used pre-search to narrow 
the search space rather than as a post-search filter, which worsens 
noise susceptibility (Figure 1).

Figure 1 Sorcerer Score 3D data cube with S-scoreʼs three components, 
showing clear separation between likely-correct (green) and likely-incorrect 
(green & black) candidate peptides [non-decoys in green; decoys in black].

On one hand, this reduces obviously-incorrect, out-of-fragment-
mass-range candidates, which sounds good on the surface. Counter 
intuitively, it increases noise susceptibility because incorrect peptides 
that randomly get through would be indistinguishable from correct 
ones with respect to fragment mass. In other words, fragment mass, one 
of the most fundamental information from tandem mass spectrometry, 
is rendered useless as a correct-vs-incorrect discriminator. Instead, the 
robust way is to allow enough out-of-fragment-mass-range candidates 
to define the background, and to use fragment mass as a post-search 
filter to separate outliers from such background. 

A cross-correlation similarity score has the best noise-suppression 
among popular search score types, all of which are expressible as 
a vector dot-product. It is therefore the best type of search engine 
score for LAMPs. However, for the post-search filter, the score rank 
is a statistically cleaner surrogate with good correct-vs-incorrect 
discriminating power. This is akin to a college recruiting on the basis 
of rank (i.e. valedictorians) vs. the GPA score. 

We present a new simplicity-focused analytics methodology, 
called Sorcerer Score(tm) that allows LAMPs to be rigorously 
identified within a hypothesis-driven framework based on high-
accuracy precursor and fragment mass data. Accurate peptide ID is 
fundamental to accurate protein quantitation and post-translational 
modification (PTM) analysis. 

The general approach is to: (1) use standard “target-decoy” cross-
correlation search with a wide mass range and “implicit decoy” 
sequences (i.e. known-wrongs within the target search space), (2) pre-
filter out peptides with excessive mass error and implicit decoys, and 
then (3) compute the following discriminant score: 

S-score=peak Count/p0- Avg Delta Mass-log (Rank+1)/r0. 

The most important component is Avg Delta Mass, which is the 
positive weighted average of precursor mass error (adjusted for in-
measurement mass changes and calibration skew) and the average 
fragment mass RMS error. Peak Count is the number of matched 
fragment ions between measured and predicted spectra. The S-score is 
compatible with any tandem mass spectrometer with sufficient mass 
accuracy. 

S-score has units of mass (amu) and is derived primarily from 
raw mass data. It has a high value when the average mass error is 
small, many fragment ions are matched, and the similarity score rank 

MOJ Proteomics Bioinform. 2016;4(5):298‒304. 298
© 2016 Chiang. This is an open access article distributed under the terms of the Creative Commons Attribution License, which 
permits unrestricted use, distribution, and build upon your work non-commercially.

How to identify low-abundance modified peptides 
with proteomics mass spectrometry

Volume 4 Issue 5 - 2016

David Chiang
Sage-N Research, Inc., Milpitas, California, USA

Correspondence: David Chiang, Sage-N Research, Inc., 
Milpitas, California, USA, Email dchiang@sagenresearch.com
 
Received: July 10, 2016 | Published: November 30, 2016

MOJ Proteomics & Bioinformatics

Review Article Open Access

Summary
Characterization of low-abundance, modified peptides (LAMPs) 

is uniquely valuable for research in early detection of cancer and 
infections, and indeed for all molecular biology research. However it 
challenges proteomics mass spectrometry due to low signal-to-noise. 
With parts-per-million mass accuracy for both intact (“precursor”) 
and fragment ion masses available from diverse mass spectrometers, it 
becomes feasible but requires capable analytics-i.e. mathematical and 
computing techniques to infer insights from patterns hidden within 
the data. This is best done with simple mathematical transformations 
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is high, which are most of the key information from tandem mass 
spectrometry. Clearly it is a correct-vs-incorrect discriminator in a 
qualitative sense. What is surprising is that such a simple figure-of-
merit can be quantitatively powerful, which we illustrate with data. 

To the chemistry-inclined, Sorcerer Score may be viewed as 
“digital chromatography” whereby a “mixture” of candidate peptide 
IDs are multi-dimensionally enriched using the parameters that 
comprise the S-score. Decoys in the search space act as a solvent 
that preferentially flushes out incorrect IDs to leave enriched likely-
correct IDs concentrated among the top ranks. This is the data-mining 
tradeoff: more solvent (i.e. decoys through CPU power) for more 
purity (i.e. lower FDR). Conversely, weak “demo-quality” analytics 
that minimize CPU time, using over-optimistic algorithms that 
underestimate error rates and confuse noise with signal, is likely the 
main cause of irreproducibility in high-mass-accuracy proteomics. 

Just as chemical separation would use different chemicals matched 
to the sample, peptide identification can use additional filtering 
parameters matched to the dataset and the biological system. For 
example, certain PTMs yield characteristic fragment ions useful for 
further filtering. This is why an open data-mining “platform”, as 
opposed to a closed push-button “program”, is needed for high-value 
proteomics analysis - the only kind that can sustainably justify pricey 
mass spectrometers. 

A human expert aided by a computing platform is the norm 
for diverse data-driven fields like stock market analysis, weather-
forecasting, credit card fraud detection, etc. Unlike computers, 
human experts can use unanticipated meta-information to narrow 
down choices in deep analysis, like Sherlock Holmesʼ dog that didn’t 
bark. Clearly, it is impossible to code a computer to check for all the 
ancillary things that do and do not happen. 

Per the 80/20 Rule, we expect that any and all fully-automated 
workflows can only identify the easier 80%, with the rest requiring 
expert data-mining for ever deeper analysis. Every experiment will 
have a different cost-benefit tradeoff. High-value experiments will 
benefit from data-analysis-as-a-service from experienced proteomic 
data scientists. 

The Sorcerer Score concept is simple by design but challenging in 
practice due to the computation. A typical 100K-spectra dataset cross-
correlation searched with multiple PTMs and extensive decoys, while 
keeping top-200 candidate peptides, results in 20million candidate 
peptides from which ~15K to 20K correct IDs are extracted. A 
1M-spectra dataset would have 200M candidate peptides. High-
performance multi-million data point analysis requires professional 
server-class development that goes beyond writing a C program on 
a PC. 

When the 3 components of S-score are plotted in a 3-D cube, a 
few thousand non-decoy points (including duplicates with high 
sequence homology) become clearly separated from the background. 
(See Figure 1 above) The S-score of any point is its distance to the 
“S-score=0” plane along the Avg Delta Mass axis. 

The parameters (p0, r0) define the tilt of the separation plane 
(S-score=X) in the 3-D cube. The cutoff threshold ʻXʼ can be 
set to trade off ID quality vs. estimated FDR. Notably, we found 
the results to be robust. For example, to achieve FDR ~1% in our 
sample dataset that has ~2K correct peptides, basically the same ~20 
decoys are responsible for the FDR. These ~20 decoys are relatively 
independent of p0 and r0. We believe robustness translates to research 
reproducibility. 

The core Sorcerer Score analytics is implemented in a short R 
script within the SX1301 MUSE script which can be modified or 
customized by the user or by Sage-N Research. All the plots shown 
were interactively created in R off-line on a Mac by re-running the 
R part of SX1301 on data files generated on a SORCERER system. 
Most of them are also auto-generated in a PDF file by the SX script 
that may be viewed online within SORCERER. 

We believe Sorcerer Score uniquely enables deep proteomics by 
presenting peptide IDs close to their raw data from using simple-
to-understand analytics. Its foundation is based on well-established 
components, namely the cross-correlation search engine (John Yates 
Lab, Scripps), target-decoy search (Steve Gygi Lab, Harvard), and a 
rigorous peptide-to-protein framework (Ruedi Aebersold Lab, ETH 
Zurich). 

Unlike opaque software that report peptide IDs not readily 
verifiable, Sorcerer Score respects the integrity of the science by 
being transparent and hypothesis-driven, and by presenting data-
driven evidence that can be drilled down to any level by scientists.

Analysis example: phospho-peptides
An anonymous phospho-peptide dataset (~6K spectra) from 

a Thermo Q-Exactive mass spectrometer is searched and then 
automatically processed using the SX1301 GEMYNI script on a 
SORCERER system. The spectra comprise high-accuracy b-/y- 
fragment ions (ʻHCDʼ). 

The search conditions are as follows on SORCERER (masses are 
rounded to nearest amu for illustration): 

i.	 Target-decoy cross-correlation search, keeping top 5001 XCorr 
peptides per spectrum.

ii.	 Single-species protein sequences.

iii.	 Mass tolerance +/- 0.5amu.

iv.	 Iso-check at 98amu (i.e. three mass windows at -98amu, 0, and 
+98amu).

v.	 Variable residue modifications: M +18; STY +80; ST -18. 

vi.	 Variable terminus modifications: n-terminus +17; c-terminus 
-16 (i.e. “ETD Mods”).

These conditions allow for a single labile phosphorylation site 
(precursor dMass ~+98amu). Since this is a CID-only dataset (high-
accuracy ʻbʼ and ʻyʼ fragment ions), ETD terminus modifications are 
used to generate implicit decoys only. 

The ~0.5 hour search results in ~2.8M candidate peptide IDs. After 
pre-filtering, the S-score is calculated for each remaining candidate 
ID. 

For peptide IDs with ʻNʼ instances of labile phosphorylation of 
serine/threonine, the effective delta-mass is adjusted down by N*(-98) 
to account for the net -98amu (= 80+18) mass loss during collision. 

For each spectrum, the non-decoy candidate peptide with the 
highest S-score, if there is one, is chosen. Otherwise, the highest 
S-score of either implicit or explicit decoy is chosen. The final 
enriched set of candidate peptides represent about 92% of the spectra, 
as about 8% of the spectra yielded no candidate peptides after pre-
filter. Most figures are shown with enriched set. Manual examination 
showed no credible multi-peptide IDs for this dataset. 
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When we set the overall FDR cutoff ~1%, we identified both 
abundant peptides (defined as rank=1) with FDR<0.2% (1682 non-
decoys+3 decoys) and low-abundance peptides (defined as rank >1) 
with FDR<4% (544 non-decoys+19 decoys). These include peptides 
with very low XCorr rank (below 200th) and with difficult-to-
search phosphorylated serine/threonine. Even for abundant peptides, 
Sorcerer Score increases the accuracy of their analysis. 

Hypothesis-driven tandem mass 
spectrometry

The scientific method requires hypotheses to be tested against 
data. Since mass spectrometry yields only mass data, such hypotheses 
must be mass-testable. Therefore, the search engine is best viewed as 

an automated hypothesis-generator and its output of candidate peptide 
IDs for each spectrum as independent hypotheses in the form “Peptide 
X generated Spectrum Y”. These hypotheses are then tested against 
precursor and fragment mass data. They are rejected if any observed 
delta-mass is excessive and conditionally accepted otherwise (Figure 
2). 

For our ~6K spectra and 2.8M gross search results, we expect 
the small percentage of correct hypotheses to be clustered around 
dMass~0 with noticeably higher peak Count. Figures 2a & 2b show 
the plot of “peak Count vs. Precursor Delta-Mass” for both unenriched 
(“gross”) candidate IDs and enriched (“unique”) IDs, the latter from 
selecting the single best candidate peptide ID for each spectrum. Jitter 
is added to Peak Count for better visualization of integer values. 

Figure 2 Scatter plot of Peak Count vs. Precursor Delta-Mass with dMass~0 [non-decoys in green; decoys in black].

Notably, Figure 2a hints at the real power of target-decoy search 
as a high-level mass scan - a sort of ʻMS0ʼ scan, if you will - that 
like MS1 and MS2 scans reveal signals around certain masses. Unlike 
MS1 and MS2, however, it incorporates a search engine and peptide 
model. The signal in the ʻMS0ʼ scan is the concentration of non-
decoys at certain precursor dMasses. Its utility would be clearer with 
a wider mass range (not shown).

Beta elimination from phosphorylated serine 
and threonine

Phosphorylation of serine (S), threonine (T), or tyrosine (Y) adds 
+80amu for the phosphate group. However, phosphorylated S or T may 
be unstable during mass spectrometry, resulting in beta elimination 

with a mass loss of 98amu (=80+18) from the phosphate group plus 
water. In the process, serine is converted to dehydroalanine, and 
threonine is converted to dehydroamino-2-butyric acid. 

For example, letʼs say a serine-phosphorylated peptide enters 
the mass spectrometry with ʻMS1ʼ mass 1080amu (i.e. 1000amu 
unmodified), experiences beta elimination to become 982amu, and 
then fragments to produce the ʻMS2ʼ spectrum. To the search engine, 
this is manifested as a +98amu precursor mass error. To visually check 
for such peptides, we use the ʻMS0ʼ plot around dMass ~98amu. 

Figures 3a & 3b show the Peak Count vs. dMass for unenriched 
and enriched candidate peptides IDs from the search results. They 
clearly show a population of likely-correct IDs with a single labile 
phospho-site. 

Figure 3 Scatter plot of Peak Count vs. Precursor Delta-Mass with dMass ~ 98 amu for labile phosphorylation [non-decoys in green; decoys in black].
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From the search engine perspective, correct identification has only 
two requirements: 

a.	 The reported ʻMS1ʼ precursor mass is within the search space: 
dMass~98amu for single labile phosphorylation. 

For our example, the ʻtrueʼ precursor mass is 982amu, which 
is manifested as a precursor delta-mass (i.e. Measured-Actual) 
of +98 from the ʻMS1ʼ mass of 1000. This is the mass of the pre-
fragmentation ion corresponding to the spectrum.

To search for peptides with a single labile phosphorylation, the 
precursor mass range must include dMass ~+98amu. For double labile 
phosphorylation, dMass ~2*(98)amu, and so on. For example, it is 
possible in principle, if not in practice, to search for up to two labile 
phospho-sites by setting the mass tolerance to +/- 200amu. 

b.	 The correct PTM mass of -18amu is specified. 

For any variable modification search, the PTM mass is simply the 
mass difference between a singly modified peptide (982amu in our 
example) and the unmodified peptide (1000amu), or -18amu.

Conceptually, the issue is that there is no practical way to measure 
the mass of the ʻtrueʼ precursor that exists only inside the collision 
chamber for a split-second. So we have to make do with the ʻMS1ʼ 
mass which can be correct for stable phosphorylation, or too high by 
+98amu (single labile PTM), +196amu (two labile PTMs), +294amu 
(three labile PTMs), and so on.3,4 

Assuming there is no way to tell what the dMass would be from 
the spectrum, we have to allow for the dMass uncertainly in both the 
search and the post-search analysis. Essentially, we search allowing 
for one or more labile PTMs, then adjust the dMass for each candidate 
peptide based on how many -18amu labile PTMs are included, so 
the adjusted delta-mass (“dMassA”) is consistent with the number of 
labile PTMs. 

For the peptide search, we must use (STY +80) and (ST -18) to 
search for stable and labile phosphorylation, respectively. A mass 
tolerance of +/- 0.5amu plus an “iso-check” set at +98amu (i.e. +/- 
0.5amu for base dMassʼs of {-98, 0, +98}amu) allows for a single 
labile PTM. 

For post-search filtering, the SX1301 script adjusts the precursor 
mass by N*(-98) for any candidate peptide ID containing ̒ Nʼ instances 
of (ST -18). 

Lamps defined and identified
Since we focus on accurate deep analysis rather than formal 

semantics, for practical purposes we can characterize an abundant 
peptide as one that yields a high similarity score well-separated from 
other scores for a reasonably-large search space. In contrast, lower 
abundance peptides yield weaker signals comparable to background 
noise, resulting in mid to low similarity scores relative to random 
wrong peptides (Table 1). 

Table 1 Accuracy & fragment ion of LAMP

LAMP type Accurate reported precursor mass Interpretable fragment ion spectrum

Type I Yes Yes

Type II No Yes

Type III No No

At some point, the precursor ʻMS1ʼ signal may be too small for 
accurate precursor mass estimation, although fragment ions may 
still be interpretable by a sensitive search engine. As well, a single 
spectrum can conceivably capture fragment ions from two or more 
peptides with overlapping isotopic envelopes, with its reported 
precursor mass incorrect for all but the dominant one. 

We categorize LAMPs into three types:

In this paper we focus on Type I LAMPs only. The Sorcerer Score 
methodology is expected to be extensible to Type II LAMPs, albeit 
with less accuracy. 

Figures 4a‒4d show the histogram of the original score rank of 
the final ID hypotheses with estimated FDR < 1%, split into {Target 
vs. Decoy} x {Top-10 vs. Below-Top-10}. Note that XCorr ranks to 
500th are considered, but the lowest ranked target and explicit decoy 
are 245th and 17th, respectively. 

The exponentially decreasing distribution vs. score rank is 
consistent with expectations of correct ID distributions. 

The dramatic drop from rank 1 to 2 compared to other transitions 
suggest that top-ranked peptides are characteristically distinct, which 
supports them being considered “abundant peptides”. 

To be clear, the ranks shown are the original XCorr ranks from raw 
search results. After final enrichment, they become the sole candidate 
ID hypothesis associated with each spectrum.

                           a                                                          b

                         c                                                            d

Figure 4 Histogram Target and Decoy Distribution vs. Rank. 

Weighting coefficients for avg delta mass
Avg Delta Mass is a weighted average of absolute values of the 
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effective precursor mass error and of the average fragment mass error. 
The former considers any PTM adjustment and observed calibration 
skew. The latter is the average RMS error calculated from matched 
fragment ions. 

The general fragment ion match is based on the Peptide Score part 
of the Ascore.1 

For datasets where both precursor and fragment mass data are 
collected in the same chamber with presumably the same mass 
accuracy, including for our sample dataset, we can use equal weights 
of 0.5. This can be visually validated (see Figure 5), by ensuring a 
“slope=-1” line (representing the “Constant=0.5*x+0.5*y” iso-score 
line) reasonably fits the observed correct-vs-incorrect boundary.

Figure 5 Scatter plot of Avg Fragment dMass vs. PTM-Adjusted Precursor 
dMass Reference line with slope = -1 shown.

Peakcount Vs. Avg delta mass 

Figure 6 shows the foundation of the Sorcerer Score methodology 
- the clear separation between likely correct IDs with low Avg 
Delta Mass and high peak Count with mostly non-decoys, and a 
balanced decoy/non-decoy presumed incorrect IDs with the reverse. 
Significantly, a dividing line with a representative slope visually helps 
to separate most correct IDs from incorrect IDs. 

Figure 6 Scatter plot of Peak Count (jitter added) vs. Avg Delta Mass.

Note this is a 2D projection of the 3D data-cube from Figure 1. The 
third dimension of log (Rank+1) helps separate correct-vs-incorrect 

points in the low-peak Count/high-rank region. Indeed, the correct-vs-
incorrect separator is actually a tilted plane defined by p0 and r0, so a 
more accurate representation (generated by the SX1301 script) would 
show two lines representing the plane intersecting the front and back 
of the data-cube. 

The line slope in each of two 2D projections plotted against Avg 
Delta Mass – peak Count and log (Rank+1) - may be used to estimate 
p0 and r0, respectively. Resolution of 100 seems to be more than 
sufficient for both parameters. 

A detailed study of Figure 5 shows that a few decoy peptides 
achieve surprisingly high peak Count with low delta-masses, such 
that it seems hard to believe they can be incorrect IDs. One possible 
explanation is that these are actually correct peptide IDs that happen 
to be missing from the target sequences, but appear as a decoy by 
random chance. But our unpublished analysis suggests this may not 
be the case. 

Instead, we found that many such decoys are not truly “correct” 
peptide IDs per se, but rather they are sequences with high sequence 
homology to the presumed correct ones. Notably search engine 
similarity scores reflect sequence homology, not identity, so they 
survive the first-level filtering of being among the top-N candidate 
peptides. Long peptides also match more raw fragments than short 
ones even if subsequences don’t match. This is a subtle but important 
distinction for deep analysis. 

Implicit decoys constructed with peptide terminus modifications 
(e.g. ETD mods), which shift b- and y-ion series independently, 
frequently show up as lower ranked versions of correct peptides, with 
comparable S-scores, similar peak Counts, but >>1amu precursor 
delta-mass. 

A related issue is the presumed hidden -incorrect IDs presumably 
mirrored by the explicit decoys. We hypothesize that, per standard 
target-decoy theory, there is an approximately same number of 
similar-but-not-quite-correct target peptide IDs with comparable 
degree of sequence homology. 

Log (Rank+1) vs. Avg delta mass
Figure 7 shows a clearly large population of likely correct IDs with 

raw rank=1 [i.e. log (Rank+1)=0.693] and low Avg Delta Mass. There 
is a generally linear boundary shown with representative line of slope 
-r0. 

Figure 7 Scatter plot of log (Rank+1) [jitter added] vs. Avg Delta Mass.

https://doi.org/10.15406/mojpb.2016.04.00133


How to identify low-abundance modified peptides with proteomics mass spectrometry 303
Copyright:

©2016 Chiang

Citation: Chiang D. How to identify low-abundance modified peptides with proteomics mass spectrometry. MOJ Proteomics Bioinform. 2016;4(5):298‒304. 
DOI: 10.15406/mojpb.2016.04.00133

The plot shows that using a non-linear boundary or using different 
boundaries for rank=1 vs. rank>1 will yield higher peptide IDs for a 
given overall FDR. That may or may not make sense depending on 
the objective of the data analysis. Adding more complexity increases 
possibility of over-fitting. 

Distribution of S-score and FDR

Figure 8 shows the superimposed S-score distributions of decoys 
(yellow) and non-decoys (gray). Left of the dashed line, the decoy and 
non-decoy distributions are evenly matched (the yellow mostly match 
the gray behind it), suggesting mostly random incorrect IDs. Right 
of the solid line, non-decoys are likely-correct IDs. In-between is the 
transition region that may require additional discriminators to resolve. 

Figure 8 Super-imposed S-score distributions of decoys (yellow) and non-
decoys (gray). Divided zones denote likely-incorrect, transition, and likely-
correct ranges.

Integration with trans-proteomic pipeline
The SX1301 MUSE script is designed to run automatically within 

the SORCERER system using its GEMYNI software platform. The 
search requires a standard 1:1 target-decoy distribution (i.e. for 
“explicit” decoys) and the top 200 or more XCorr peptides. Clearly, 
Sorcerer Score requires non-corrupt data and valid search results on 
which it can improve. Search results with significant data quality 
problems, which can be up to 10% of proteomics experiments, cannot 
be fixed by the SX1301 script or any other computational approach. 

For integration into Trans-Proteomic Pipeline and compatible 
workflows, the S-score is used to derive an equivalent Peptide Prophet 
discriminant score. The current script generates a new search output 
file (SQT) whose top peptides are the top S-score peptides with their 
original XCorr, and whose second peptide is a dummy entry designed 
to produce the desired discriminant score once the standard Peptide 
Prophet calculations are performed.

Standalone deep analysis
Sorcerer Score can also be used as a standalone capability for 

targeted analysis, such as for clinical biomarker discovery and deep 
pathway analysis at the peptide level. In a nutshell, intermediate data 
files generated by SX1301 may be extracted and re-analyzed off-line, 
including quantitation and PTM analysis. Unlike closed “programs”, 
the flexible GEMYNI scripting platform enables capable developers 
to perform specialized deep analytics. Internal data files are stored in 
text format suitable for scripting and data-mining. 

Target-decoy statistics
The foundation of target-decoy is captured in this math puzzle: 

Suppose someone tosses 120 coins up in the air and 20 come up tails. 
How would you explain this? 

If you assume there are two kinds of coins - two-headed coins 
(correct IDs with 100% heads) and fair coins (random incorrect IDs 
with 50%:50% heads: tails) - then there would be ~80 two-headed 
coins and ~40 fair coins, the latter suggested by 20 tails. 

More generally, ʻNʼ coins with ʻDʼ tails means roughly ʻ2*Dʼ 
fair coins and ʻN-Dʼ two-headed coins. Therefore, after all decoys 
are removed, the estimated FDR is “D/ (N-D)” in the remaining 
population. For our example, we remove the 20 tails to leave 100 
coins, and expect to have 20 fair coins hidden among 80 two-headed 
coins (i.e. FDR~20%). 

In proteomics, if 120K candidate peptide IDs, perhaps after some 
rigorous filtering, contains 20K decoys, then the 100K non-decoys are 
expected to have an estimated FDR ~20%. 

The key point is the implied one-to-one correspondence between 
decoys you see and the incorrect non-decoys you donʼt. In other 
words, decoys are merely proxies, like shadows that represent objects 
hidden behind a wall. Any rigorous post-search filter must remove 
equal (or greater) numbers of non-decoys vs. decoys. 

In contrast, a non-rigorous filter can cheat by preferentially 
removing decoys to make FDR look better. In the above example, 
if someone steals 19 tails to leave 101 coins with 1 tail, then FDR 
suddenly looks better at 1% even though the true FDR remains 20%. 
Opaque or complex algorithms make it easy to hide such problems. 

This point illustrates the difference between non-rigorous “demo” 
analytics and rigorous analytics. They generally agree on low-noise 
data but disagree on high-noise or corrupt data, where demo analytics 
is designed to report great results no matter what. Researchers, who 
don’t understand the distinction may benchmark two tools with a 
simple experiment, conclude they have similar quality, and proceed 
to do real experiments with the lower-priced demo software, putting 
their research at risk. 

Sorcerer Scoreʼs rigorous post-search filtering can be visually 
checked by noting the nearly 1:1 correspondence for low S-score 
distributions in Figure 9. 

Figure 9 Estimated False Discovery Error Rate (FDR) vs. S-score.

Pseudo-reversed decoys yield cleaner stats
One subtle point that can affect deep analysis, depending on the 

dataset, is that the distribution of target sequences to decoys for 
incorrect IDs is not exactly 50%:50%. In our unpublished analysis, 
we have observed variations from 49.5%:50.5% to 50.5%: 49.5% 
that arise from different types of decoys (reversed vs. scrambled 
vs. peptide-terminus modifications) and the depth of top scores kept 
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(top-1 vs. top-500). Although the variation sounds minor at first, the 
effect can be >10% in the estimated number of correct IDs because 
the percentage of correct IDs can be a tiny portion of the overall 
population. 

We strongly recommend pseudo-reversed sequences for explicit 
decoys,2 the default on SORCERER systems, for deep proteomics 
because of better matching target-vs-decoy precursor mass 
distributions. 

Many researchers are unaware that reversing the sequence 
produces a different mass distribution because of the asymmetry of 
enzymatic digest. 

A target proteinʼs amino acid sequence of “...KabcdeR...” yields 
the tryptic peptide “abcdeR”. A standard reversed sequence yields 
“edcbaK” with a different mass, but pseudo-reversed keeps the 
n-terminus intact to yield “edcbaR” with the same mass. This is 
especially important for targeted searches against a small protein 
sequence database, such as for pathway analysis, to be as close as 
possible to 50%-50% target-decoy distributions at the individual 
spectrum level. 

Conclusion
Robust characterization of low-abundance and/or modified 

peptides and proteins is a revolutionary game-changer for molecular 

biology research. Sorcerer Score makes it possible for the first 
time with a simple yet scientifically rigorous methodology. Deep 
proteomics is fundamentally an analytics challenge that requires 
attention to subtle details. 
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