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Abbreviations: AD, autoimmune diseases; TCR, t cell 
receptor; MHC, major histocompatibility complex; TREG, regulatory 
t cell; CD, cluster of differentiation; IL, interleukin; USFDA, united 
states food and drug administration; PD-1, programmed death 1; TGF, 
transforming growth factor; IFN, interferon; TNF, tumour necrosis 
factor; CTLA-4, cytotoxic T lymphocyte associated antigen 4

Introduction
Autoimmune diseases (AD) are a group of chronic condition 

resulting from the impairment in the regulation of the immune 
system. These diseases occur as a result of immune reactivity 
against self-antigens termed autoimmunity. To date, no specific 
cure of AD has been reported. Current treatment regimes target the 
symptoms of AD with the aim to improve the quality of life and 
delaying organ damages.1 The usage of immunosuppressive drugs in 
conventional therapy targeted critical parts of the immune systems 
which in turn increases patients’ susceptibility to infection. Although 
immunosuppressive drugs improved the survival rate of patients 
with AD, these drugs increase the incidences of organ failures and 
secondary malignancies.2,3 Therefore, researches are now actively 
carried out to find a better solution for AD. Ideally, the best strategy 
is to target the impaired immune cells leaving the healthy cells intact. 
The new frontiers of these targeted therapies which are antigen-based 
chemotherapy, targeted inflammatory cytokines, checkpoint-based 
immunotherapy and stem cell therapy are the focus of this mini review. 

Antigen-based immunotherapy

In normal immune system, lymphoid progenitor cells in the bone 
marrow will migrate to the thyme where broad repertoires of T cells 
that can respond to various pathogens are generated. A subset of T 
cells, the destructive T cells that recognise self-antigens are deleted 
through the negative thymic selection Figure 1. However, some 
destructive T cells escape the selection process and migrate to the 
periphery. These destructive T cells recognize self-antigens and 
if activated, they have the potential to cause autoimmunity. T cell 
requires two signals to be fully activated. Signal 1 occurs through 
the engagement of T cell-antigen specific receptor (TCR) with the 
major histocompatibility complex (MHC) leading to semi-activated 

T cell or T cell tolerance. The second co-stimulatory signal which 
up regulate the inflammatory environments is delivered by different 
receptor-lig and interactions such as CD40-CD40L and PD-1-PDL1 
interactions. This co-stimulatory signal causes T cell activation which 
then differentiates into effectors cells.

Figure 1 Negative selection of T cells in the thymus. Antigen presenting cells 
(APC) present self antigens to the double positive T cell. T cells that do not 
bind to the APC will become helper T cells (CD4+ CD8-T) and cytotoxic T 
cells (CD4- CD8+). Cells that bind to self antigen will undergo destruction 
and apoptosis (negative selection). However, some cells escape the negative 
selection process and migrate to the circulation where they potentially 
became destructive T cells.

Antigen-based immunotherapy aims to target the first T cell 
activation signal by delivery of modified self-derived peptide in the 
absence of inflammatory signal.4 The idea is to silence the destructive 
T cells into tolerant T cells while leaving the immune system intact. 
This is carried out by prescribing AD patients with altered self-derived 
in the hope to alter the T cell activation signal. However, targeting 
the specific T cells that cause AD is a complex process coupled with 
the difficulty to identify specific antigens of AD.5 Nevertheless, 
excellence progress has been made to resolve these issues in animal 
models with a number of clinical trials ongoing.6,7

In animal models of rheumatoid arthritis and type 1 diabetes, 
rats that were given altered heat shock protein deviate the immune 
response from self-antigens.8,9 Heat shock protein is an intracellular 
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Abstract

Immunosuppressive drugs have long been used in the treatment of autoimmune diseases 
(AD). These drugs such as corticosteroids, methotrexate and cyclophosphamide 
cause the suppression of the immune system particularly on the T cell activation 
and inhibition of inflammatory cytokines production. However, patients prescribed 
with these drugs suffer from reduced immunity. They have increased susceptibility 
to serious infections and risk of malignancies. Therefore, more specific approaches 
against AD were developed to reduce the negative effects resulting from the 
blanket immunosuppression of AD-related drugs. These approaches; antigen based 
immunotherapy, checkpoint-based immunotherapy, targeted inflammatory cytokines 
and stem cell therapy, although not refined has shown great promises in animal models 
and were at various stages of clinical trials.
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chaperone that regulates the innate immunity and act as important 
auto-antigen in these AD. Rats administered with altered heat shock 
protein shown increased production of anti-inflammatory cytokines 
such as IL-4, IL-10 and TGF-β.10 Mouse model of type 1 diabetes 
which is caused by autoimmune destruction of pancreatic β cells 
showed similar profile; the changes of pro-inflammatory cytokines 
production to anti-inflammatory cytokines upon intake of altered 
peptides.11 Animal models of other ADs also showed promising 
results in term of antigen-based immunotherapy which induced T 
cells tolerance following altered peptide induction.12 However, most 
of these studies focussed on naive T cells rather than memory T cells 
that are critical in the pathogenesis of AD.

In clinical trials involving antigen-based immunotherapy, 
hypersensitivity reactions became one of the major concerns. The T 
cell activation signal was altered following peptides induction leading 
to quantitative changes in T cell responses. Human trials on multiple 
sclerosis have been unsuccessful as the altered peptide of myelin 
basic protein failed to induce T cell tolerance and the incidence of 
anaphylaxis increased significantly among these AD patients.13 In 
rheumatoid arthritis, phase I clinical trial using an altered peptide 
of dnaJP1 has succeeded in inducing T cell tolerance. In that trial, 
IL-4 and IL-10 production increased significantly while IL-2 and 
IFN-γ levels were reported to be significantly decreased.14 A good 
indicator of this therapy was also recorded in the phase II of clinical 
trial; however the endpoints for clinical efficacy were not met. So 
far, significant progress on antigen-based immunotherapy was made 
on systemic lupus erythematosus where phase III clinical trial is 
currently in progress after a success in phase I and phase II trials.15

Antigen-based immunotherapy is a current modality for treating 
AD. While the animal models of this therapy were a success, 
translation into clinical practise has not been smooth. The factors 
causing unsuccessful replication of antigen-based immunotherapy in 
human studies remain unclear. Further studies and trials need to be 
conducted before this therapy is ready to be used clinically. 

Checkpoint-based immunotherapy

As mentioned, T cells activation requires a second signal which 
is provided by co-stimulants expressed by the antigen presenting 
cells. CD80 or CD86 on the antigen presenting cell will engage to 
the T cell receptor and CD28 on the T cell and initiate T cell response 
to foreign antigen. In the case of auto-immunity, this response is 
towards self-antigen. In normal condition, the activation pathway is 
controlled by inhibitory molecules for normal immune function. Cell 
cycle checkpoints are critical in maintaining normal immune function, 
failure of which will result in immune-related disorders. Checkpoint-
based therapy in AD aims to block T cell activation and restore T 
cell tolerance via regulatory T cell (Treg) activations. Checkpoint-
based immunotherapy has made tremendous progress in AD with the 
translation into clinical trials and the usage of checkpoint-based drug 
in clinical settings.

Cytotoxic T lymphocyte associated antigen 4 (CTLA-4) is an 
inhibitory receptor on T cells. This receptor has higher binding 
capacity to CD80 or CD86 on the antigen presenting cell compared 
to CD28.16 Engagement of CTLA-4 with the ligands transmit 
inhibitory signal to T cell and this engagement has been the focus 
in autoimmune-related researches. Figure 2 shows the interaction 
of CTLA-4 receptor with CD80/CD86 ligand which will disrupt 
the co-stimulatory signals on T cells, reducing the activation of 

self-antigenic T cells in AD. In fact, CTLA-4 checkpoint has been 
extensively studied in cancer. Ipilimumab, a monoclonal antibody 
targeting CTLA-4 has been approved by the US FDA in 2011 for the 
treatment of metastatic melanoma. Clinical trials are being conducted 
on Ipilimumab effectiveness on other cancer. However, the progress 
of check-point based therapy in AD is slower compared to cancer. 

Figure 2 Checkpoint-based immunotherapy in AD. T cell activation requires 
two signals. The primary signal occurs between major histocompatibility 
complex (MHC) and T cell receptor (TCR). Upon inflammation, the APC will 
deliver the second co-stimulatory signal to the T cells via CD80/86 and CD28 
interaction. CTLA4 is a inhibitory receptor that bind to CD80/86 causing T 
cell suppression and reducing the occurance of AD.

Abatacept is a CTLA-4-Ig fusion protein which is used as a new 
therapeutic approach in rheumatoid arthritis.17 This drug inhibits 
CD80/86 and CD28 interaction thus blocking the secondary signal 
of T cell activation to effectors cell. In animal model of arthritis, 
abatacept reduced the antibody production against type II collagen and 
inhibit the germinal centres generation in the spleen and lymph nodes. 
Seven phase II and III clinical trials conducted on the clinical efficacy 
of abatacept concluded that abatacept is effective in rheumatoid 
arthritis patients when they failed to response to other drugs such 
as methotrexate.18‒20 However, the long term effects of abatacept in 
causing malignancies, serious infections and organ damages remain 
to be evaluated. Besides rheumatoid arthritis, abatacept is currently 
tested in multiple phase of clinical trials for type I diabetes mellitus, 
multiple sclerosis, myasthenia gravis, antiphospholipid syndrome and 
primary biliary cirrhosis.21,22

PD-1 or programmed death 1 is another cell cycle checkpoint 
in terminating immune responses. PD-1 promotes regulatory T cell 
(Treg) development and causing direct inhibition of self-reactive 
T cells. PD-1-/-mice model was shown to develop spontaneous AD 
and this finding showed the importance of PD-1 membrane protein 
in normal immune function.23 The function and activation of PD-1 
have been extensively studied in antitumor and antiviral immunity but 
less is known about PD-1 in autoimmunity. Therefore, it is worth to 
include PD-1 as the next target of checkpoint-based immunotherapy 
in curing AD.

Regulations of inflammatory cytokines

Persistent production of inflammatory cytokines is one of the 
underlying mechanisms of AD. TNF-α and IL-1 stimulate macrophages, 
keratinocytes and dendritic cells to produce inflammatory cytokines 
and chemokines in the immediate environment which in the case of 
AD, is uncontrolled. Given the importance of inflammatory cytokines 
in the pathogenesis of AD, researches are focussing on targeted 
inflammatory cytokines to treat AD. This treatment is highly effective 
as neutralizing agents or act as antagonist against their receptors. 
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TNF-α, a pro-inflammatory cytokine is elevated in many AD. 
This cytokine exhibits an immune-regulatory role that lead to 
acute immunological response. TNF-α directs the production of 
key interleukins such as IL-1 and IL-6 which in turn stimulate the 
production of enzymes that destroy cartilage and bone.24 Therefore, 
targeting TNF-α is very important as this will also reduce the 
production of other pro-inflammatory cytokines, shifting the balance 
towards homeostasis in AD patients. TNF-α inhibitors such as 
infliximab and adalimumab have been used as neutralizing antibodies 
in various immune mediated diseases such as inflammatory bowel 
disease, psoriasis and rheumatoid arthritis.25 The first trial of anti-
TNF inhibitor was carried out in 1992. It was reported that combined 
methotrexate-anti TNF therapy was proven to be more effective 
than using either agent alone.26 However, a subpopulation of patients 
did not response well to this therapy and actual mechanism of 
immune-regulatory role of anti-TNF therapy remains to be studied. 
Certain patients also developed malignancies, fungal infections and 
tuberculosis as after-effects of anti-TNF therapy. Therefore, work is 
ongoing to develop a more effective anti-inflammatory blocker for 
AD.

One such cytokine is IL-17. IL-17 confers protective immunity 
against extracellular and intracellular pathogenic agents. IL-17 
is produced by Th17 cell subset derived from CD4+ T cell. In AD, 
relatively higher amount of IL-17 was produced due to excess 
stimulation by IL-1β and IL-6 secreted by macrophages and tissue 
cells. IL-17 was isolated from T cell of rat-mouse hybridoma and to 
date, six homologous molecules are found, IL-17A through IL-17F. IL-
17A and IL-17RA was extensively studied as they are predominantly 
expressed by Th17. Th17 have been established as the inducer of 
chronic inflammatory AD such as multiple sclerosis and psoriasis.27 
In addition, genome-wide association study and experimental works 
using animal models have concluded that IL-23 and IL-12 stimulation, 
the key mediators of inflammation confers higher pathogencity on 
Th17 cells in AD.28

Clinical trial is in progress regarding humanized anti-IL-23 
antibodies, humanized anti-IL-17 antibodies and humanized IL-17R 
antibodies. These clinical trials focus on rheumatoid arthritis, chronic 
inflammatory intestinal diseases, psoriasis and multiple sclerosis. In 
these trials, favourable developments were observed on the safety 
and efficacy use of ustekinumab, a human anti-IL-23 and anti-IL-12 
monoclonal antibody in patients with psoriasis.29 In this phase III 
double blind placebo-controlled study, treatment of ustekinumab 
for every 12 weeks is effective in patients with moderate to severe 
psoriasis. Another phase III trial on secukinumab which is a human 
anti-IL-17A monoclonal antibody also showed that this antibody is 
effective against psoriasis with its ability in neutralizing IL-17A.30 
Both of these studies showed that the presence of neutralizing 
antibodies against pro-inflammatory cytokines was not associated 
with adverse events. 	

Stem cell therapy
In the current years, stem cell therapy has become one of the 

hottest debates in the field of regenerative medicine and immune 
therapies. Stem cell therapy is clinically relevance for treatment of 
AD, a pathophysiological conditions resulting from the failure of 
normal immune-regulatory processes. Despite extensive research in 
the animal models, the clinical applications of haematopoietic stem 

cell and mesenchymal stem cell to treat AD are still vague. Studies 
are now focusing on the mechanisms of action, route and dosage of 
administration and the safety and efficacy of stem cell treatment of 
AD.

Hematopoietic stem cells are stem cells that derived from the 
mesoderm that give rise to other myeloid and lymphoid lineage 
of blood cells. Hematopoietic stem cells are found in the bone 
marrow of adults especially in femur, pelvis and sternum and also 
in the umbilical cord blood. Autologous hematopoietic stem cell 
transplantation started as a concept to cure AD in the early 1990s.29 
Theoretically, person with overt autoimmune disease can be cured 
with bone marrow transplantation from allogeneic normal donor. 
The idea behind hematopoietic stem cells transplantation is to reset 
the host immune system leading to the generation of self-tolerant 
lymphocytes. However, during phase I clinical trial on systemic 
lupus erythematosus patients, the morbidity and mortality associated 
with this procedure was high, preventing its application in clinics.31 
On the other hand, a contradict result was reported in a study of 53 
SLE patients in Europe.32 In that study, remission was achieved in 
two-third of systemic lupus erythematosus patients, however, one-
third of the patients relapsed after 6 months. This is in accordance 
with another study showing that two-thirds of patients receiving 
haematopoietic stem cell therapy will eventually relapse.33 High 
expression of CD3 and CD4 combined with the higher concentration 
of C-reactive proteins in serum of relapse patients were suggested as 
the determining factors.

Apart from hematopoietic stem cell therapy, mesenchymal 
stem cell transplantation was also suggested as a potential cure for 
AD. Mesenchymal stem cells are multipotent stromal cells that 
can differentiate into bone, cartilage, muscle cells and connective 
tissue. Mesenchymal stem cell was shown as immune-modulator 
and regulates the proliferation and activation of B lymphocytes, 
T lymphocytes, dendritic cells and neutrophils.34 This stem cell 
modulates immune responses through the activation and synthesis 
of Tregs. In animal model of multiple sclerosis, intravenous 
administration of mesenchymal stem cells managed to improve this 
AD through the release of anti-inflammatory and neuroprotective 
molecules.35 In addition, mesenchymal stem cell based therapy was 
also carried out on systemic lupus mouse model. Results showed 
marked improvement in serum level of immunoglobulins at both early 
and matured stage of this AD.31 Currently, pilot clinical trials are being 
carried out in subjects of advanced multiple sclerosis and lupus based 
on this stem cell-based therapy.36‒40

Conclusion
Remarkable progress has been made in understanding the pathway 

of AD and the targeted treatments.41‒45 In some personalized therapy 
of AD, although the results from animal models look promising, the 
translation to the clinical settings proved to be more challenging. 
However, some immunomodulatory therapy discussed in this article 
showed excellence results during the clinical trial Table 1. These 
show that translation into clinical practise is possible to develop the 
AD therapy that will ultimately repair the immune imbalances with 
minimal adverse effects.46‒48
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Table 1 Summary of the developments associated with the targeted therapies (antigen based immunotherapy, checkpoint-based immunotherapy, targeted 
inflammatory cytokines and stem cell therapy) in AD

Targeted therapies Autoimmune diseases Current stage

Antigen-based chemotherapy

Altered heat shock protein (dnaJP1) Rheumatoid arthritis, idiopathic 
arthritis

Successful in phase I clinical trial, which induced T cell tolerance. 
Currently in phase II clinical trial.36

Altered heat shock protein (APL-1) Rheumatoid arthritis In animal models, this APL was found to increase Tregs and inhibit 
progression of the disease; Translational research is underway.37

Altered peptide ligands (APL) of 
insulin (NBI-6024) Type 1 diabetes Phase I was a success. Phase II revealed that NBI-6024 did not 

improve islet cell function.37

Recombinant human GAD65 Type 1 diabetes Phase II clinical trial reported that significant long term efficacy was 
demonstrated in preserving β-cell function.38

Myelin basic protein (MBP) Multiple sclerosis Animal studies demonstrated efficary in the prevention of AD. 
However, phase I clinical trial have been unsuccessful.13

P140 peptide Systemic Lupus Erythematosus
Phase II clinical trial was a success and resulted in significant decrease 
in the SLE Disease Activity Index (SLEDAI) score. Phase III clinical 
trial is under way.15

Checkpoint-based immunotherapy

CTLA-4-Ig fusion protein 
(Abatacept)

Rheumatoid arthritis, multiple 
sclerosis

Successful phase III clinical trial. Currently; the epidemiology study 
on the long term effect of Abatacept.18,21,22

PD-1 or CD279
Rheumatoid arthritis, Type 
1 diabetes, Systemic lupus 
erythematosus

Animal studies show very promising results in understanding the 
PD-1 pathway as key regulator of T-cell activation.39‒41

Targeted inflammatory cytokines

Human anti-IL-23 and anti-IL-12 
monoclonal antibody

Rheumatoid arthritis, 
Psoriasis, multiple sclerosis, 
inflammatory bowel disease

Phase I and II trials showed significant improvement of AD. Phase III 
clinical trial is underway.42,43

human anti-IL-17A monoclonal 
antibody (Secukinumab) Psoriasis, multiple sclerosis Phase I and II clinical trials completed with efficacy data supported. 

Currently in phase III trial.44

Granulocyte-macrophage colony-
stimulating factor (GM-CSF)

Arthritis, Psoriasus. Myasthenia 
gravis, Type 1 diabetes, Collitis

Phase I clinical trials completed with promising results. Phase II trial 
is underway.45,46

Stem cell therapy

Hematopoietic stem cell 
transplantation

Systemic lupus erythematosus, 
Rheumatoid arthritis

Phase I and II clinical trial were carried out. However, the mortality 
associated with HSC transplant was high.47,48

Mesenchymal stem cell 
transplantation Multiple sclerosis

Excellent results reported in animal model. In phase ½ a study, no 
severe adverse events reported. Now ongoing is phase 1 clinical 
study.48
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