
Regulatory T Cells in Gynecologic Cancer

Submit Manuscript | http://medcraveonline.com

Introduction
Understanding the role of the immune system in the control of 

cancer growth has been a field of intense investigation over the past 
decades. The advances in the knowledge of the immune system has led 
to the view of it as a dual role player in suppressing tumor growth and 
facilitating tumor progression. The studies in murine models identified 
tumors as sites of immune tolerance based on the observation that 
tumor-bearing mice have functional systemic T cell responses with in 
vitro and in vivo assays despite continued tumor growth.1,2 The concept 
of T cell suppression was initially established in 1970s. The antigen-
specific tolerance could be transferred with antigen-experienced T 
cells.3 A considerable body of research suggested the existence of in 
vivo mechanisms of tumor-driven cellular immune suppression.4–7 For 
example, complete regression of established tumors in a chemically 
induced fibrosarcoma mouse model, mediated by passively transferred 
sensitized T cells from immunized donors fail to occur unless the 
tumors were growing in thymectomized T-cell-deficient recipients.6 

Certain CD4 T cell clones selectively down-regulated the induction 
of cytotoxic anti-immune responses in a human melanoma model.7 
In this paper, the functions of regulatory T cells (Tregs), one of the 
most important immunosuppressive mediators especially in studies of 
gynecological cancer, are reviewed. 

Regulatory T cells (Tregs)
Tregs, as one of the principle cell types responsible for the 

induction of dominant immune tolerance to tumors, were first 
identified by Sakaguchi.8 The initial studies by his group demonstrated 
that elimination of CD25+CD4+ T cells elicited autoimmune disease 
in a murine model.8 Furthermore, removal of CD4+CD25+ T cells 
evoked tumor-specific immune responses to syngeneic tumors in vivo 
and eradicated them in mice.9 The research from Nakayama’s group 
demonstrated that in vivo administration of anti-CD25 monoclonal 
antibody caused regression in six of eight murine tumors in syngeneic 
mice.10 Tregs are divided by lineage into thymic-derived regulatory 

T cells (tTregs) and peripheral regulatory T cells (pTregs). (Figure 1) 
tTregs are selected by high-avidity interaction with self-MHC class 
II-dependent T-cell receptors in the thymus.11,12 pTregs are derived 
from naïve CD4+ T cells by sub-optimal antigen presentation in 
the periphery.13 tTregs specifically express the transcription factor 
forkhead box protein 3 (Foxp3), a “master regulator” of the suppressive 
lineage while pTregs are generated from Foxp3- precursors.14 Once 
they are induced, pTregs begin to express Foxp3. It has been shown 
that expansion of tTregs and de novo generation of pTregs both 
independently contributed to tumor-specific T cell tolerance in a 
murine model.15 pTregs comprise two additional Foxp3-subsets 
interleukin-10 producing Type 1 Tregs (Tr1)16,17 and transforming 
growth factor-β (TGF- β)-dependent T helper 3 cells (Th3) (Figure 1), 
which are most commonly associated with oral tolerance.18 

Figure 1 Thymic and peripheral generation of Tregs. tTregs are selected by 
high-avidity interaction between T cell receptors and self-peptide-MHC 
class II complexes in the thymus. pTregs develop outside the thymus under 
suboptimal antigen presentation. pTregs are derived from naïve CD4+ T cells. 
In addition, pTregs comprise two additional subsets Tr1 and Th3.

Tregs in human cancers 

 Accumulating evidence demonstrated an enrichment of 
CD4+CD25+ Tregs within the tumor mass, peripheral blood, tumor 
draining lymph nodes or ascites in cancer patients. For example, an 
increased percentage of CD4+CD25+ Tregs was observed in the non-
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Abstract

Increasing evidence supports that regulatory T cells (Tregs) within the tumor, tumor 
draining lymph nodes, ascites and peripheral blood of patients with cancer are 
associated with poor prognosis. Tregs are important mediators of active immune 
evasion in cancer. In this review, the potential mechanisms of Treg actions and 
the roles of Tregs specifically in the tumor microenvironment derived from three 
types of gynecological cancers, cervical, vulvar and ovarian, are described. The 
correlations between Tregs and clinical immunotherapeutic study outcomes are 
discussed. Successful modulation of Tregs would likely have significant impact on the 
effectiveness of immunotherapeutic treatments in cancer patients.

Keywords: Tregs, cancer, cervical, vulvar, ovarian

© 2018 Yang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which 
permits unrestricted use, distribution, and build upon your work non-commercially.

34

MOJ Immunology 

Review Article Open Access

https://creativecommons.org/licenses/by-nc/4.0/
https://crossmark.crossref.org/dialog/?doi=10.15406/moji.2018.06.00189&domain=pdf



Citation: Yang O, Cannon MJ, Nakagawa M. Regulatory T Cells in Gynecologic Cancer. MOJ Immunol. 2018;6(2):34–42. DOI: 10.15406/moji.2018.06.00189

Regulatory T Cells in Gynecologic Cancer
Copyright:

©2018 Ou et al. 35

small cell lung cancer tumor-infiltrating lymphocytes and ovarian 
cancer tumor-associated lymphocytes.19 Likewise, increased numbers 
of Tregs was reported in peripheral blood and tumor infiltrating 
lymphocytes of patients with hepatocellular carcinoma compared 
to controls including healthy donors and patients with liver disease 
but without liver malignancies.20 Significantly higher frequency of 
CD4+CD25+Foxp3+ Tregs in tumor infiltrating lymphocytes was 
demonstrated in early and advanced stage gastric cancer patients 
compared to normal gastric mucosa in the same patients.21 Several 
mechanisms have been proposed for the infiltration and accumulation 
of Tregs within the tumor microenvironment. One possibility is the 
recruitment in response to chemokines (Figure 2). It was reported 
that hypoxic intraperitoneal tumors recruited CD4+CD25+Foxp3+ 
Tregs through induction of CCL28, known as mucosa-associated 
epithelial chemokine.22 In addition, ovarian tumor cells and tumor 
microenvironmental macrophages produced the monocyte derived 
chemokine CCL22. Monoclonal antibody to CCL22 significantly 
decreased Treg cells migration into tumors in vivo.23 The second 
possible mechanism is the preferential Treg expansion. Several lines 
of evidence indicated that interleukin 2 (IL-2) is essential for Treg 
development and homeostasis (Figure 2).24–26 The mice deficient in 
IL-2, or interleukin 2 receptor (IL-2R) were characterized by T cell 
lymphoproliferation and lethal autoimmunity, which resulted from 
the absence of functional Tregs.27,28 Ahmadazdeh and Rosenberg 
reported that the expansion of CD4+CD25+Foxp3+ Tregs was 
observed following IL-2 treatment in patients with metastatic 
melanoma and renal cell cancer.29 Likewise, Wei et al.30 demonstrated 
that IL-2 administration induced the proliferation of Tregs in 
ovarian cancer patients.30 Another possible mechanism is a de novo 
differentiation. Tumor derived TGF-β has been shown to induce the 
Tregs from Foxp3- T cells (Figure 2). The studies from Chen’s group 
demonstrated that TGF-β and TCR costimulation induced Foxp3 
expression in CD4+CD25- naïve responder murine T cells in vitro.31 
Moreover, TGF-β converted CD4+CD25+ cells inhibited expansion of 
antigen-specific naïve CD4+ T cells in vivo in an ovalbumin peptide 
TCR transgenic adoptive transfer model.31 Furthermore, induction of 
CD4+CD25+Foxp3+ Tregs in a murine model of pancreas cancer was 
blocked with anti-TGF-β antibody treatment.32 

Figure 2 Mechanisms of infiltration and accumulation of Tregs in the tumor 
microenvironment: (1) Tregs are recruited to tumor from the periphery by 
chemokines e.g. CCL28 or CCL12; (2) Within the tumor microenvironment, 
Tregs can be expanded by IL-2 administration; (3) Tumor derived TGF-β can 
covert naïve CD4+ T cells into Tregs.

The crucial role of Tregs in tumor immunity is supported in animal 
models and clinical studies. Depletion of CD4+CD25+ cells with anti-

CD25 antibody treatment in a murine model of melanoma resulted in 
the tumor growth suppression.9 Likewise, Linehan’s group showed 
that depletion of CD4+CD25+ cells with anti-CD25 antibody alone or 
in combination with a whole tumor cell vaccine promoted a tumor-
specific immune response with enzyme-linked immunospot assay 
analysis in pancreas cancer-bearing mice.33 They also demonstrated 
that Treg depletion and vaccination delayed tumor growth and 
prolonged host survival compared with untreated mice.33 CD8+ T cell-
mediated adoptive cell therapy induced the regression of established 
melanoma in mice, but only when fractionated CD4+CD25- T cells 
were transferred together with the CD8+ T cells. On the other hand, 
a co-transfer of unfractionated CD4+T cells (which would still 
contain Tregs) did not result in tumor regression.34 Administration of 
multipeptide vaccine (hTERT/survivin) with anti-CD25 monoclonal 
antibody (mAb), Daclizumab, in patients with metastatic breast 
cancer patients led to the significant reduction of CD25+Foxp3+ 
Tregs in peripheral blood.35 Furthermore, effective generation of 
cytotoxic T lymphocytes specific for TERT and surviving antigens 
was demonstrated in these breast cancer patients.35 The studies from 
Dannull et al.36 used the recombinant IL-2 diphtheria toxin conjugate 
DAB389IL-2, a targeted immunotoxin compound, for depletion of 
Tregs followed by vaccination with tumor RNA-transfected dendritc 
cells in metastatic renal cell carcinoma patients. A 7.9-fold median 
increase of tumor-specific CD8+ T cells was detected in the patients 
receiving combined treatments compared to a 2.7-fold median increase 
of tumor-specific CD8+ T cells in the patients receiving vaccination 
alone.36 Robbins’s team has reported that the levels of peripheral 
reconstituting CD4+Foxp3+ Tregs in melanoma patients receiving 
tumor-infiltrating lymphocytes therapy were negatively associated 
with clinical responses in four clinical trials, which supported the 
notion that endogenous CD4+ Tregs plays a negative role in cancer 
immunotherapy.37

Mechanism of  Tregs-mediated 
immunosuppression 

The precise suppressive mechanisms of Tregs in the context of 
tumor immunity are not exclusively defined. In vitro and in vivo 
studies of Treg cell function indicated that Tregs might use multiple 
mechanisms, which target various immune cells including the effector 
T cells, natural killer cells and dendritic cells (Figure 3). 

 Influence of Tregs on effector T cells

Many groups have demonstrated that CD4+CD25+ T cells potently 
suppress proliferation of other CD4+ and CD8+ T cells when Tregs and 
responder cells were co-cultured and stimulated with specific antigen 
or anti-CD3 mAb.38,39 Some studies have shown that Tregs can kill 
effector T cells directly in culture through the release of granzyme B 
and perforin.40–42 In addition, Tregs can alter the differentiation of other 
T cells.43–45 Jonuleit et al.43 found that coculture of human CD4+C25+ 
Tregs and CD4+C25- T cells not only suppressed the proliferation of 
conventional CD4+ T cells but also induced suppressive activity in 
these CD4+ T cells, resulting in the development of additional CD4+ 
suppressor T cells in vitro. 

Modification of antigen presenting cells by Treg Cells

Cederbom et al.46 has reported that CD4+CD25+ Tregs down-
regulated the expression of the co-stimulatory molecules CD80 and 
CD86 on dendritic cells. In addition, several studies showed that 
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Treg cells can stimulate antigen presenting cells to upregulate the 
activity of indoleamine 2,3-dioxygenase (IDO), which is a potent 
immunosuppressive enzyme that promotes peripheral immune 
tolerance by inhibiting T-cell activation and proliferation.47–49 On 
the other hand, Chung and colleagues found that mature human 
monocyte-derived dendritic cells expanded Tregs by an IDO-
dependent mechanism.50 These observations indicated that there is a 
two-way communication between Tregs and dendritic cells.

Figure 3 Mechanisms of Tregs-mediated immunosuppression. Tregs promote 
tumor progression by (1) inhibition of effector T cell proliferation, lysis of 
effector T cells through release of granzyme B and perforin, or conversion of 
CD4+ T cells into Tregs; (2) interactions with DCs through downregulation of 
CD80/CD86 on DCs or upregulation of IDO in DCs; (3) inhibition of NK cell 
function through downregulation of NKG2D on NK cells or direct inhibition 
of NK proliferation and cytotoxicity

Inhibition of natural killer (NK) cell function by Treg cells

Ghiringhello et al.51 demonstrated that human Tregs directly 
inhibited NK cell functions and down-regulated NKG2D receptors 
on the NK cell surface. They also provided the evidence that human 
NK cell-mediated tumor recognition could be restored by depletion of 
Treg cells from tumor infiltrating lymphocytes.51 It was reported that 
in vitro NK cell proliferation and cytotoxicity towards tumor targets 
were inhibited by Tregs.52 Barao and colleagues demonstrated that NK 
cell-mediated bone marrow cell rejection was significantly augmented 
with prior Treg depletion of the recipient mice.53 

Tregs in Human Gynecological Cancer
The contributions of Tregs to the tolerogenic tumor 

microenvironment in the human gynecological cancer especially in 
the context of cervical cancer, vulvar cancer, and ovarian cancer are 
evaluated in this review. Such acquired body of knowledge would 
be essential for the development of effective immunotherapeutic 
strategies against human gynecological cancer.

Tregs in human cervical cancer

Cervical cancer is the third most common cancer among women 
worldwide.54 An estimated 12,820 case of cervical cancer will be 
diagnosed and an estimated 4,210 deaths will occur in the US during 
2017.55 Persistent infection with high-risk human papillomavirus 
(HPV) including HPV types 16, 18, 31, 33, 35, 39, 45, 51, 52, 56, 
58, 59, 68, 73, 82 has been shown to be an important risk factor 
for the development of cervical cancer and its precursor lesions 
termed cervical intraepithelial neoplasia (CIN).56 Of the high-risk 

HPV types, HPV type 16 is the most common types in malignant 
lesions, responsible for over 50% of invasive cervical cancer.57 
Five-year survival rates for the patients diagnosed with localized, 
regional and distant-stage disease of cervical cancer are 91%, 
57%, 17% respectively.55 Various investigations have indicated that 
development of HPV-induced cervical cancer is associated with 
the failure to induce the HPV specific type1 T-helper and cytotoxic 
T lymphocyte responses.58–61 Furthermore, several studies have 
identified the immunosuppressive microenvironment established 
during HPV associated cervical carcinogenesis.62–66 Multiple types 
of immunosuppressive cells including tumor-associated macrophage 
(TAM), regulatory dendritic cells, Tregs, are recruited and activated 
at the tumor sites.64,67 Of note, accumulating data demonstrated that 
increased levels of Tregs were present at the cervical tumor site and 
in the lymph nodes and peripheral blood of patients with CIN or 
cervical cancer.65,68–70 Characterization of Tregs using antibodies to 
Foxp3 was performed in six groups including HPV-positive cervicitis, 
HPV-negative cervicitis, CIN III, CIN II, CIN I, and squamous cell 
carcinoma (SCC).68 Foxp3 positive cells were detected in all invasive 
tumors of SCC (30 cases) compared to only 12 of 30 cases in the 
CIN III group. They were detected in 5 of 11 cases in the patients 
of CIN Il group, 4 of 10 cases in the CIN I group, 1 of 30 cases in 
the HPV positive cervicitis patients, and none of 7 HPV negative 
cervicitis patients. 68 Moreover, the ratio of CD4+ T-cells to Foxp3 
positive cells and that of CD8+ T-cells to Foxp3 positive cells were 
significantly reduced in the SCC group (11±8 and 11±8 respectively) 
compared to the CIN III group (43±29 and 47±25 respectively) with 
immunostaining analysis.68 Van der Burg and colleagues isolated 
HPV-specific CD4+ Tregs from lymph node biopsies of cervical 
cancer patients, which has been shown to suppress proliferation and 
cytokine interferon gamma (IFN-γ) and IL-2 production by responder 
T cells.71 In addition, Fattorossi’s group examined the immune cell 
populations in metastatic tumor draining lymph nodes (mTDLN) 
and metastatic free tumor draining lymph nodes (mfTDLN), and 
discovered that CD4+Foxp3+ Tregs were more significantly abundant 
in mTDLN than mfTDLN.62 Moreover, Jordanova and colleagues 
showed that a high number of intraepithelial Tregs and a low CD8+ 

T-cell/Treg ratio were associated with worse survival in 115 cases of 
cervical cancer.72 CD8+ T-cell/Treg ratio was demonstrated to be the 
only single variable independent prognostic factor by multivariate 
statistical analysis in this study.72 Taken all together, cumulative 
evidence indicated that Treg may suppress the immune control of 
cervical neoplasia. Daemen’s group showed that in vitro depletion of 
CD25+ Tregs from HPV16-positive cervical cancer patients led to the 
increased IFN-γ T cell responses against HPV16 E6 and E7 peptides.73

The studies from Cichon’s research team demonstrated that 
inactivation of Tregs by agonistic anti-glucocorticoid-induced tumor 
necrosis factor receptor family-related protein (GITR) antibodies 
induced strong intra-tumoral invasion of CD8+ T cells and complete 
tumor eradication in 70% of treated animals in a murine model of 
cervical cancer.70 Several therapeutic vaccines applying peptide or 
protein-based, vector-based, and cell-based strategies have been 
developed to treat patients with premalignant cervical and cervical 
cancers.74–83A Phase I clinical trial with a human HPV therapeutic 
vaccine PepCan, which consists of four current good-manufacturing 
production-grade peptides covering the HPV16 E6 protein 
and Candida skin test reagent as a novel adjuvant, was evaluated in 
34 women with cervical intraepithelial neoplasia CIN2/3 in our group. 
The observed overall histological response was 45% (14 of 31 patients 
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who completed the study). Noticeably, pre-vaccination regulatory 
T cell levels were significantly lower in histological responders 
compared to non-responders (p = 0.03).82,83 Ferrara and colleagues 
reported that dendritic cell-based tumor vaccines pulsed with 
recombinant HPV16 E7 or HPV18 E7 oncoprotein were administered 
to 15 stage IV cervical cancer patients.76 Induction of IFN-γ secreting 
T-cell response was found in 3 out of 11 evaluated patients. However, 
no objective clinical response was observed in this study.76 Patients 
with HPV16-positive advanced or recurrent cervical cancer were 
vaccinated with an HPV16 synthetic long peptide vaccine consisting 
of the HPV16 E6 and E7 oncoproteins in Montanide adjuvant.79 The 
9 out of the 11 vaccinated patients have shown the vaccine-induced 
HPV16-specific IFN-γ associated immune responses.79 However, no 
tumor regression was observed among the vaccinated patient.79 Also, 
compared to a cohort group of non-vaccinated patients, the median 
survival time among the vaccinated patients was not significantly 
different (8.5±9.4 months in vaccinated group vs. 11.0±7.7 months 
in matched cohort group, p = 0.59).79 The same group also has shown 
that HPV16 synthetic long peptide vaccine induced HPV16-specific 
CD4 and CD8 T-cell responses in all six postoperative HPV16 positive 
cervical cancer patients.78

Expansion of CD4+CD25+Foxp3- type 1 cytokine IFN-γ producing 
T cells as well as CD4+CD25+Foxp3+ T-cell population was observed 
in vaccinated patients.78 The two patients who displayed the local 
recurrence after vaccination had mounted the similar magnitude of 
percentage of HPV16-specific CD4+CD25+Foxp3- T-cell subset and 
CD4+CD25+Foxp3+ T-cell subset. However, the other evaluable 
three patients who had no sign of recurrence during the time of 
follow-up had 3.9- to 11.4 -fold higher of percentage of HPV16-
specific CD4+CD25+Foxp3- subset than that of CD4+CD25+Foxp3+ 
T-cell subset.78 In the study of Stevanovic et al.,84 nine patients with 
metastatic cervical cancer followed by chemotherapy previously were 
treated with tumor-infiltrating T cells selected for reactivity against 
HPV E6 and E7 proteins. Two of nine patients attained complete 
and one patient received partial response. This encouraging report 
indicated that properly activated T cells in adoptive T-cell therapy can 
produce tumor regression in patients with advanced cervical tumor. It 
is also noteworthy that combination of chemotherapy with adoptive 
T-cell therapy in this clinical trial might have a synergistic effect since 
several chemotherapy reagents have been shown to modulate the 
tumor microenvironment such as by eliminating Tregs or inducing 
the macrophage chemoattractant protein-1.85–87 In the past, various 
immunotherapy clinical trials showed little clinical benefits especially 
in advanced cervical cancer patients. More recently, encouraging 
results are emerging using strategies to overcome immunosuppressive 
mechanisms to improve applicability of immunotherapy. 

Tregs in vulvar cancer

Similar to cervical cancer, persistent infection with high risk 
types HPV including HPV16 are associated with vulvar cancers, 
which constitute 5.6% of all gynecologic cancers.88,89 The incidence 
of vulvar intraepithelial neoplasia (VIN), a premalignant condition, 
which is increasing with 60-75% occurring in women under age of 
50.90–92 An estimated 6,020 of vulvar cancer cases will be diagnosed 
and an estimated 1,150 deaths will occur in the US during 2017.55 
The risk of progression from VIN to invasive cancer is from 3.8% 
to 9%.93,94 Recurrence is a particularly problematic feature of vulvar 
cancer cases.95 Van Esch et al.96 reported that the usual-type vulvar 

intraepithelial neoplasia (uVIN) lesions, the most common VIN type 
lesions, were infiltrated by high numbers of Tregs.96,97 They also 
found that a low CD8+TIM3+ T cells infiltration combined with higher 
infiltration of Tregs was negatively associated with the recurrence in 
uVIN.96 Importantly, compared to that in the uVIN tissues, the ratio 
of Treg/ CD8+TIM3+ T-cell in vulvar carcinoma tissues progressively 
increased.96 Vaccination of a synthetic long-peptide against the HPV-
16 oncoproteins E6 and E7 in women with HPV-16 positive, grade 
3 vulvar intraepithelial neoplasia displayed a 47% (9 of 19 patients) 
complete regression (CR).98,99 Compared to non- or partial responders, 
patients with CR mounted higher ratio of HPV16-specific effector T 
cells to HPV16-specific CD4+CD25+Foxp3+ Tregs. A combination 
of imiquimod, an immune response modifier, and HPV therapeutic 
vaccine comprising a HPV16 E6E7L2 fusion protein was given in 19 
women with VIN grads 2 and 3 in a phase II clinical trial conducted 
by Daayana et al.100 The effects of Imiquimod are mediated though 
agonistic activity towards toll-like receptors (TLR) 7 and 8, leading to 
activation of antigen-presenting cells.101 Complete regression of VIN 
was observed in 32% (6 out of 19 patients) in this study. Significantly 
increased local infiltration of CD8 and CD4 T cells was observed in 
responders, but an increased density of Tregs was identified in non-
responders.100 The studies from these promising trials suggested that 
in the setting of premalignant disease, therapeutic strategy could 
potentially reach clinical efficiency through Treg modulation. 

Tregs in ovarian cancer 

Ovarian cancer accounts for 5% death among the women, causing 
more death than any other gynecological cancer. An estimated 22,440 
ovarian cancer cases will be diagnosed and an estimated 14,080 deaths 
will occur in the US during 2017.55 The 5-year relative survival rate 
for ovarian cancer is about 46%.55 Ovarian cancer is usually diagnosed 
in advanced stages due to the lack of obvious symptoms in the 
patients and effective screening methods. Current treatment includes 
debulking and chemotherapy with paclitaxel and platinum agents. 
In spite of the significant advances in surgery and chemotherapy, 
recurrence still occurs in about 70% of the patients who become 
refractory to further chemotherapies.102,103 It has been shown that 
clinical outcome and five-year survival rate in patients are positively 
associated with the number of CD3+ tumor-infiltrating cytotoxic 
T lymphocytes,104,105 which suggested that host immunity plays an 
important role in the course of ovarian cancer. Instead of being targeted 
for immune destruction, ovarian cancer has the ability to escape the 
immune system by creating a highly suppressive environment in the 
peritoneal cavity. Tregs, tolerance-inducing plasmacytoid dendritic 
cells (PDCs), B7-H4+ macrophage, immune-suppressive cytokines 
such as interleukin-10 (IL-10) and TGF-β are present in the ovarian 
cancer environment,23,106–109 which indicated that multiple cellular 
and molecular components created the immune suppressive network 
in ovarian cancer. High numbers of PDCs were found in malignant 
ascites of ovarian cancer patients.107 Tumor-associated PDCs induced 
angiogenesis in vivo through production of tumor necrosis factor 
α and interleukin 8. Kryczek et al.108 reported that ovarian tumor 
macrophages expressed high level of B7-H4 molecules, a negative 
regulator of T cell responses in vitro by inhibiting T cell proliferation, 
cell cycle progression, and cytokine production.

They also demonstrated that tumor environmental interleukin 6 
(IL-6) and IL-10 induced macrophage B7-H4 expression.108 Curiel et 
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al.23 observed significant accumulation of CD4+CD25+Foxp3+ Tregs 
in malignant ascites and tumor tissues from 104 individuals with 
untreated ovarian cancer patients whereas CD4+CD25+Foxp3+ Tregs 
were undetectable in normal ovarian tissues without cancer.23 They 
demonstrated that accumulation of tumor Tregs predicts poor survival 
in individuals with ovarian cancer.23 In addition, Wolf and colleagues 
showed that high Foxp3 expression from 99 ovarian cancer patients 
was associated with poor prognosis in terms of overall survival (p = 
0.0034) and progression-free survival (p = 0.0041).110 Studies from 
Sata et al.111 reported that CD8+ tumor infiltrating lymphocytes (TILs) 
and a high CD8+ TILs/Tregs ratio were associated with favorable 
prognosis in ovarian cancer. Curiel et al.23 reported that tumor cells 
and tumor macrophages produced the chemokine CCL22, which 
mediated Tregs trafficking to tumor.23 Interestingly, they also found 
that tumor Tregs triggered macrophage to produce high levels of IL-
10, which was responsible for B7-H4 expression.109,112 The data from 
these studies implied that immunosuppressive network mechanisms 
might be established in the ovarian cancer. Successful ovarian cancer 
vaccine therapy might require the effective blockade of multiple 
immune-tolerance mechanisms. Several immunotherapy approaches 
have been used in ovarian cancer including therapeutic vaccines, 
monoclonal antibodies, checkpoint inhibitors and adoptive T cell 
transfer.113–118 Most of these therapies are still in early-phase testing. 
Odunsi et al.114 conducted a phase I clinical trial immunization with 
an NY-ESO-2 peptide in 18 ovarian patients. NY-ESO-1 is one of 
the most spontaneously immunogenic tumor antigens in testis and 
ovary.119 They have demonstrated that tumor-reactive CD4+CD8+ T 
cell responses were detected in ovarian cancer patients. However, 
clinical benefit afforded by vaccination has been marginal.114 A phase 
II trial using anti-PD-1 monoclonal antibody, Nivolumab, in 20 
patients with platinum-resistant ovarian cancer showed encouraging 
results.116 Programmed cell death-1 (PD-1), an immune checkpoint 
receptor expressed by T cells, binds to two PD-1 ligands PD-L1 and 
PD-L2, and suppresses antigen-specific cancer immune reaction.120,121 

PD-L1 expression in tumor cells is associated with poor prognosis 
in ovarian cancer104 and PD-L1 enables immune evasion during 
peritoneal dissemination by inhibition of cytotoxic T-lymphocyte 
function.122 The overall response in this trial was 15% and the disease 
control rate was 45%.116 

Clinical efficacy of immunotherapy may be enhanced by attempting 
to reduce immunosuppressive mediators such as Tregs. Certain 
chemotherapy regimens such as low dose of cyclophosphamide 
has been shown to reduce the number and function of Tregs that 
resulted in the increased immune response.123–125 For example, low-
dose (300 mg/m2) cyclophosphamide treatment has yielded enhanced 
immunological and clinical responses when delivered in conjunction 
with hapten-modified melanoma vaccines and with THERATOPE 
STn-KLH vaccination in breast cancer patients.126,127 A combinational 
approach of a new dendritic cell vaccine for recurrent ovarian 
cancer in combination with antiangiogeneis therapy and metronomic 
cyclophosphamide was reported and awaited for future evaluation.87

Concluding remarks 
During the past decade, remarkable progress has been made 

in understanding the interaction between the immune system and 
cancer. It is now appreciated that the immunological response 
against cancer is a critical balance between immune-activating and 
immune-suppressing mechanisms. The current wealth of information 
in the studies of tumor microenvironment in patients from cervical 
cancer, vulvar cancer and ovarian cancer indicated that Tregs are 
significant contributors to tumor-associated immune suppression. 

The knowledges in the functional studies of Tregs in each specific 
gynecological cancer type may provide new treatment strategies to 
effectively manipulate Tregs through methods such as depletion, 
blocking trafficking, and alleviating suppressive mechanism. It 
would be of interest to examine cancer therapy-induced changes on 
elimination or activation of Tregs in tissues and peripheral circulation 
of cancer patients. A combinational cancer vaccine combined with 
Tregs modulation would be a promising approach to attain effective 
antitumor responses.
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