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Regulatory T Cells in Gynecologic Cancer

Abstract

Increasing evidence supports that regulatory T cells (Tregs) within the tumor, tumor
draining lymph nodes, ascites and peripheral blood of patients with cancer are
associated with poor prognosis. Tregs are important mediators of active immune
evasion in cancer. In this review, the potential mechanisms of Treg actions and
the roles of Tregs specifically in the tumor microenvironment derived from three
types of gynecological cancers, cervical, vulvar and ovarian, are described. The
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Introduction

Understanding the role of the immune system in the control of
cancer growth has been a field of intense investigation over the past
decades. The advances in the knowledge of the immune system has led
to the view of it as a dual role player in suppressing tumor growth and
facilitating tumor progression. The studies in murine models identified
tumors as sites of immune tolerance based on the observation that
tumor-bearing mice have functional systemic T cell responses with in
vitro and in vivo assays despite continued tumor growth.'? The concept
of T cell suppression was initially established in 1970s. The antigen-
specific tolerance could be transferred with antigen-experienced T
cells.? A considerable body of research suggested the existence of in
vivo mechanisms of tumor-driven cellular immune suppression.*”’ For
example, complete regression of established tumors in a chemically
induced fibrosarcoma mouse model, mediated by passively transferred
sensitized T cells from immunized donors fail to occur unless the
tumors were growing in thymectomized T-cell-deficient recipients.®
Certain CD4 T cell clones selectively down-regulated the induction
of cytotoxic anti-immune responses in a human melanoma model.”
In this paper, the functions of regulatory T cells (Tregs), one of the
most important immunosuppressive mediators especially in studies of
gynecological cancer, are reviewed.

Regulatory T cells (Tregs)

Tregs, as one of the principle cell types responsible for the
induction of dominant immune tolerance to tumors, were first
identified by Sakaguchi.® The initial studies by his group demonstrated
that elimination of CD25'CD4" T cells elicited autoimmune disease
in a murine model.® Furthermore, removal of CD4"CD25" T cells
evoked tumor-specific immune responses to syngeneic tumors in vivo
and eradicated them in mice.” The research from Nakayama’s group
demonstrated that in vivo administration of anti-CD25 monoclonal
antibody caused regression in six of eight murine tumors in syngeneic
mice.'” Tregs are divided by lineage into thymic-derived regulatory

T cells (tTregs) and peripheral regulatory T cells (pTregs). (Figure 1)
tTregs are selected by high-avidity interaction with self-MHC class
IT-dependent T-cell receptors in the thymus.!'> pTregs are derived
from naive CD4" T cells by sub-optimal antigen presentation in
the periphery.” tTregs specifically express the transcription factor
forkhead box protein 3 (Foxp3), a “master regulator” of the suppressive
lineage while pTregs are generated from Foxp3- precursors.'* Once
they are induced, pTregs begin to express Foxp3. It has been shown
that expansion of tTregs and de novo generation of pTregs both
independently contributed to tumor-specific T cell tolerance in a
murine model."” pTregs comprise two additional Foxp3-subsets
interleukin-10 producing Type 1 Tregs (Trl)'%!7 and transforming
growth factor-B (TGF- B)-dependent T helper 3 cells (Th3) (Figure 1),
which are most commonly associated with oral tolerance.'®
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Figure 1 Thymic and peripheral generation of Tregs. tTregs are selected by
high-avidity interaction between T cell receptors and self-peptide-MHC
class II complexes in the thymus. pTregs develop outside the thymus under
suboptimal antigen presentation. pTregs are derived from naive CD4" T cells.
In addition, pTregs comprise two additional subsets Trl and Th3.

Tregs in human cancers

Accumulating evidence demonstrated an enrichment of
CD4'CD25" Tregs within the tumor mass, peripheral blood, tumor
draining lymph nodes or ascites in cancer patients. For example, an
increased percentage of CD4'CD25" Tregs was observed in the non-
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small cell lung cancer tumor-infiltrating lymphocytes and ovarian
cancer tumor-associated lymphocytes.'® Likewise, increased numbers
of Tregs was reported in peripheral blood and tumor infiltrating
lymphocytes of patients with hepatocellular carcinoma compared
to controls including healthy donors and patients with liver disease
but without liver malignancies.?’ Significantly higher frequency of
CD4'CD25'Foxp3* Tregs in tumor infiltrating lymphocytes was
demonstrated in early and advanced stage gastric cancer patients
compared to normal gastric mucosa in the same patients.?! Several
mechanisms have been proposed for the infiltration and accumulation
of Tregs within the tumor microenvironment. One possibility is the
recruitment in response to chemokines (Figure 2). It was reported
that hypoxic intraperitoneal tumors recruited CD4'CD25Foxp3*
Tregs through induction of CCL28, known as mucosa-associated
epithelial chemokine.” In addition, ovarian tumor cells and tumor
microenvironmental macrophages produced the monocyte derived
chemokine CCL22. Monoclonal antibody to CCL22 significantly
decreased Treg cells migration into tumors in vivo.” The second
possible mechanism is the preferential Treg expansion. Several lines
of evidence indicated that interleukin 2 (IL-2) is essential for Treg
development and homeostasis (Figure 2).22¢ The mice deficient in
IL-2, or interleukin 2 receptor (IL-2R) were characterized by T cell
lymphoproliferation and lethal autoimmunity, which resulted from
the absence of functional Tregs.””* Ahmadazdeh and Rosenberg
reported that the expansion of CD4'CD25'Foxp3* Tregs was
observed following IL-2 treatment in patients with metastatic
melanoma and renal cell cancer.” Likewise, Wei et al.** demonstrated
that IL-2 administration induced the proliferation of Tregs in
ovarian cancer patients.*® Another possible mechanism is a de novo
differentiation. Tumor derived TGF-3 has been shown to induce the
Tregs from Foxp3-T cells (Figure 2). The studies from Chen’s group
demonstrated that TGF-p and TCR costimulation induced Foxp3
expression in CD4°CD25" naive responder murine T cells in vitro.’!
Moreover, TGF- converted CD4"CD25" cells inhibited expansion of
antigen-specific naive CD4" T cells in vivo in an ovalbumin peptide
TCR transgenic adoptive transfer model.*! Furthermore, induction of
CD4"CD25'Foxp3* Tregs in a murine model of pancreas cancer was
blocked with anti-TGF-f antibody treatment.*?
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Figure 2 Mechanisms of infiltration and accumulation of Tregs in the tumor
microenvironment: (1) Tregs are recruited to tumor from the periphery by
chemokines e.g. CCL28 or CCL12; (2) Within the tumor microenvironment,
Tregs can be expanded by IL-2 administration; (3) Tumor derived TGF-f can
covert naive CD4+ T cells into Tregs.

The crucial role of Tregs in tumor immunity is supported in animal
models and clinical studies. Depletion of CD4'CD25" cells with anti-
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CD25 antibody treatment in a murine model of melanoma resulted in
the tumor growth suppression.’ Likewise, Linehan’s group showed
that depletion of CD4*CD25" cells with anti-CD25 antibody alone or
in combination with a whole tumor cell vaccine promoted a tumor-
specific immune response with enzyme-linked immunospot assay
analysis in pancreas cancer-bearing mice. They also demonstrated
that Treg depletion and vaccination delayed tumor growth and
prolonged host survival compared with untreated mice.> CD8" T cell-
mediated adoptive cell therapy induced the regression of established
melanoma in mice, but only when fractionated CD4'CD25" T cells
were transferred together with the CD8* T cells. On the other hand,
a co-transfer of unfractionated CD4'T cells (which would still
contain Tregs) did not result in tumor regression.** Administration of
multipeptide vaccine (h\TERT/survivin) with anti-CD25 monoclonal
antibody (mAb), Daclizumab, in patients with metastatic breast
cancer patients led to the significant reduction of CD25'Foxp3*
Tregs in peripheral blood.*® Furthermore, effective generation of
cytotoxic T lymphocytes specific for TERT and surviving antigens
was demonstrated in these breast cancer patients.* The studies from
Dannull et al.* used the recombinant IL-2 diphtheria toxin conjugate
DAB,IL-2, a targeted immunotoxin compound, for depletion of
Tregs followed by vaccination with tumor RNA-transfected dendritc
cells in metastatic renal cell carcinoma patients. A 7.9-fold median
increase of tumor-specific CD8" T cells was detected in the patients
receiving combined treatments compared to a 2.7-fold median increase
of tumor-specific CD8" T cells in the patients receiving vaccination
alone.’® Robbins’s team has reported that the levels of peripheral
reconstituting CD4"Foxp3* Tregs in melanoma patients receiving
tumor-infiltrating lymphocytes therapy were negatively associated
with clinical responses in four clinical trials, which supported the
notion that endogenous CD4" Tregs plays a negative role in cancer
immunotherapy.*’

Mechanism of Tregs-mediated
immunosuppression

The precise suppressive mechanisms of Tregs in the context of
tumor immunity are not exclusively defined. In vitro and in vivo
studies of Treg cell function indicated that Tregs might use multiple
mechanisms, which target various immune cells including the effector
T cells, natural killer cells and dendritic cells (Figure 3).

Influence of Tregs on effector T cells

Many groups have demonstrated that CD4"CD25" T cells potently
suppress proliferation of other CD4" and CD8" T cells when Tregs and
responder cells were co-cultured and stimulated with specific antigen
or anti-CD3 mAb.*** Some studies have shown that Tregs can kill
effector T cells directly in culture through the release of granzyme B
and perforin.**~* In addition, Tregs can alter the differentiation of other
T cells.** Jonuleit et al.** found that coculture of human CD4°C25*
Tregs and CD4'C25" T cells not only suppressed the proliferation of
conventional CD4" T cells but also induced suppressive activity in
these CD4" T cells, resulting in the development of additional CD4"
suppressor T cells in vitro.

Modification of antigen presenting cells by Treg Cells

Cederbom et al.* has reported that CD4*CD25" Tregs down-
regulated the expression of the co-stimulatory molecules CD80 and
CD86 on dendritic cells. In addition, several studies showed that
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Treg cells can stimulate antigen presenting cells to upregulate the
activity of indoleamine 2,3-dioxygenase (IDO), which is a potent
immunosuppressive enzyme that promotes peripheral immune
tolerance by inhibiting T-cell activation and proliferation.”* On
the other hand, Chung and colleagues found that mature human
monocyte-derived dendritic cells expanded Tregs by an IDO-
dependent mechanism.*® These observations indicated that there is a
two-way communication between Tregs and dendritic cells.
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Figure 3 Mechanisms of Tregs-mediated immunosuppression. Tregs promote
tumor progression by (1) inhibition of effector T cell proliferation, lysis of
effector T cells through release of granzyme B and perforin, or conversion of
CD4+ T cells into Tregs; (2) interactions with DCs through downregulation of
CD80/CD86 on DCs or upregulation of IDO in DCs; (3) inhibition of NK cell
function through downregulation of NKG2D on NK cells or direct inhibition
of NK proliferation and cytotoxicity

Inhibition of natural killer (NK) cell function by Treg cells

Ghiringhello et al.’! demonstrated that human Tregs directly
inhibited NK cell functions and down-regulated NKG2D receptors
on the NK cell surface. They also provided the evidence that human
NK cell-mediated tumor recognition could be restored by depletion of
Treg cells from tumor infiltrating lymphocytes.’! It was reported that
in vitro NK cell proliferation and cytotoxicity towards tumor targets
were inhibited by Tregs.’? Barao and colleagues demonstrated that NK
cell-mediated bone marrow cell rejection was significantly augmented
with prior Treg depletion of the recipient mice.”

Tregs in Human Gynecological Cancer

The contributions of Tregs to the tolerogenic tumor
microenvironment in the human gynecological cancer especially in
the context of cervical cancer, vulvar cancer, and ovarian cancer are
evaluated in this review. Such acquired body of knowledge would
be essential for the development of effective immunotherapeutic
strategies against human gynecological cancer.

Tregs in human cervical cancer

Cervical cancer is the third most common cancer among women
worldwide.** An estimated 12,820 case of cervical cancer will be
diagnosed and an estimated 4,210 deaths will occur in the US during
2017.55 Persistent infection with high-risk human papillomavirus
(HPV) including HPV types 16, 18, 31, 33, 35, 39, 45, 51, 52, 56,
58, 59, 68, 73, 82 has been shown to be an important risk factor
for the development of cervical cancer and its precursor lesions
termed cervical intraepithelial neoplasia (CIN).® Of the high-risk
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HPV types, HPV type 16 is the most common types in malignant
lesions, responsible for over 50% of invasive cervical cancer.”’
Five-year survival rates for the patients diagnosed with localized,
regional and distant-stage disease of cervical cancer are 91%,
57%, 17% respectively. Various investigations have indicated that
development of HPV-induced cervical cancer is associated with
the failure to induce the HPV specific typel T-helper and cytotoxic
T lymphocyte responses.’® ¢! Furthermore, several studies have
identified the immunosuppressive microenvironment established
during HPV associated cervical carcinogenesis.®>*¢ Multiple types
of immunosuppressive cells including tumor-associated macrophage
(TAM), regulatory dendritic cells, Tregs, are recruited and activated
at the tumor sites.**” Of note, accumulating data demonstrated that
increased levels of Tregs were present at the cervical tumor site and
in the lymph nodes and peripheral blood of patients with CIN or
cervical cancer.®%7° Characterization of Tregs using antibodies to
Foxp3 was performed in six groups including HPV-positive cervicitis,
HPV-negative cervicitis, CIN III, CIN II, CIN I, and squamous cell
carcinoma (SCC).*® Foxp3 positive cells were detected in all invasive
tumors of SCC (30 cases) compared to only 12 of 30 cases in the
CIN III group. They were detected in 5 of 11 cases in the patients
of CIN II group, 4 of 10 cases in the CIN I group, 1 of 30 cases in
the HPV positive cervicitis patients, and none of 7 HPV negative
cervicitis patients. ® Moreover, the ratio of CD4" T-cells to Foxp3
positive cells and that of CD8" T-cells to Foxp3 positive cells were
significantly reduced in the SCC group (1148 and 1148 respectively)
compared to the CIN III group (43£29 and 47425 respectively) with
immunostaining analysis.®® Van der Burg and colleagues isolated
HPV-specific CD4" Tregs from lymph node biopsies of cervical
cancer patients, which has been shown to suppress proliferation and
cytokine interferon gamma (IFN-y) and IL-2 production by responder
T cells.”! In addition, Fattorossi’s group examined the immune cell
populations in metastatic tumor draining lymph nodes (mTDLN)
and metastatic free tumor draining lymph nodes (mfTDLN), and
discovered that CD4"Foxp3* Tregs were more significantly abundant
in mTDLN than mfTDLN.*> Moreover, Jordanova and colleagues
showed that a high number of intraepithelial Tregs and a low CD8"
T-cell/Treg ratio were associated with worse survival in 115 cases of
cervical cancer.”> CD8" T-cell/Treg ratio was demonstrated to be the
only single variable independent prognostic factor by multivariate
statistical analysis in this study.” Taken all together, cumulative
evidence indicated that Treg may suppress the immune control of
cervical neoplasia. Daemen’s group showed that in vitro depletion of
CD25" Tregs from HPV16-positive cervical cancer patients led to the
increased IFN-y T cell responses against HPV16 E6 and E7 peptides.”

The studies from Cichon’s research team demonstrated that
inactivation of Tregs by agonistic anti-glucocorticoid-induced tumor
necrosis factor receptor family-related protein (GITR) antibodies
induced strong intra-tumoral invasion of CD8" T cells and complete
tumor eradication in 70% of treated animals in a murine model of
cervical cancer.” Several therapeutic vaccines applying peptide or
protein-based, vector-based, and cell-based strategies have been
developed to treat patients with premalignant cervical and cervical
cancers.”*®A Phase I clinical trial with a human HPV therapeutic
vaccine PepCan, which consists of four current good-manufacturing
production-grade peptides covering the HPV16 E6 protein
and Candida skin test reagent as a novel adjuvant, was evaluated in
34 women with cervical intraepithelial neoplasia CIN2/3 in our group.
The observed overall histological response was 45% (14 of 31 patients
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who completed the study). Noticeably, pre-vaccination regulatory
T cell levels were significantly lower in histological responders
compared to non-responders (p = 0.03).%233 Ferrara and colleagues
reported that dendritic cell-based tumor vaccines pulsed with
recombinant HPV16 E7 or HPV 18 E7 oncoprotein were administered
to 15 stage IV cervical cancer patients.”® Induction of IFN-y secreting
T-cell response was found in 3 out of 11 evaluated patients. However,
no objective clinical response was observed in this study.”® Patients
with HPV16-positive advanced or recurrent cervical cancer were
vaccinated with an HPV16 synthetic long peptide vaccine consisting
of the HPV16 E6 and E7 oncoproteins in Montanide adjuvant.” The
9 out of the 11 vaccinated patients have shown the vaccine-induced
HPV16-specific [FN-y associated immune responses.” However, no
tumor regression was observed among the vaccinated patient.”” Also,
compared to a cohort group of non-vaccinated patients, the median
survival time among the vaccinated patients was not significantly
different (8.5+9.4 months in vaccinated group vs. 11.0+£7.7 months
in matched cohort group, p = 0.59).” The same group also has shown
that HPV16 synthetic long peptide vaccine induced HPV16-specific
CD4 and CD8 T-cell responses in all six postoperative HPV 16 positive
cervical cancer patients.”

Expansion of CD4"CD25Foxp3- type 1 cytokine IFN-y producing
T cells as well as CD4*CD25Foxp3* T-cell population was observed
in vaccinated patients.”® The two patients who displayed the local
recurrence after vaccination had mounted the similar magnitude of
percentage of HPV16-specific CD4"CD25*Foxp3- T-cell subset and
CD4'CD25'Foxp3* T-cell subset. However, the other evaluable
three patients who had no sign of recurrence during the time of
follow-up had 3.9- to 11.4 -fold higher of percentage of HPV16-
specific CD4'CD25Foxp3- subset than that of CD4"CD25*Foxp3*
T-cell subset.” In the study of Stevanovic et al.,* nine patients with
metastatic cervical cancer followed by chemotherapy previously were
treated with tumor-infiltrating T cells selected for reactivity against
HPV E6 and E7 proteins. Two of nine patients attained complete
and one patient received partial response. This encouraging report
indicated that properly activated T cells in adoptive T-cell therapy can
produce tumor regression in patients with advanced cervical tumor. It
is also noteworthy that combination of chemotherapy with adoptive
T-cell therapy in this clinical trial might have a synergistic effect since
several chemotherapy reagents have been shown to modulate the
tumor microenvironment such as by eliminating Tregs or inducing
the macrophage chemoattractant protein-1.5% In the past, various
immunotherapy clinical trials showed little clinical benefits especially
in advanced cervical cancer patients. More recently, encouraging
results are emerging using strategies to overcome immunosuppressive
mechanisms to improve applicability of immunotherapy.

Tregs in vulvar cancer

Similar to cervical cancer, persistent infection with high risk
types HPV including HPV16 are associated with vulvar cancers,
which constitute 5.6% of all gynecologic cancers.®*#* The incidence
of vulvar intraepithelial neoplasia (VIN), a premalignant condition,
which is increasing with 60-75% occurring in women under age of
50.°02 An estimated 6,020 of vulvar cancer cases will be diagnosed
and an estimated 1,150 deaths will occur in the US during 2017.%
The risk of progression from VIN to invasive cancer is from 3.8%
to 9%.7°* Recurrence is a particularly problematic feature of vulvar
cancer cases.” Van Esch et al. reported that the usual-type vulvar
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intraepithelial neoplasia (uVIN) lesions, the most common VIN type
lesions, were infiltrated by high numbers of Tregs.”®®” They also
found that a low CD8 TIM3" T cells infiltration combined with higher
infiltration of Tregs was negatively associated with the recurrence in
uVIN.” Importantly, compared to that in the uVIN tissues, the ratio
of Treg/ CD8*TIM3" T-cell in vulvar carcinoma tissues progressively
increased.”® Vaccination of a synthetic long-peptide against the HPV-
16 oncoproteins E6 and E7 in women with HPV-16 positive, grade
3 vulvar intraepithelial neoplasia displayed a 47% (9 of 19 patients)
complete regression (CR).”*** Compared to non- or partial responders,
patients with CR mounted higher ratio of HPV16-specific effector T
cells to HPV16-specific CD4"CD25'Foxp3* Tregs. A combination
of imiquimod, an immune response modifier, and HPV therapeutic
vaccine comprising a HPV16 E6E7L2 fusion protein was given in 19
women with VIN grads 2 and 3 in a phase II clinical trial conducted
by Daayana et al.'” The effects of Imiquimod are mediated though
agonistic activity towards toll-like receptors (TLR) 7 and 8, leading to
activation of antigen-presenting cells.!”! Complete regression of VIN
was observed in 32% (6 out of 19 patients) in this study. Significantly
increased local infiltration of CD8 and CD4 T cells was observed in
responders, but an increased density of Tregs was identified in non-
responders.'® The studies from these promising trials suggested that
in the setting of premalignant disease, therapeutic strategy could
potentially reach clinical efficiency through Treg modulation.

Tregs in ovarian cancer

Ovarian cancer accounts for 5% death among the women, causing
more death than any other gynecological cancer. An estimated 22,440
ovarian cancer cases will be diagnosed and an estimated 14,080 deaths
will occur in the US during 2017.5° The 5-year relative survival rate
for ovarian cancer is about 46%.% Ovarian cancer is usually diagnosed
in advanced stages due to the lack of obvious symptoms in the
patients and effective screening methods. Current treatment includes
debulking and chemotherapy with paclitaxel and platinum agents.
In spite of the significant advances in surgery and chemotherapy,
recurrence still occurs in about 70% of the patients who become
refractory to further chemotherapies.!®>!® It has been shown that
clinical outcome and five-year survival rate in patients are positively
associated with the number of CD3" tumor-infiltrating cytotoxic
T lymphocytes,'*!% which suggested that host immunity plays an
important role in the course of ovarian cancer. Instead of being targeted
for immune destruction, ovarian cancer has the ability to escape the
immune system by creating a highly suppressive environment in the
peritoneal cavity. Tregs, tolerance-inducing plasmacytoid dendritic
cells (PDCs), B7-H4" macrophage, immune-suppressive cytokines
such as interleukin-10 (IL-10) and TGF-f are present in the ovarian
cancer environment,?!%1% which indicated that multiple cellular
and molecular components created the immune suppressive network
in ovarian cancer. High numbers of PDCs were found in malignant
ascites of ovarian cancer patients.!”” Tumor-associated PDCs induced
angiogenesis in vivo through production of tumor necrosis factor
a and interleukin 8. Kryczek et al.'® reported that ovarian tumor
macrophages expressed high level of B7-H4 molecules, a negative
regulator of T cell responses in vitro by inhibiting T cell proliferation,
cell cycle progression, and cytokine production.

They also demonstrated that tumor environmental interleukin 6
(IL-6) and IL-10 induced macrophage B7-H4 expression.!® Curiel et
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al.?® observed significant accumulation of CD4"CD25Foxp3™ Tregs
in malignant ascites and tumor tissues from 104 individuals with
untreated ovarian cancer patients whereas CD4*CD25Foxp3* Tregs
were undetectable in normal ovarian tissues without cancer.® They
demonstrated that accumulation of tumor Tregs predicts poor survival
in individuals with ovarian cancer.® In addition, Wolf and colleagues
showed that high Foxp3 expression from 99 ovarian cancer patients
was associated with poor prognosis in terms of overall survival (p =
0.0034) and progression-free survival (p = 0.0041).!'° Studies from
Sata et al.'!! reported that CD8" tumor infiltrating lymphocytes (TILs)
and a high CD8" TILs/Tregs ratio were associated with favorable
prognosis in ovarian cancer. Curiel et al.”* reported that tumor cells
and tumor macrophages produced the chemokine CCL22, which
mediated Tregs trafficking to tumor.? Interestingly, they also found
that tumor Tregs triggered macrophage to produce high levels of IL-
10, which was responsible for B7-H4 expression.!” !> The data from
these studies implied that immunosuppressive network mechanisms
might be established in the ovarian cancer. Successful ovarian cancer
vaccine therapy might require the effective blockade of multiple
immune-tolerance mechanisms. Several immunotherapy approaches
have been used in ovarian cancer including therapeutic vaccines,
monoclonal antibodies, checkpoint inhibitors and adoptive T cell
transfer.!*1"® Most of these therapies are still in early-phase testing.
Odunsi et al.'"* conducted a phase I clinical trial immunization with
an NY-ESO-2 peptide in 18 ovarian patients. NY-ESO-1 is one of
the most spontaneously immunogenic tumor antigens in testis and
ovary.'” They have demonstrated that tumor-reactive CD4*CD8" T
cell responses were detected in ovarian cancer patients. However,
clinical benefit afforded by vaccination has been marginal.!'* A phase
II trial using anti-PD-1 monoclonal antibody, Nivolumab, in 20
patients with platinum-resistant ovarian cancer showed encouraging
results.!"® Programmed cell death-1 (PD-1), an immune checkpoint
receptor expressed by T cells, binds to two PD-1 ligands PD-L1 and
PD-L2, and suppresses antigen-specific cancer immune reaction.'?*1!
PD-L1 expression in tumor cells is associated with poor prognosis
in ovarian cancer'™ and PD-L1 enables immune evasion during
peritoneal dissemination by inhibition of cytotoxic T-lymphocyte
function.'” The overall response in this trial was 15% and the disease
control rate was 45%.!1¢

Clinical efficacy of immunotherapy may be enhanced by attempting
to reduce immunosuppressive mediators such as Tregs. Certain
chemotherapy regimens such as low dose of cyclophosphamide
has been shown to reduce the number and function of Tregs that
resulted in the increased immune response.'*"'* For example, low-
dose (300 mg/m?) cyclophosphamide treatment has yielded enhanced
immunological and clinical responses when delivered in conjunction
with hapten-modified melanoma vaccines and with THERATOPE
STn-KLH vaccination in breast cancer patients.'**!?” A combinational
approach of a new dendritic cell vaccine for recurrent ovarian
cancer in combination with antiangiogeneis therapy and metronomic
cyclophosphamide was reported and awaited for future evaluation.®’

Concluding remarks

During the past decade, remarkable progress has been made
in understanding the interaction between the immune system and
cancer. It is now appreciated that the immunological response
against cancer is a critical balance between immune-activating and
immune-suppressing mechanisms. The current wealth of information
in the studies of tumor microenvironment in patients from cervical
cancer, vulvar cancer and ovarian cancer indicated that Tregs are
significant contributors to tumor-associated immune suppression.

Copyright:
©2018 Ouetal. 38

The knowledges in the functional studies of Tregs in each specific
gynecological cancer type may provide new treatment strategies to
effectively manipulate Tregs through methods such as depletion,
blocking trafficking, and alleviating suppressive mechanism. It
would be of interest to examine cancer therapy-induced changes on
elimination or activation of Tregs in tissues and peripheral circulation
of cancer patients. A combinational cancer vaccine combined with
Tregs modulation would be a promising approach to attain effective
antitumor responses.
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