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of enzymes, transporters, structural or chaperones play crucial roles 
in cell survival. Most of the proteins to be functionally active need to 
be folded, except the intrinsically disordered proteins some of which 
are functional in spite of the disordered state.1 Thus a stretch of amino 
acids when folds it and takes up a defined structure and conformation 
to become functional plays a crucial role in the survival of a cell. 
And therefore protein folding becomes a key phenomenon and has 
always been an intriguing question for scientists. Anfinsen and his 
coworkers did extensive work since 1950s for more than two decades, 
and showed that protein folding during renaturation is governed 
by the thermodynamic hypothesis and the native conformation is 
one in which the Gibbs free energy of the molecule in a particular 
environment is the least.2–6 Protein folding being a highly complex 
and intricate phenomenon involves interesting physics.7 Substantial 
work has been undergone in the last 50 years to understand the protein 
folding mechanisms.

Techniques like near and far UV circular dichroisms, intrinsic 
tryptophan fluorescence, NMR have been used to understand the 
protein conformations in solution. Equilibrium or kinetic folding and 
unfolding have been performed for enzymes as small as lysozyme8 and 
as big as Malate synthase G.9 Along with these, mass spectrometry is 
extensively used to identify and understand protein conformations in 
multiple studies.10–13 ESI-MS with its unique characteristic of detecting 
non covalent interactions has been immensely useful in structural 
analysis of proteins.14–17 Due to changes in the solvent accessibility 
and the gas phase basicity, the ionization of the protein molecules 
is affected in ESI-MS and thus this feature has been exploited to 
infer the compactness of these molecules.18–22 The more compact 
a protein, it will have smaller charge as compared to its respective 
unfolded state10,23,24 and thus would be shifted towards higher m/z on 
the spectrum. Further time-resolved electro spray ionization mass 
spectrometry (ESI-MS) with online pulsed hydrogen/deuterium 
exchange (HDX) has been used to monitor folding of small proteins 
like ubiquity, myoglobin.25–27

Another approach that is applied is the limited proteolysis of 
proteins and their analysis using CD or MS.27–30 Partly folded states of 
lysozyme and lactalbumin family proteins were identified and molten 
globule state27 or Apo and holo myglobins29 were studied. Since these 
proteomic and computational approaches have greatly increased 
our understanding of the intricate protein folding mechanisms, the 
question we often ask how protein mis-folding alters the physiology 

of a cell and therefore may lead to various disease outputs. Among 
many pathological conditions, the one we discuss in this opinion is 
angiogenesis, which is the process of new blood vessel formation. 
Angiogenesis is a complex, step-wise process that happens in both 
normal embryonic development as well as postnatal pathological 
processes, such as cardiovascular disease, cancer, and diabetes. 
Aberrant blood vessel formation, in the retina and the choroid is a 
major cause of vision loss during severe eye diseases, such as age-
related macular degeneration (AMD). Also, various solid tumours 
increase their own blood supply by increasing angiogenesis. Studies 
suggest a key role for the unfolded protein response (UPR) in 
regulation of angiogenesis, which is through regulating the secretion 
of pro-angiogenic cytokine, VEGF, and balancing endothelial cell 
survival and apoptosis. The unfolded protein response (UPR) include 
a complex set of signaling pathways activated upon accumulation of 
unfolded or misfolded proteins in the endoplasmic reticulum (ER), 
during ER stress.

The UPR get activated during angiogenic stimuli such as hypoxia 
and ischemia in the cell.31 Also, the molecular chaperones that normally 
facilitate protein folding in the ER31 have been found to be expressed 
in the retina and in retinal endothelial cells and are up-regulated by 
the UPR. For instance, the 70-kDa heat shock protein (Hsp70) is 
abundantly expressed in endothelial cells and acts as a key mediator 
of tumor angiogenesis by controlling endothelial cell survival, 
proliferation, and migration.32 Similarly, the oxygen- regulated protein 
150 (ORP150), an inducible ER chaperone, regulates VEGF transport 
and secretion and therefore tumor angiogenesis.31 A link between 
UPR signaling and the angiogenic process is evident in diseases, such 
as cancer, retinal angiogenesis, and ischemic renal disease.33 There are 
studies showing that glucose deprivations activates UPR and induces 
the angiogenic switch by increasing expression of proangiogenic 
factors (VEGF, IL-6, FGF-2, etc.) and a concomitant decrease in 
angiogenesis inhibitors (CXCL14, and CXCL10) in tumors.34 Also, 
partially blocking UPR signaling by activating transcription factor 
4 (ATF4) or silencing protein kinase RNA–like ER kinase (PERK) 
reduced the production of VEGF. In vivo the knockdown of PERK 
in tumor cells slows down tumor growth and decreases blood vessel 
density.34 Collectively, knowledge about unfolded protein response in 
context of angiogenesis, and upstream downstream pathways could 
bring specific new targets, and therefore inhibiting those mediators of 
ER stress may lead for the development of new therapeutics to inhibit 
tumour angiogenesis.
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Opinion
The intrinsic property of a living system is to survive and reproduce, 

and to maintain those essential aspects, a cell requires continuous 
production and usage of energy that comes from food, which is either 
synthesized inside it or taken up from the outside. For each and every 
process that a living cell goes through, be it generating energy, adapting 
itself to the environment, replicating or simply growing in size, it 
requires a network of proteins. These protein molecules in the form 
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Although computational approaches have greatly helped and 
increased our knowledge about protein folding and regulation of 
various diseases, still a lot needs to be done. For example studies about 
various intermediates that are formed during the folding pathway, and 
why is one path preferred over the other during renaturation? When 
the upr does come into play? are still being pondered upon. At this 
point, we came a long way in the area of protein folding, but do we 
know enough, and more precisely in disease context? The answer is 
it’s never enough, we still know very little of the phenomenon that 
happens spontaneously in a living unit.
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