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(CGES) have already entered the clinic.3–6 In the past, bidirectional 
Sanger sequencing was used to detect gene-specific mutations and 
small variants. With the lower cost of the whole genome sequencing 
technique, the CGES could readily become a tool for genetic analysis 
involving a large number of patients. Such a high throughput approach 
can help identify targets or candidate genes for Sanger sequencing 
verification in the future.7–9

Among many diseases, the CGES is well developed for cancer 
indications and therapy.9,10 The clinical oncologists benefit from 
the high-throughput sequencing efforts for diagnosis, identification 
of patient cohort for targeted therapy, and in early identification of 
mutations for resistance to ongoing therapy. The US Federal Drug 
Administration (FDA) approves mutations or gene expression 
analysis of genes such as EGFR, KRAS, HER2/NEU, C-KIT, BRCA 
and BRAF for therapy of diverse cancer types. The CGES results in 
oncology have helped establish a new paradigm in drug development 
in industry whereby a co-development of a diagnostic test kit and a 
drug for treatment is becoming common for simultaneous submission 
to the FDA. The extensive experience gained with the oncology 
indications further provides a framework to expand the utility of 
CGES for non-oncology indications. Increasingly, FDA approved 
drugs incorporate pharmacogenomics information in their labels in 
diverse therapeutic areas such as analgesics, antiviral, cardiovascular 
drugs, and anti-cancer therapeutics.

The Next Generation Sequencing (NGS), a widely used high-
throughput sequencing technology, offers powerful solutions to the 
CGES. The whole exome sequencing (WES) and the whole genome 
sequencing (WGS) provides distinct advantages for the clinicians.11 
The WES approach focuses on the coding region of the genome, is less 
expensive, and is currently offered by many testing laboratories. The 
WGS approach on the other hand, focuses on the entire genome and 
is more sensitive than the WES in detecting the structural variations. 
Furthermore, the WGS can help identify non-exonic regulatory regions 
encoded by the genome. This non-coding intronic and intergenic 
region of the genome encodes the most common complex disease risk 
variants and pharmacogenomics variants. The WGS, however, is not 
currently offered by the testing laboratories, but is likely to become an 
integral part of clinical testing in the next decade.

The CGES does not detect a wide variety of variations and 
deletions such as repetitive DNA including tri-nucleotide repeats 
(Fragile X syndrome, Huntington’s disease), copy-number variants 
(DiGeorge syndrome, Charcot-Marie-Tooth disease type 1A), long 
insertion-deletion variants (resistance to HIV infections), structural 
variants (chromosomal translocations), aneuploidy associated 
(Down’s syndrome, Turner syndrome) and many epigenetic changes 
(Beckwith-Wiedermann syndrome). In these instances, the Sanger 
sequencing and the Polymerase Chain Reaction provides valuable 
alternatives. 

Global measurement of the variations among the 22,000 genes can 
provide an attractive starting point for novel diagnosis and prediction 
of risk of disease development.12 The variants are classified according 
to the American College of Medical Geneticists13 into 1) Disease 
causing, 2) likely disease causing, 3) possibly disease causing and 
4) variants of unknown clinical significance. Numerous databases are 
emerging to facilitate analysis of these variants including ClinGen,14 
Clinical Genomics Database-CGD,15 ClinVar16 Decipher,17 and 
Electronic Medical Records and Genomics-eMERGE.18 

Challenges

Despite the promise of the CGES in improving the quality of 
healthcare, the healthcare providers are not yet rapidly incorporating 
CGES into clinical practice. Various reasons including lack of 
knowledge and training, interpretations of big data, cost and some 
degree of skepticism about the validity of the tests contribute to this.19,20 
A curriculum based on the clinical genomics for the next generation of 
clinicians would be necessary to overcome these challenges.

Interpreting the clinical significance of mutations is complex. 
Over one-fourth of the mutations reported in the literature may be 
incorrect.21 Clinical-quality databases of disease-associated mutations 
currently do not exist. Efforts are underway to establish such a 
database by the human variome project.22

The genome sequencing by CGES is likely to raise some ethical 
challenges including identification of variants relevant to long 
term medical care such as cancer, Alzheimer’s disease, stroke and 
neurological disorders as well as risk for development for other 
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Editorial
Sequencing of the individual genome provides valuable 

opportunities to better diagnose and treat many human diseases.1 Over 
3,000 genes are listed in the Online Mendelian Inheritance in Man 
(OMIM) database as disease causing.2 Medicines based on genomics 
are making inroads in the fields of oncology, infection, pharmacology, 
and rare and undiagnosed diseases.  The genetic variants in the 
human genome, both at the whole genome and at the exome level, 
if identifiable, provide a rational approach to diagnosis, therapy, 
and personalized medicine. The clinical applications of the genome 
sequencing, termed as clinical genome and exome sequencing 
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diseases. There are no effective guidelines to tell the clinicians as to 
when or whether to inform the patients of such a discovery. Issues 
of privacy and insurance discrimination provide another layer of 
challenges for the benefits of clinical genomics to reach the patient’s 
bedside.

The future of clinical genomics

Despite these challenges, integration of the genome medicine into 
the clinical setting is likely to become a reality in the coming decade. 
Most patients entering the clinic in the future are likely to have their 
genome sequenced prior to the clinical evaluation. An initial focus 
on the Mendeliome sequencing might help transfer the research 
findings to the patient’s bedside rapidly. The UK Genomics England’s 
efforts to sequence 100,000 patients with rare genetic diseases and 
cancer are expected to establish a sound framework for translational 
medicine. Clinical genomics promises to change current approaches 
to therapeutics development, delivery of quality healthcare and 
population health management in the future.
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