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How to identify low-abundance modified peptides
with proteomics mass spectrometry

Summary

Characterization of low-abundance, modified peptides (LAMPs)
is uniquely valuable for research in early detection of cancer and
infections, and indeed for all molecular biology research. However it
challenges proteomics mass spectrometry due to low signal-to-noise.
With parts-per-million mass accuracy for both intact (“precursor”)
and fragment ion masses available from diverse mass spectrometers, it
becomes feasible but requires capable analytics-i.e. mathematical and
computing techniques to infer insights from patterns hidden within
the data. This is best done with simple mathematical transformations
of raw mass data applied at a large scale, which ensures subtle data
patterns arise from the data and not processing artifacts. Patterns
should be visually clear to the human eye, which is still the very best
data analysis tool.

Traditional analytics rely largely on search engine “similarity”
scores (e.g. XCorr, ion-score, hyperscore) that quantify the degree of
similarity between the measured spectrum and a predicted spectrum,
the latter derived from a candidate peptide sequence using a sequence-
to-spectrum ionization model. They evolved mainly for abundant
peptides with robust spectral signals. Efforts to improve the search
engine score, for example by incorporating accurate fragment data,
have had limited success or worse. Some ad hoc efforts identify
unexpectedly numerous peptides having near-identical mass, charge,
and chromatographic retention time - i.e. same isotopic envelopes at
the same split-second in a multi-hour experiment - better explained by
faulty analytics.

Current workflows have two intractable problems for LAMPs.
First, similarity scores have a dependence on charge and peptide length
that introduces complex artifacts impossible to reverse. Second, mass
accuracy of fragment ions has been mainly used pre-search to narrow
the search space rather than as a post-search filter, which worsens
noise susceptibility (Figure 1).
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Figure | Sorcerer Score 3D data cube with S-score’s three components,
showing clear separation between likely-correct (green) and likely-incorrect
(green & black) candidate peptides [non-decoys in green; decoys in black].
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On one hand, this reduces obviously-incorrect, out-of-fragment-
mass-range candidates, which sounds good on the surface. Counter
intuitively, it increases noise susceptibility because incorrect peptides
that randomly get through would be indistinguishable from correct
ones with respect to fragment mass. In other words, fragment mass, one
of the most fundamental information from tandem mass spectrometry,
is rendered useless as a correct-vs-incorrect discriminator. Instead, the
robust way is to allow enough out-of-fragment-mass-range candidates
to define the background, and to use fragment mass as a post-search
filter to separate outliers from such background.

A cross-correlation similarity score has the best noise-suppression
among popular search score types, all of which are expressible as
a vector dot-product. It is therefore the best type of search engine
score for LAMPs. However, for the post-search filter, the score rank
is a statistically cleaner surrogate with good correct-vs-incorrect
discriminating power. This is akin to a college recruiting on the basis
of rank (i.e. valedictorians) vs. the GPA score.

We present a new simplicity-focused analytics methodology,
called Sorcerer Score(tm) that allows LAMPs to be rigorously
identified within a hypothesis-driven framework based on high-
accuracy precursor and fragment mass data. Accurate peptide ID is
fundamental to accurate protein quantitation and post-translational
modification (PTM) analysis.

The general approach is to: (1) use standard “target-decoy” cross-
correlation search with a wide mass range and “implicit decoy”
sequences (i.e. known-wrongs within the target search space), (2) pre-
filter out peptides with excessive mass error and implicit decoys, and
then (3) compute the following discriminant score:

S-score=peak Count/p0- Avg Delta Mass-log (Rank+1)/r0.

The most important component is Avg Delta Mass, which is the
positive weighted average of precursor mass error (adjusted for in-
measurement mass changes and calibration skew) and the average
fragment mass RMS error. Peak Count is the number of matched
fragment ions between measured and predicted spectra. The S-score is
compatible with any tandem mass spectrometer with sufficient mass
accuracy.

S-score has units of mass (amu) and is derived primarily from
raw mass data. It has a high value when the average mass error is
small, many fragment ions are matched, and the similarity score rank
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How to identify low-abundance modified peptides with proteomics mass spectrometry

is high, which are most of the key information from tandem mass
spectrometry. Clearly it is a correct-vs-incorrect discriminator in a
qualitative sense. What is surprising is that such a simple figure-of-
merit can be quantitatively powerful, which we illustrate with data.

To the chemistry-inclined, Sorcerer Score may be viewed as
“digital chromatography” whereby a “mixture” of candidate peptide
IDs are multi-dimensionally enriched using the parameters that
comprise the S-score. Decoys in the search space act as a solvent
that preferentially flushes out incorrect IDs to leave enriched likely-
correct IDs concentrated among the top ranks. This is the data-mining
tradeoff: more solvent (i.e. decoys through CPU power) for more
purity (i.e. lower FDR). Conversely, weak “demo-quality” analytics
that minimize CPU time, using over-optimistic algorithms that
underestimate error rates and confuse noise with signal, is likely the
main cause of irreproducibility in high-mass-accuracy proteomics.

Just as chemical separation would use different chemicals matched
to the sample, peptide identification can use additional filtering
parameters matched to the dataset and the biological system. For
example, certain PTMs yield characteristic fragment ions useful for
further filtering. This is why an open data-mining “platform”, as
opposed to a closed push-button “program”, is needed for high-value
proteomics analysis - the only kind that can sustainably justify pricey
mass spectrometers.

A human expert aided by a computing platform is the norm
for diverse data-driven fields like stock market analysis, weather-
forecasting, credit card fraud detection, etc. Unlike computers,
human experts can use unanticipated meta-information to narrow
down choices in deep analysis, like Sherlock Holmes’ dog that didn’t
bark. Clearly, it is impossible to code a computer to check for all the
ancillary things that do and do not happen.

Per the 80/20 Rule, we expect that any and all fully-automated
workflows can only identify the easier 80%, with the rest requiring
expert data-mining for ever deeper analysis. Every experiment will
have a different cost-benefit tradeoff. High-value experiments will
benefit from data-analysis-as-a-service from experienced proteomic
data scientists.

The Sorcerer Score concept is simple by design but challenging in
practice due to the computation. A typical 100K-spectra dataset cross-
correlation searched with multiple PTMs and extensive decoys, while
keeping top-200 candidate peptides, results in 20million candidate
peptides from which ~15K to 20K correct IDs are extracted. A
IM-spectra dataset would have 200M candidate peptides. High-
performance multi-million data point analysis requires professional
server-class development that goes beyond writing a C program on
a PC.

When the 3 components of S-score are plotted in a 3-D cube, a
few thousand non-decoy points (including duplicates with high
sequence homology) become clearly separated from the background.
(See Figure 1 above) The S-score of any point is its distance to the
“S-score=0" plane along the Avg Delta Mass axis.

The parameters (p0, r0) define the tilt of the separation plane
(S-score=X) in the 3-D cube. The cutoff threshold ‘X’ can be
set to trade off ID quality vs. estimated FDR. Notably, we found
the results to be robust. For example, to achieve FDR ~1% in our
sample dataset that has ~2K correct peptides, basically the same ~20
decoys are responsible for the FDR. These ~20 decoys are relatively
independent of p0 and r0. We believe robustness translates to research
reproducibility.
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The core Sorcerer Score analytics is implemented in a short R
script within the SX1301 MUSE script which can be modified or
customized by the user or by Sage-N Research. All the plots shown
were interactively created in R off-line on a Mac by re-running the
R part of SX1301 on data files generated on a SORCERER system.
Most of them are also auto-generated in a PDF file by the SX script
that may be viewed online within SORCERER.

We believe Sorcerer Score uniquely enables deep proteomics by
presenting peptide IDs close to their raw data from using simple-
to-understand analytics. Its foundation is based on well-established
components, namely the cross-correlation search engine (John Yates
Lab, Scripps), target-decoy search (Steve Gygi Lab, Harvard), and a
rigorous peptide-to-protein framework (Ruedi Aebersold Lab, ETH
Zurich).

Unlike opaque software that report peptide IDs not readily
verifiable, Sorcerer Score respects the integrity of the science by
being transparent and hypothesis-driven, and by presenting data-
driven evidence that can be drilled down to any level by scientists.

Analysis example: phospho-peptides

An anonymous phospho-peptide dataset (~6K spectra) from
a Thermo Q-Exactive mass spectrometer is searched and then
automatically processed using the SX1301 GEMYNI script on a
SORCERER system. The spectra comprise high-accuracy b-/y-
fragment ions (‘“HCD”).

The search conditions are as follows on SORCERER (masses are
rounded to nearest amu for illustration):

i. Target-decoy cross-correlation search, keeping top 5001 XCorr
peptides per spectrum.

ii. Single-species protein sequences.
iii. Mass tolerance +/- 0.5amu.

Iso-check at 98amu (i.e. three mass windows at -98amu, 0, and
+98amu).

iv.

v. Variable residue modifications: M +18; STY +80; ST -18.

Variable terminus modifications: n-terminus +17; c-terminus
-16 (i.e. “ETD Mods”).

Vi.

These conditions allow for a single labile phosphorylation site
(precursor dMass ~+98amu). Since this is a CID-only dataset (high-
accuracy ‘b’ and ‘y’ fragment ions), ETD terminus modifications are
used to generate implicit decoys only.

The ~0.5 hour search results in ~2.8M candidate peptide IDs. After
pre-filtering, the S-score is calculated for each remaining candidate
ID.

For peptide IDs with ‘N’ instances of labile phosphorylation of
serine/threonine, the effective delta-mass is adjusted down by N*(-98)
to account for the net -98amu (= 80+18) mass loss during collision.

For each spectrum, the non-decoy candidate peptide with the
highest S-score, if there is one, is chosen. Otherwise, the highest
S-score of either implicit or explicit decoy is chosen. The final
enriched set of candidate peptides represent about 92% of the spectra,
as about 8% of the spectra yielded no candidate peptides after pre-
filter. Most figures are shown with enriched set. Manual examination
showed no credible multi-peptide IDs for this dataset.
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When we set the overall FDR cutoff ~1%, we identified both
abundant peptides (defined as rank=1) with FDR<0.2% (1682 non-
decoys+3 decoys) and low-abundance peptides (defined as rank >1)
with FDR<4% (544 non-decoys+19 decoys). These include peptides
with very low XCorr rank (below 200th) and with difficult-to-
search phosphorylated serine/threonine. Even for abundant peptides,
Sorcerer Score increases the accuracy of their analysis.

Hypothesis-driven tandem

spectrometry

mass

The scientific method requires hypotheses to be tested against
data. Since mass spectrometry yields only mass data, such hypotheses
must be mass-testable. Therefore, the search engine is best viewed as

Non-enriched (N/spectrum)
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an automated hypothesis-generator and its output of candidate peptide
IDs for each spectrum as independent hypotheses in the form “Peptide
X generated Spectrum Y”. These hypotheses are then tested against
precursor and fragment mass data. They are rejected if any observed
delta-mass is excessive and conditionally accepted otherwise (Figure
2).

For our ~6K spectra and 2.8M gross search results, we expect
the small percentage of correct hypotheses to be clustered around
dMass~0 with noticeably higher peak Count. Figures 2a & 2b show
the plot of “peak Count vs. Precursor Delta-Mass” for both unenriched
(“gross”) candidate IDs and enriched (“unique”) IDs, the latter from
selecting the single best candidate peptide ID for each spectrum. Jitter
is added to Peak Count for better visualization of integer values.
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Figure 2 Scatter plot of Peak Count vs. Precursor Delta-Mass with dMass~0 [non-decoys in green; decoys in black].

Notably, Figure 2a hints at the real power of target-decoy search
as a high-level mass scan - a sort of ‘MS0’ scan, if you will - that
like MS1 and MS2 scans reveal signals around certain masses. Unlike
MS1 and MS2, however, it incorporates a search engine and peptide
model. The signal in the ‘MS0’ scan is the concentration of non-
decoys at certain precursor dMasses. Its utility would be clearer with
a wider mass range (not shown).

Beta elimination from phosphorylated serine
and threonine
Phosphorylation of serine (S), threonine (T), or tyrosine (Y) adds

+80amu for the phosphate group. However, phosphorylated S or T may
be unstable during mass spectrometry, resulting in beta elimination

Non-enriched: Phospho with 1 Beta Elimination
dMass ~ 98

PeakCount (jtler added)

10

T8 S8.0

Precursor dMass [amu]

with a mass loss of 98amu (=80+18) from the phosphate group plus
water. In the process, serine is converted to dehydroalanine, and
threonine is converted to dehydroamino-2-butyric acid.

For example, let’s say a serine-phosphorylated peptide enters
the mass spectrometry with ‘MS1’ mass 1080amu (i.e. 1000amu
unmodified), experiences beta elimination to become 982amu, and
then fragments to produce the ‘MS2’ spectrum. To the search engine,
this is manifested as a +98amu precursor mass error. To visually check
for such peptides, we use the ‘MS0’ plot around dMass ~98amu.

Figures 3a & 3b show the Peak Count vs. dMass for unenriched
and enriched candidate peptides IDs from the search results. They
clearly show a population of likely-correct IDs with a single labile
phospho-site.

Enriched: Phospho with 1 Beta Elimination
dMass ~ 98

PeakCount (jner added)

§7.95 98.00

Precursor dMass [amu)]

Figure 3 Scatter plot of Peak Count vs. Precursor Delta-Mass with dMass ~ 98 amu for labile phosphorylation [non-decoys in green; decoys in black].
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From the search engine perspective, correct identification has only
two requirements:

a. The reported ‘MS1’ precursor mass is within the search space:
dMass~98amu for single labile phosphorylation.

For our example, the ‘true’ precursor mass is 982amu, which
is manifested as a precursor delta-mass (i.e. Measured-Actual)
of +98 from the ‘MS1’ mass of 1000. This is the mass of the pre-
fragmentation ion corresponding to the spectrum.

To search for peptides with a single labile phosphorylation, the
precursor mass range must include dMass ~+98amu. For double labile
phosphorylation, dMass ~2*(98)amu, and so on. For example, it is
possible in principle, if not in practice, to search for up to two labile
phospho-sites by setting the mass tolerance to +/- 200amu.

b. The correct PTM mass of -18amu is specified.

For any variable modification search, the PTM mass is simply the
mass difference between a singly modified peptide (982amu in our
example) and the unmodified peptide (1000amu), or -18amu.

Conceptually, the issue is that there is no practical way to measure
the mass of the ‘true’ precursor that exists only inside the collision
chamber for a split-second. So we have to make do with the ‘MS1’
mass which can be correct for stable phosphorylation, or too high by
+98amu (single labile PTM), +196amu (two labile PTMs), +294amu
(three labile PTMs), and so on.**

Table | Accuracy & fragment ion of LAMP
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Assuming there is no way to tell what the dMass would be from
the spectrum, we have to allow for the dMass uncertainly in both the
search and the post-search analysis. Essentially, we search allowing
for one or more labile PTMs, then adjust the dMass for each candidate
peptide based on how many -18amu labile PTMs are included, so
the adjusted delta-mass (“dMassA”) is consistent with the number of
labile PTMs.

For the peptide search, we must use (STY +80) and (ST -18) to
search for stable and labile phosphorylation, respectively. A mass
tolerance of +/- 0.5amu plus an “iso-check” set at +98amu (i.e. +/-
0.5amu for base dMass’s of {-98, 0, +98}amu) allows for a single
labile PTM.

For post-search filtering, the SX1301 script adjusts the precursor
mass by N*(-98) for any candidate peptide ID containing ‘N’ instances
of (ST -18).

Lamps defined and identified

Since we focus on accurate deep analysis rather than formal
semantics, for practical purposes we can characterize an abundant
peptide as one that yields a high similarity score well-separated from
other scores for a reasonably-large search space. In contrast, lower
abundance peptides yield weaker signals comparable to background
noise, resulting in mid to low similarity scores relative to random
wrong peptides (Table 1).

LAMP type Accurate reported precursor mass Interpretable fragment ion spectrum
Type | Yes Yes
Type ll No Yes
Type lll No No

At some point, the precursor ‘MS1’ signal may be too small for
accurate precursor mass estimation, although fragment ions may
still be interpretable by a sensitive search engine. As well, a single
spectrum can conceivably capture fragment ions from two or more
peptides with overlapping isotopic envelopes, with its reported
precursor mass incorrect for all but the dominant one.

We categorize LAMPs into three types:

In this paper we focus on Type I LAMPs only. The Sorcerer Score
methodology is expected to be extensible to Type II LAMPs, albeit
with less accuracy.

Figures 4a—4d show the histogram of the original score rank of
the final ID hypotheses with estimated FDR < 1%, split into {Target
vs. Decoy} x {Top-10 vs. Below-Top-10}. Note that XCorr ranks to
500th are considered, but the lowest ranked target and explicit decoy
are 245th and 17th, respectively.

The exponentially decreasing distribution vs. score rank is
consistent with expectations of correct ID distributions.

The dramatic drop from rank 1 to 2 compared to other transitions
suggest that top-ranked peptides are characteristically distinct, which
supports them being considered “abundant peptides”.

To be clear, the ranks shown are the original XCorr ranks from raw
search results. After final enrichment, they become the sole candidate
ID hypothesis associated with each spectrum.
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Figure 4 Histogram Target and Decoy Distribution vs. Rank.

Weighting coefficients for avg delta mass

Avg Delta Mass is a weighted average of absolute values of the
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effective precursor mass error and of the average fragment mass error.
The former considers any PTM adjustment and observed calibration
skew. The latter is the average RMS error calculated from matched
fragment ions.

The general fragment ion match is based on the Peptide Score part
of the Ascore.!

For datasets where both precursor and fragment mass data are
collected in the same chamber with presumably the same mass
accuracy, including for our sample dataset, we can use equal weights
of 0.5. This can be visually validated (see Figure 5), by ensuring a
“slope=-1" line (representing the “Constant=0.5*x+0.5*y” iso-score
line) reasonably fits the observed correct-vs-incorrect boundary.

0.010 0015 0.020

0.005

0.000

0.000 0.005 0.010 0.015 0.020
Figure 5 Scatter plot of Avg Fragment dMass vs. PTM-Adjusted Precursor

dMass Reference line with slope = -1 shown.
PeakcountVs.Avg delta mass

Figure 6 shows the foundation of the Sorcerer Score methodology
- the clear separation between likely correct IDs with low Avg
Delta Mass and high peak Count with mostly non-decoys, and a
balanced decoy/mon-decoy presumed incorrect IDs with the reverse.
Significantly, a dividing line with a representative slope visually helps
to separate most correct IDs from incorrect IDs.
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Figure 6 Scatter plot of Peak Count (jitter added) vs.Avg Delta Mass.

Note this is a 2D projection of the 3D data-cube from Figure 1. The
third dimension of log (Rank+1) helps separate correct-vs-incorrect
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points in the low-peak Count/high-rank region. Indeed, the correct-vs-
incorrect separator is actually a tilted plane defined by p0 and 10, so a
more accurate representation (generated by the SX1301 script) would
show two lines representing the plane intersecting the front and back
of the data-cube.

The line slope in each of two 2D projections plotted against Avg
Delta Mass — peak Count and log (Rank+1) - may be used to estimate
pO and r0, respectively. Resolution of 100 seems to be more than
sufficient for both parameters.

A detailed study of Figure 5 shows that a few decoy peptides
achieve surprisingly high peak Count with low delta-masses, such
that it seems hard to believe they can be incorrect IDs. One possible
explanation is that these are actually correct peptide IDs that happen
to be missing from the target sequences, but appear as a decoy by
random chance. But our unpublished analysis suggests this may not
be the case.

Instead, we found that many such decoys are not truly “correct”
peptide IDs per se, but rather they are sequences with high sequence
homology to the presumed correct ones. Notably search engine
similarity scores reflect sequence homology, not identity, so they
survive the first-level filtering of being among the top-N candidate
peptides. Long peptides also match more raw fragments than short
ones even if subsequences don’t match. This is a subtle but important
distinction for deep analysis.

Implicit decoys constructed with peptide terminus modifications
(e.g. ETD mods), which shift b- and y-ion series independently,
frequently show up as lower ranked versions of correct peptides, with
comparable S-scores, similar peak Counts, but >>lamu precursor
delta-mass.

A related issue is the presumed hidden -incorrect IDs presumably
mirrored by the explicit decoys. We hypothesize that, per standard
target-decoy theory, there is an approximately same number of
similar-but-not-quite-correct target peptide IDs with comparable
degree of sequence homology.

Log (Rank+1) vs.Avg delta mass

Figure 7 shows a clearly large population of likely correct IDs with
raw rank=1 [i.e. log (Rank+1)=0.693] and low Avg Delta Mass. There
is a generally linear boundary shown with representative line of slope
-10.

0.00

0.01 0.02 0.03

Figure 7 Scatter plot of log (Rank+1) [jitter added] vs.Avg Delta Mass.
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The plot shows that using a non-linear boundary or using different
boundaries for rank=1 vs. rank>1 will yield higher peptide IDs for a
given overall FDR. That may or may not make sense depending on
the objective of the data analysis. Adding more complexity increases
possibility of over-fitting.

Distribution of S-score and FDR

Figure 8 shows the superimposed S-score distributions of decoys
(yellow) and non-decoys (gray). Left of the dashed line, the decoy and
non-decoy distributions are evenly matched (the yellow mostly match
the gray behind it), suggesting mostly random incorrect IDs. Right
of the solid line, non-decoys are likely-correct IDs. In-between is the
transition region that may require additional discriminators to resolve.

200

50 100

0

n'

-0.01

-0.03 0.01 0.03

Figure 8 Super-imposed S-score distributions of decoys (yellow) and non-
decoys (gray). Divided zones denote likely-incorrect, transition, and likely-
correct ranges.

Integration with trans-proteomic pipeline

The SX1301 MUSE script is designed to run automatically within
the SORCERER system using its GEMYNI software platform. The
search requires a standard 1:1 target-decoy distribution (i.e. for
“explicit” decoys) and the top 200 or more XCorr peptides. Clearly,
Sorcerer Score requires non-corrupt data and valid search results on
which it can improve. Search results with significant data quality
problems, which can be up to 10% of proteomics experiments, cannot
be fixed by the SX1301 script or any other computational approach.

For integration into Trans-Proteomic Pipeline and compatible
workflows, the S-score is used to derive an equivalent Peptide Prophet
discriminant score. The current script generates a new search output
file (SQT) whose top peptides are the top S-score peptides with their
original XCorr, and whose second peptide is a dummy entry designed
to produce the desired discriminant score once the standard Peptide
Prophet calculations are performed.

Standalone deep analysis

Sorcerer Score can also be used as a standalone capability for
targeted analysis, such as for clinical biomarker discovery and deep
pathway analysis at the peptide level. In a nutshell, intermediate data
files generated by SX1301 may be extracted and re-analyzed off-line,
including quantitation and PTM analysis. Unlike closed “programs”,
the flexible GEMYNI scripting platform enables capable developers
to perform specialized deep analytics. Internal data files are stored in
text format suitable for scripting and data-mining.

Target-decoy statistics

The foundation of target-decoy is captured in this math puzzle:
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Suppose someone tosses 120 coins up in the air and 20 come up tails.
How would you explain this?

If you assume there are two kinds of coins - two-headed coins
(correct IDs with 100% heads) and fair coins (random incorrect IDs
with 50%:50% heads: tails) - then there would be ~80 two-headed
coins and ~40 fair coins, the latter suggested by 20 tails.

s

More generally, ‘N’ coins with ‘D’ tails means roughly ‘2*D’
fair coins and ‘N-D’ two-headed coins. Therefore, after all decoys
are removed, the estimated FDR is “D/ (N-D)” in the remaining
population. For our example, we remove the 20 tails to leave 100
coins, and expect to have 20 fair coins hidden among 80 two-headed
coins (i.e. FDR~20%).

In proteomics, if 120K candidate peptide IDs, perhaps after some
rigorous filtering, contains 20K decoys, then the 100K non-decoys are
expected to have an estimated FDR ~20%.

The key point is the implied one-to-one correspondence between
decoys you see and the incorrect non-decoys you don’t. In other
words, decoys are merely proxies, like shadows that represent objects
hidden behind a wall. Any rigorous post-search filter must remove
equal (or greater) numbers of non-decoys vs. decoys.

In contrast, a non-rigorous filter can cheat by preferentially
removing decoys to make FDR look better. In the above example,
if someone steals 19 tails to leave 101 coins with 1 tail, then FDR
suddenly looks better at 1% even though the true FDR remains 20%.
Opaque or complex algorithms make it easy to hide such problems.

This point illustrates the difference between non-rigorous “demo”
analytics and rigorous analytics. They generally agree on low-noise
data but disagree on high-noise or corrupt data, where demo analytics
is designed to report great results no matter what. Researchers, who
don’t understand the distinction may benchmark two tools with a
simple experiment, conclude they have similar quality, and proceed
to do real experiments with the lower-priced demo software, putting
their research at risk.

Sorcerer Score’s rigorous post-search filtering can be visually
checked by noting the nearly 1:1 correspondence for low S-score
distributions in Figure 9.
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Figure 9 Estimated False Discovery Error Rate (FDR) vs. S-score.

Pseudo-reversed decoys yield cleaner stats

One subtle point that can affect deep analysis, depending on the
dataset, is that the distribution of target sequences to decoys for
incorrect IDs is not exactly 50%:50%. In our unpublished analysis,
we have observed variations from 49.5%:50.5% to 50.5%: 49.5%
that arise from different types of decoys (reversed vs. scrambled
vs. peptide-terminus modifications) and the depth of top scores kept
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(top-1 vs. top-500). Although the variation sounds minor at first, the
effect can be >10% in the estimated number of correct IDs because
the percentage of correct IDs can be a tiny portion of the overall
population.

We strongly recommend pseudo-reversed sequences for explicit
decoys,? the default on SORCERER systems, for deep proteomics
because of better matching target-vs-decoy precursor mass
distributions.

Many researchers are unaware that reversing the sequence
produces a different mass distribution because of the asymmetry of
enzymatic digest.

A target protein’s amino acid sequence of “...KabcdeR...” yields
the tryptic peptide “abcdeR”. A standard reversed sequence yields
“edcbaK” with a different mass, but pseudo-reversed keeps the
n-terminus intact to yield “edcbaR” with the same mass. This is
especially important for targeted searches against a small protein
sequence database, such as for pathway analysis, to be as close as
possible to 50%-50% target-decoy distributions at the individual
spectrum level.

Conclusion

Robust characterization of low-abundance and/or modified
peptides and proteins is a revolutionary game-changer for molecular

Copyright:
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biology research. Sorcerer Score makes it possible for the first
time with a simple yet scientifically rigorous methodology. Deep
proteomics is fundamentally an analytics challenge that requires
attention to subtle details.
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