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Introduction
Since Clive McCay’s first discovery nearly 80years ago,3 

studies of dietary restriction-a reduction in nutrient intake without 
malnutrition-in a diverse array of organisms have revealed it to be 
an effective way to extend lifespan and promote broad-spectrum 
improvement in health during aging.4 While research has begun 
to unravel the mechanisms underlying how dietary manipulation 
modulates longevity, our understanding of how it affects individual 
health parameters, including immune function, remains limited. 
Early studies that focused on manipulation of total calories produced 
mixed results. Drosophila studies have variably reported detrimental, 
protective, or no effect of food dilution or reduced food intake on host 
survival following bacterial infection.5‒7

Mammalian studies indicate that adaptive immunity appears 
improved in calorie-restricted animals, but survival outcomes of 
host animals infected with pathogen are considerably more variable. 
For example, calorie restriction has been reported to improve 
T-cell function in humans8 and to promote antigen presentation, 
antibody production, and T-cell proliferation in response to 
influenza vaccination.9 However, it aggravated mortality of young 
and aged mice in primary influenza infection10,11 and promoted 
survival following murine retrovirus infection.12 Similar outcomes 
are observed following bacterial infection where calorie restriction 
exacerbated mortality from sepsis13 but improved survival of mice 
infected with Salmonella.14 In contrast, protein restriction has 
produced more consistent outcomes that indicate enhanced protection 
from pathogenic infection. For example, a diet containing one third 
the protein in a normal diet suppressed the expression of hepatitis 
B virus and hepatitis B virus-induced liver injury in mice.15 Low-
protein diets also ameliorated mortality of guinea pigs from bacterial 
peritonitis16 and protected mice from malaria infection.17

Then, how does protein restriction protect animals from pathogen? 
A “metabolic boost” might be a key adaptation that takes place under 
protein restriction. In T-cell activation, Myc functions as a metabolic 

switch to promote anabolic metabolism including aerobic glycolysis 
and glutaminolysis, which allows antigen-primed T-cells to go through 
a rapid proliferation by generating building blocks for nucleic acids 
and phospholipids with a limited nutrient supply, as intumor cells.18

Intriguingly, protein restriction has been shown to increase the 
Myc abundance19 and myc over expression improves poor survival 
outcomes of fruit flies fed high protein diets,19 suggesting that Myc 
plays an important role in favoring the post-infection survival of 
protein-restricted host animals. However, given that protein restriction 
had no impact on cellular immunity in Drosophila,19 it remains to 
be seen whether Myc regulates the host metabolism more broadly 
beyond T-cell activation.

The protein restriction-Myc signaling relationship may have 
evolved to utilize glucose more efficiently during protein restriction, 
thereby meeting high energy demand during infection. For example, 
c-Myc increases cellular glucose uptake by up regulating the 
transcription of glucose transporter Glut1,18 and transgenic over 
expression of c-Myc promotes hepatic glycolysis and cellular 
utilization of glucose.20 Drosophila studies also support this notion. Li 
et al. reported that the consensus Myc binding site is highly enriched in 
genes that responded to amino acid starvation in larvae.21 Furthermore, 
myc over expression stimulated glucose disposal in larvae fed a high 
sugar diet and prolonged their survival under starvation.22

These studies raise the possibility that increased glucose utilization 
through protein restriction-Myc signaling might act to maximize 
energy production in the face of limited amino acid availability 
and abundant carbohydrate. It warrants further investigation to test 
whether effective utilization of glucose, which is facilitated by Myc, 
could contribute to favorable survival outcomes of protein-restricted 
animals following infection.

Conclusion
Aligning with the public efforts to reduce the mortality risks from 

opportunistic infections, it will be of future interest to investigate 
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Abstract

One area that presents a significant threat to global health is infectious diseases. With 
increasing prevalence of antibiotic-resistant bacteria,1 opportunistic infections are a 
growing concern for human societies. In 2009, there were 89,000 deaths caused by 
pneumonia, septicemia, and influenza virus in the United States alone.2 Antibiotic-
resistant bacteria increase the risk of secondary infection that is associated with many 
standard medical procedures such as organ transplantation, chemotherapy, dialysis, 
and elective surgery.1 The deceleration of new drug discovery suggests that acute 
preventative strategies strengthening host immunity prior to such procedures are of 
strong interest.
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whether acute protein restriction prior to standard medical procedures 
such as surgery would decrease the mortality risks of susceptible 
human populations by increasing surgical stress resistance23 and 
boosting innate immunity against secondary bacterial infection, as 
shown in a Drosophila study.19 Myc improving the post-infection 
survival of protein-restricted animals and also playing an important 
role in T-cell activation, it will be informative to investigate whether 
protein restriction enhances T-cell activation following bacterial 
infection through Myc.

Given that protein restriction benefits much more than the host 
immune response to improve its metabolic health24 and extend 
the rodent’s lifespan,24 it will be a priority to find optimal protein 
restriction diet regimes for humans, which would maximize our health 
benefits. High-protein, low-carbohydrate diets have become popular 
as a weight loss strategy due to their suppressive effects on appetite.25 
High protein diets are also recommended to septic patients due to a 
net increase in protein catabolism during sepsis.26 However, long-term 
adherence to high-protein, low-carbohydrate diets has been associated 
with high mortality risk from cardiovascular diseases.27 Considering 
beneficial effects of protein restriction on immunity, cardiovascular 
health, and longevity, high protein diets should be cautiously called 
for their public application and balanced diets that incorporate 
wholesome carbohydrates should be more encouraged instead.
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