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Introduction
At present, cancer is the second leading cause of death worldwide, 

accounting for an estimated 9.6 million deaths in 2018.1 This type 
of diseases elicits from uncontrolled growth and proliferation of 
malignant cells harboring genetic alterations. These abnormally 
growing and proliferating cells can have a life-threatening effect 
when they physically or pathologically affect adjacent healthy cells in 
a vital organ. Distinct genetic alterations within a cell that result in out 
of control cell proliferation are responsible for the initiation of cancer 
formation. In this regard, genetic alterations in proto-oncogenes and 
tumor suppressor genes are frequently reported in several cancer cell 
types. Prolonged exposure to various mutagens can be involved in 
the induction of these genetic alterations in cancerous cells.2 Chronic 
infection represents a risk factor for cancer development. It has been 
estimated that up to 20% of the global cancer burden is attributed 
to infectious agents, especially viruses and bacteria.3,4 The bacterium 
Helicobacter pylori and viruses Hepatitis B virus, Hepatitis C virus, 
certain strains of human papillomavirus, Epstein-Barr virus, human 
immunodeficiency virus type-1, and human T-cell lymphotropic virus 
type-1 have been identified as major carcinogenic infectious agents 
by International Agency for Research on Cancer (IARC).3 These 
infectious agents are highly prevalent in the world. Nevertheless, most 
infected individuals do not develop cancer, indicating that genetic 
susceptibility of host and environmental factors may be associated 
with cancer caused by these infectious agents. Gastrointestinal tract is 
constantly exposed to many bacterial agents and some of these agents 
induce chronic inflammation in this organ. On the other hand, chronic 
inflammation may increase the rate of mutation in epithelial cells 
leading to cancerous cell formation. As discussed below for gastric 
cancer, some evidences suggest that specific bacteria can be involved 
in cancer development or progression. These bacteria can trigger 
oxidative stress in host cells, activate some intracellular pathways 
such as nuclear factor-kappa B (NF-κB) pathway, and promote 
production of various components involved in carcinogenesis. Role 

of inflammation in induction of oxidative stress and NF-κB pathway 
activation and cancer development, Phagocytosis of bacteria initiates 
oxidative stress in the phagocytic cells leading to release of reactive 
oxygen and nitrogen species such as peroxynitrite, reactive hydroxyl 
group, and other free radicals. These reactive components produced by 
inflammatory cells at site of infection affect enzymatic activities and 
expression of several genes. They can also induce DNA damage and 
genomic instability. Indeed, nucleotide modifications induced during 
oxidative stress can lead to mutagenesis. Some critical mutations and 
genomic instability, if not properly repaired, have the potential to 
orchestrate events in precancerous cells resulting in resistance to stress 
and death signals, and induce aberrant cell proliferation. Oxidative 
stress is linked to NF-κB pathway activation.4,5 Activation of NF-κB is 
involved in the immediate-early innate immune responses in microbial 
infections.6 NF-κB exists in the cytoplasm of many different cells and 
is bound to IkappaB (IκB), which prevents it from entering the nucleus. 
When cell is stimulated, NF-κB is released from IκB, enters into the 
nucleus and binds to specific sequences in promoter regions of target 
genes and upregulates their transcription. Activated NF-κB regulates 
transcription of several genes encoding growth factors, cytokines, 
chemokines, cell adhesion molecules, proinflammatory enzymes, 
angiogenesis factors, and apoptosis-related proteins. Accordingly, 
NF-κB has important roles in various cell functions such as in cell 
proliferation by activating growth factors such as IL-2, granulocyte-
monocyte colony stimulating factor and CD40L,7,8 in cell cycle 
progression by activating c-myc and cyclin D1,7,9 and in inhibition 
of apoptosis through regulation of the anti-apoptotic proteins ciAPS, 
c-FLP and members of the Bcl-2 family.7‒11 Activation of NF-κB 
also leads to upregulation of vascular endothelial growth factor 
(VEGF) and matrix metalloproteinase (MMP) that are associated 
with angiogenesis and cell migration, respectively. Furthermore, 
NF-κB is involved in overexpression of cyclooxygenase-2 (COX-
2), an enzyme regulating prostaglandin synthesis,12 which has a role 
in cell proliferation,13‒15 migration,15 invasion,15 apoptosis, and 
angiogenesis.14‒18 COX-2 also contributes to immune evasion.19 The 
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Abstract

Bacterial infection can be associated with the development of cancers, especially 
in organs that are constantly exposed to bacteria, such as gastrointestinal tract. The 
epithelial cells represent the first barrier for bacteria invading the body and are 
participated in inflammatory responses and innate immune responses. Epithelial 
cells and non-epithelial cells exposed to bacteria release diverse proinflammatory 
mediators to activate and attract immune cells to the site of infection. Bacteria-induced 
inflammatory mediators and cytokines may promote carcinogenesis in inflamed tissue 
or increase neoangiogenesis, and tumor cell proliferation, survival, and migration 
in the tumor microenvironment. In this review, bacteria-induced inflammation and 
carcinogenesis, association of Helicobacter pylori infection with gastric cancer, as 
well as molecular mechanisms involved in Helicobacter pylori-promoted gastric 
inflammation and carcinogenesis are discussed.
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NF-κB pathway is participated in the regulation of immune responses 
during inflammation as well as in carcinogenesis. Activation of 
NF-κB pathway and its cooperation with multiple other signaling 
pathways and molecules occurs in chronic inflammation and triggers 
transcription of several proinflammatory cytokines genes, cell cycle-
related genes, and downregulation of apoptosis-related genes.20 
Aberrant NF-κB signaling has been identified in various types of 
cancer, including esophageal cancer, gastric cancer, colon cancer, 
breast cancer, lung cancer, hepatocellular cancer, pancreatic cancer, 
melanoma cancer, endometrial cancer, ovarian cancer, bladder cancer, 
prostate cancer, thyroid cancer, parathyroid cancer, laryngeal cancer, 
retinoblastoma, astrocytoma, squamous cell carcinoma of the head 
and neck, and hematopoietic malignancies, such as multiple myeloma, 
chronic lymphocytic leukemia, adult T cell leukemia, acute myeloid 
leukemia, chronic myeloid leukemia, Hodgkin’s lymphoma, mantle 
cell lymphoma, MALT lymphoma, diffuse large B cell lymphoma, 
and myelodysplastic syndrome.21‒23 Constitutive activation of NF-
κB in different types of cancer suggests its possible involvement 
in mechanisms connecting inflammation and cancer development, 
as this pathway is related to inhibition of apoptosis, promotion of 
cell survival and proliferation, and tumor invasion and metastasis. 
Inflammation-induced and NF-κB-mediated downstream pathways 
and molecules involved in carcinogenesis.

Cytokines released during inflammation may contribute to cancer 
development. Various stimuli such as proinflammatory cytokines 
tumor necrosis factor-alpha (TNF-α) and interleukin-1β (IL-1β), as 
well as Toll-like receptor (TLR) ligands activate NF-κB pathway.24 
This NF-κB pathway, known as the classical or canonical pathway of 
NF-κB, is essential for innate immunity and inhibition of apoptosis 
under conditions of infections.25‒27 NF-κB is also activated by an 
alternative pathway through TNF receptor superfamily members such 
as lymphotoxin β (LT), CD40 ligand, BAFF, and receptor-activated 
NF-κB  ligand (RANKL). NF-κB alternative pathway regulates cell 
survival and is critical for development and function of secondary 
lymphoid organs. NF-κB-induced upregulation of antiapoptotic 
gene Bcl-xL expression was detected in human T cells28 and human 
hepatocellular carcinoma cells.29 In addition, overexpression of 
cyclinD1, a cell cycle regulator required for G1 phase progression 
which is induced by NF-κB, has been detected in human cancers such 
as laryngeal squamous cell carcinoma and estrogen receptor-negative 
breast cancer.30,31 NF-κB promotes angiogenesis, which is essential 
for tumor development, by enhancing the expression of VEGF and 
IL-8 .7,8,32‒34 In addition, inactivation of NF-κB has been contributed 
to increased apoptosis induced by chemotherapeutic agent in human 
breast cancer cells.35 NF-κB inhibition also resulted in cancer growth 
inhibition in non-small cell lung carcinoma.36 Similarly, a NF-κB 
inhibitor, Parthenolide, was capable to suppress tumor growth and 
enhanced response to chemotherapy in gastric cancer.37 This findings 
indicate a role of NF-κB in development or progression of these 
types of cancer. Increased expression of NF-κB and COX-2 has been 
detected in cells exposed to inflammation and in malignant cells when 
compared to normal esophageal mucosa.38 In addition, expression 
of NF-κB and COX-2 has been demonstrated in gastric cancer 
cells, and treatment with COX-2 inhibitors suppressed cell growth, 
indicating their roles in gastric cancer growth. Use of aspirin and other 
nonsteroidal anti-inflammatory drugs has been related to reduce risk 
of esophageal and gastric cancer.38‒41 Decreased expression of COX-2 
and prostaglandin synthesis in esophageal squamous cell carcinoma 
cells treated with aspirin was associated with induction of apoptosis 
and reduced cell proliferation,42 suggesting a crucial role for COX-2 
in tumor cell progression. NF-κB activation was also linked to higher 

expression of IL-6 and VEGF in gastric carcinoma cells compared to 
normal mucosa.43 NF-κB also controls the expression of apoptosis-
promoting cytokines, such as TNF-α (Zhu et al., 2000), and FAS 
ligand (FASL).44 

Lipopolysaccharide (LPS), a bacterial cell wall component, can 
increase tumor growth and NF-κB activation is required for LPS-
induced tumor growth. TNF-α is involved in LPS-induced tumor 
growth and NF-κB activation.45 Helicobacter pylori infection in 
human populations and its association with gastric cancers, 
Helicobacter pylori (H. pylori) is a gram-negative curved bacillus that 
has the ability to inhabit in the interface between mucosa and the 
gastric epithelium. In North American and North European 
populations, about one-third of adults are infected with this bacterium. 
In South America, South and East Europe, and Asia, the prevalence of 
H. pylori is estimated to be higher than 50%.46 Gastric cancer remains 
the third most common cause of cancer death worldwide. In several 
studies, the effect of H. pylori infection on the risk of gastric cancer 
development has been investigated. Chronic H. pylori Infection has 
been etiologically linked to gastric adenocarcinoma, especially non-
cardia type (63% of all stomach cancer), and to gastric mucosal 
associated lymphoid tissue (MALT) lymphoma, which accounts for 
up to 8% of all non-Hodgkin lymphoma.47 Evidences from animal 
models showing H. pylori roles in gastric cancer development. In 
animal models, gastric H. pylori infection has been promoted 
experimentally induced gastric cancer development.48 Higher gastritis 
score, increase in the number of Ki-67 positive (proliferative) cells, 
overexpression of p53 protein, and p53 gene mutation were observed 
in gastric mucosa infected with H. pylori in the Japanese Monkey 
Model.49 In Mongolian gerbil model, H. pylori infection strongly 
enhanced gastric carcinogenesis initiated with a chemical carcinogen. 
Furthermore, eradication of H. pylori infection led to regression of 
inflammation and reduced the enhancing effect of H. pylori on 
carcinogenesis.50 Higher scores of infiltration of inflammatory cells, 
hyperplasia, intestinal metaplasia, higher levels of serum anti-H. 
pylori IgG titer and gastrin, as well as upregulation of mucosal IL-1β, 
TNF-α, COX-2, and inducible nitric oxide synthase (iNOS) were 
observed in H. pylori-infected Mongolian gerbils.51 Upregulation of 
H. pylori-induced cytokines can be linked to chronic inflammation 
and carcinogenesis. For example, over expression of IL-1β in the 
stomach of transgenic mice resulted in lower amounts of gastric acid 
production and these mice developed severe gastritis, atrophy, 
intestinal metaplasia, dyplasia and adenocarcinoma.52 H. pylori-
induces gastric inflammation and carcinogenesis, In several studies, 
the effect of H. pylori infection on the risk of gastric cancer 
development has been investigated. In a case-control study, increased 
H. pylori density in the corpus and infiltration of polymorphonuclear 
cells in the antrum were observed in patients with diffuse-type 
cancers. Severe chronic gastritis induced by H. pylori ¬infection has 
been associated with diffuse-type gastric cancer.53 H. pylori¬ triggers 
inflammatory response which is characterized by secretion of 
proinflammatory mediators.51 Several inflammatory cytokines such 
as IL-1β, IL-6, IL-8, and TNF-α are secreted by gastric epithelial cells 
infected with ¬H. pylori in vivo (Crabtree et al., 1991; 1994). 
Association between the proinflammatory IL-1 gene polymorphism 
and H. pylori¬ infection in gastric carcinogenesis has been reported.54 
Association of ¬H. pylori with gastric cancer in patients was strong 
when antibodies specific to the bacterium were detected in serum 
collected 10 or more years before gastric cancer diagnosis 
(Helicobacter and Cancer Collaborative Group). Presence of the 
cytotoxin associated gene A (CagA) in H. pylori was linked to a higher 
risk for gastric cancer, whereas CagA- H. pylori infection was not 
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associated with the severity of gastric lesions.55 Cag proteins have 
been detected in around 60% of H. pylori strains isolated in Western 
countries and about 95% of isolates from East Asia.56 CagA is 
delivered from H. pylori into gastric epithelial cells via the bacterial 
type IV secretion system and activates the SHP2 phosphatase, an 
oncoprotein that is associated with human malignancies.57 CagA also 
disrupts the tight junctions between epithelial cells by binding and 
inhibiting the PAR1/MARK kinase, which has an important role in 
epithelial cell polarity, and thereby causes loss of apical-basolateral 
polarity in epithelial cells.58 In addition, CagA is contributed to the 
inactivation of the tumor suppressor protein p53 in gastric epithelial 
cells.59 In patients infected with CagA+ H. pylori strains, T helper 1 
(Th1)-mediated cellular immunity was attributed to earlier stages of 
gastric carcinogenesis, while Th2-meiated humoral immunity was 
associated with the advanced stages.55 Analysis of CagA in H. pylori 
strains from patients with contrasting gastric cancer suggests that 
CagA can be used as a biomarker for disease severity.60 H. pylori has 
also a vacuolating cytotoxin (VacA) which is contributed to the free 
passage of urea through epithelial cells and induces vacuole formation 
in epithelial cells.61 So far, there is no evidence showing a possible 
role for VacA in carcinogenesis. H. pylori¬-induced NF-κB activation 
and its role in gastric cancer development/progression, H. pylori 
strains carrying the cytotoxin-associated gene pathogenicity island 
(cagPAI) induce transcription factor NF-κB, but CagA and VacA are 
dispensable for direct activation of NF-κB.23 Increased activation of 
NF-κB and its downstream proteins, followed by increased expression 
of IL-8 has been demonstrated in gastric epithelial cells infected with 
H. pylori¬.62 Pretreatment with a NF-κB inhibitor, PDTC, resulted in 
decreased H. pylori-activated p65 and IL-8.62 H. pylori¬ induced 
¬NF-κB-mediated expression of IL-8 and COX-2 in gastric epithelial 
cells in vitro.33  ¬H. pylori also promoted gastric cancer cell invasion 
through a NF-κB and COX-2-mediated pathway.63 Furthermore, up 
regulation of VEGF, COX-2, and MMP-9 was detected in gastric cell 
lines exposed to ¬H. pylori.64 H. pylori colonization has been detected 
in 36.8% of gastric carcinoma samples and expression of COX-2, 
beta-catenin, and VEGF, and micro vessel density were significantly 
higher in H. pylori-positive gastric cancer tissues than in H. pylori-
negative gastric cancer tissues. H. pylori infection was also correlated 
with the depth of tumor invasion, lymph node metastases, and tumor-
node-metastasis stage.18  Overexpression of COX-2 protein was 
detected in 84% (27 of 32) gastric cancer specimens. COX-2 protein 
levels were significantly higher in gastric cancer specimens with 
CagA+ H. pylori¬ infection compared to specimens without CagA+ H. 
pylori¬ infection.65 H. pylori infection upregulates VEGF in vitro, 
which is mediated by COX-2 via activation of Wnt/beta-catenin 
pathway.19 Upregulation of COX-2 mRNA and enhanced prostaglandin 
E2 (PGE2) synthesis has been detected in human neutrophils 
stimulated with H. pylori. A NF-κB inhibitor and a mitogen-activated 
protein (MAP) kinase inhibitor significantly suppressed the COX-2 
gene expression and PGE2 synthesis in the neutrophils.66 LPS from H. 
pylori also promoted IL-8 secretion from human monocytes through 
MAP kinases and NF-κB activation.34 In addition, gastric mucosa of 
patients infected with CagA+ H. pylori showed higher production of 
reactive oxygen metabolites and greater neutrophil counts than that 
infected with CagA- ¬H. pylori.67 On the other hand, human gastric 
epithelial cells exposed to CagA+ ¬H. pylori strains increased activity 
of reactive oxygen species(ROS)-scavenging enzymes, including 
catalase, glutathione peroxidase and superoxide dismutase, and 
reduced susceptibility to lethal injury from ROS when compared with 
exposure to CagA- . pylori strains.68 However, production of ROS and 
oxidative DNA damage in gastric mucosa was significantly higher in 
patients with CagA+ H. pylori ¬infection as compared to ¬H. pylori-

negative patients.69 It has been shown that intestinal type gastric 
carcinoma is strongly associated with high expression of c-myc, 
cyclinD1 and bcl-xl genes concomitant with NF-κB/p65 in the gastric 
tissues infected with CagA+ H. pylori.70 

Integrin-linked kinase (ILK) is involved in cell-matrix interactions, 
cytoskeletal organization, and cell signaling. ILK is also contributed 
to carcinogenesis and progression of cancers.71,72 ILK-mediated 
activation of NF-κB has been detected during H. pylori infection in 
macrophages and gastric cancer cells. ILK was also required for LPS-
induced activation of NF-κB and TNF-α transcription and TNF-α 
secretion from macrophages.73

H. pylori LPS induces IL-1β gene expression in macrophages 
through activation of NF-κB and C/EBPbeta. H. pylori LPS also 
induces caspase-1 activation, which is essential for maturation of pro-
IL-β and its release from macrophages.74 The stimulation of TLR4 by 
LPS induces release of proinflammatory cytokines.75 Furthermore, 
TLR4-induced signaling cascade is required for NF-κB activation and 
TLR polymorphisms may be responsible for clinical consequences of 
H. pylori infection.76

Increased frequency of regulatory T cells in gastric 
inflammation and their link with H. pylori-induced 
gastric cancer

In a mouse model of H. pylori ¬infection, noticeable gastric Foxp3+ 
regulatory T cell response was induced in ¬H. pylori-infected mice, 
which was increased over several months together with the severity 
of gastric inflammation. Systemic in vivo depletion of regulatory T 
cells by an anti-CD25 monoclonal antibody led to increased gastric 
inflammation, manifested by elevated gene expression of IL-12, 
interferon-gamma (IFN-γ), TNF-α, IL-6, IL-10, and transforming 
growth factor-beta (TGF-β), and enhanced numbers of mucosal T 
cells, B cells, and macrophages. Depletion of CD25+ T cells also 
reduced H. pylori colonization densities in stomach.77 Large numbers 
of Foxp3+ T cells were also detected in helicobacter-infected patients, 
but not in uninfected individuals. Increased number of CD25+Foxp3+ 
regulatory T cells in H. pylori-associated gastritis was correlated 
with the grade of gastric chronic inflammation. In addition, levels 
of Foxp3+ T cells in gastric adenocarcinoma were significantly 
higher than those in chronic gastritis and gastric dysplasia.78 Higher 
numbers of CD4+FOXP3+ T cells were also found in areas of duodenal 
gastric metaplasia in duodenal ulcer patients. Increased frequency of 
CD4+FOXP3+ T cells was observed in ¬H. pylori-infected gastric 
mucosa. Furthermore, eradication therapy reduced FOXP3 and IL-
10 mRNA levels in the antrum, indicating that increased FOXP3+ 
T cells in the antrum was dependent on the presence of H. pylori.79 
Increased number of CD4+CD25+Foxp3+ T cells were also detected 
in patients with gastritis, patients with peptic ulcer, and patients with 
gastric cancer. Increased number of regulatory T cells was associated 
with inflammation, lymphoid follicle number, and H. pylori infection. 
But, regulatory T cells were negatively associated with intestinal 
metaplasia in gastritis and peptic ulcer groups.80 Increased frequency 
of regulatory T cells have been detected in different types of cancer 
and they can be responsible for suppression of antitumor immune 
responses. But, in some types of cancer regulatory T cells may be 
beneficial.81 More studies are needed to elucidate their roles in gastric 
cancer.

NSAIDs may reduce gastric cancer risk

In a case-control study, use of NSAIDs was associated with reduced 
risk of gastric and esophageal cancers.82 In a prospective, nested case 
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control study, long term use of non-aspirin NSAIDs was attributed to 
a reduced risk of gastric and esophageal cancers. Long-term users of 
aspirin were at reduced risks of esophageal cancer, but no reduction in 
risk was found for gastric cancer.83 In another study, NSAID use was 
associated with a decreased risk of gastric cancer in a dose-dependent 
manner.84 Findings from a meta-analysis suggest that long-term 
(≥4 years) and low-frequency (1-4.5 times per week) utilization of 
aspirin is associated with a significant and dose-dependent decrease 
in gastric cancer risk.85 In a recent meta-analysis of observational 
studies, aspirin use was associated with reduced risk of esophageal, 
gastric, colorectal, pancreatic, endometrial, ovarian, breast, prostate 
cancers, and small intestinal neuroendocrine tumors. Non-significant 
associations were found between aspirin utilization and the risk of 
brain, head and neck, lung, hepato-biliary, thyroid, cervical uterus, 
renal, renal pelvis and urethra, bladder, and skin cancers, as well as 
lymphoma, and leukemia.86 

Conclusion
Chronic infection is a risk factor for development of some types 

of cancer, especially gastrointestinal cancers. Immune cells as well 
as inflamed non-immune cells and their cytokines, chemokines and 
other secreted components modulate the growth, differentiation, and 
migration of many cell types. Certain cytokines and inflammatory 
mediators induced during bacterial infection can promote cancer cell 
proliferation and survival. Identification of molecular mechanisms 
involved in bacterial-induced tumor cell proliferation, survival, and 
invasiveness is of great importance and may result in development of 
new therapeutic strategies. Chronic ¬H. pylori infection can lead to 
gastric mucosa ulceration and inflammatory responses. This bacterium 
can affect host’s cell survival and proliferation and also cause 
immunosuppression. Subsequently, progression to gastric cancer may 
be occurred in a smaller proportion of subjects. Induction of oxidative 
stress and NF-κB pathway activation may result in carcinogenesis 
in H. pylori¬ infected patients. Although H. pylori is a common 
pathogenic bacterium in the human stomach, however, most subjects 
with H. pylori infection will not develop gastric cancer, indicating 
that other factors such as genetic susceptibility of the individuals and 
peripheral factors are also attributed to gastric cancers. Prevention of 
chronic infection and inflammation is required to inhibit or decrease 
the development of gastric cancer.
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