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Abbreviations: TLR4: toll-like receptor 4; RME: receptor 
mediated endocytosis; CME: clathrin Mediated endocytosis; TGF-β: 
transforming growth factor β

Introduction
Endocytosis is a process through which cells taking molecules in to 

the cell by bypassing plasma membrane trafficking. The physical and 
chemical properties of the molecule direct the cell to choose the method 
of internalization.1 After endocytosis, they form an independent vesicle 
in the cytoplasm known as phagosomes, pinosomes, coated vesicles 
etc. depending on the process of endocytosis. Classically endocytosis 
can be categorized in to four as phagocytosis, pinocytosis, clathrin 
mediated endocytosis (CME) and caveolae mediated endocytosis [2]. 
Phagocytosis is a process of internalizing the particulate substrate, 
which varying in size from 0.05μm to 1.0μm. In pinocytosis, cells 
engulf lower molecular weight molecules and fluids. Pinocytosis can 
be further divided into two categories as adsorptive pinocytosis and 
fluid phase pinocytosis.3 The mechanism of endocytosis carried out 
through clathrin coated vesicles is meant for the internalization of 
antibodies, growth factors, and low-density lipoprotein. Caveolins 
form small conical invaginations in the plasma membrane, which will 
uptake the molecules through specific receptor mediated mechanism. 
Caveolins mediated endocytosis otherwise known as lipid raft /
caveolar endocytosis since it carried out through lipid raft regions in 
most of the times.4–6

Both clathrin dependent and independent endocytosis play a vital 
role in cell signaling. A cholesterol-sphingolipids rich region on the 
plasma membrane known as lipid raft plays significant role in this 
mechanism. Cell membrane receptors are concentrated in the lipid raft 
and these lipid rafts are responsible for signaling molecule assembly 
and receptor endocytosis. Briefly, membrane proteins categorized in 
to three groups: ion channel linked receptors, enzyme linked receptors 
and G protein coupled receptors. Most of the receptors need to form 
a homo or hetero dimer in order to activate the downstream signaling 
cascade.7,8

Upon activation with specific ligand, the receptor recruits their 
primary adaptor molecules and triggers the activation of effector 
molecules. These receptors have extracellular, transmembrane and 

intracellular domains with functional importance. Some receptors 
endocytosed to the cytoplasm by choosing one of the above endocytic 
mechanism and in turn change fate of the signaling pathway.6 
Guglielmo and colleagues explained the fate of Transforming 
Growth Factor β (TGF-β) receptor when it was endocytosed by CME 
and RME. During the CME, TGF-β activates the smad dependent 
signaling pathway whereas in RME mediated endocytosis leads to the 
degradation of TGF- β receptor [9]. Chen and Camilla have shown 
the dose dependent endocytosis of epidermal growth factor receptor 
(EGFR). EGFR will choose CME if there is low ligand concentration 
and tend to undergo RME in the presence of higher dosage.10 The 
process of endocytosis regulates the signaling cascade and nutritional 
uptake of a cell.

Mechanism of receptor mediated endocytosis

Receptor mediated endocytosis is mainly mediated by clathrin. 
Adaptor proteins like AP-2 binds directly to clathrin and produce 
a ‘clathrin coat’. The ligand activation of a receptor will result in 
the binding of activator protein that in turn recruits the clathrin and 
they form a coated vesicle at the site of activation. Figure 1 explains 
the mechanism of RME. The vesicle fused with peripheral early 
endosomes in which the cargo may get processed inside. This fusion 
involves Rab5 and EEA-1 proteins. It is not clear that how and when 
the early endosomes transfer the cargo to late endosomes or the former 
matures to form later, even though they have distinct pH and chemical 
properties. The fate of the protein inside the endosomes, whether 
to recycle or degraded is determined by the chemical modification 
of the protein.11–16 Actin plays an important role in this process and 
Kaksonen et al have characterized the actin dynamics, movement 
and disappearance at the site of endocytosis.17 On the other hand, 
Dynamin-1 protein has no significance in the formation and recycling 
of endosomes.18,19

Endocytosis and regulation of signaling

Receptor activation through ligend binding requires additional 
adaptor molecules and phosphorylation to carry out the downstream 
signaling pathway. Endocytosis of the receptors leads to the 
down regulation of the signaling pathway, and ubiquity mediated 
degradation will take place in lysosomes or recycle back to plasma 
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Abstract

Cells take materials from outside without crossing plasma membrane through engulfing 
them by a process called endocytosis. It can be categorized into phagocytosis, pinocytosis, 
clathrin and caveolins mediated endocytosis. Toll-like receptor 4 (TLR4) is an innate 
immune receptor recognizing specific microbial pattern and initiate host response against 
invading pathogen. Receptor mediated endocytosis (RME) involve in the uptake of ligand 
activated TLR4 and helps to down regulate the proinflammatory pathway to prevent from 
septic shock, multiple organ failure and death. Endocytosed TLR4 can activate TIRF-TRAM 
pathway and produce IRF3 as effector molecule. Later in lysosomes, the endocytosed TLR4 
undergoes Triad3A mediated degradation and thereby limiting its further signaling. This 
review discusses the latest findings on the role of endocytosis and receptor trafficking in 
TLR4 signaling.
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membrane from early endosomes. This helps the cell to retain the 
particular receptor activity simultaneously.15,20

Figure 1 Process of receptor mediated endocytosis.

Receptor-mediated endocytosis (RME) is triggered by the binding of the specific 
ligands to host receptors. The ligand attachment to the host receptor induces 
the binding of an adaptor protein to the receptor cytoplasmic tail. Adaptor 
proteins bind to clathrin, and the local concentration of adaptor proteins on 
the inside face of the plasma membrane allows clathrin to multimerize to 
form characteristic invaginations or Clathrin-Coated Pit. Membrane scission 
proteins DNM1/Dynamin-1 or DNM2/Dynamin-2 pinch off the CCP from the 
host membrane thereby releasing the Clathrin-Coated Vesicle.

A well-studied model for RME is EGF receptor endocytosis. 
Immediately after binding with EGF, the receptor localizes out of the 
raft area, eventually localized in to clathrin coat, and internalized. In 
the early endosomes, EGFR interacts with YOTB, Vac1, and EEA1 
and forms a ternary protein complex with signal transduction adaptor 
molecule and EPS15. EGFR recycles back to the plasma membrane 
or transferred to multi-vesicular bodies for degradation.21-23 This 
type of internalization is meant to be a down regulation process for 
most receptor signaling. Kirchhausen and colleagues have shown the 
negative regulation of RME in EGFR.24

Toll-like receptor signaling and endocytosis

Toll like receptors are the ‘gate keepers’ of the innate immune 
system. They are responsible for the recognition and response towards 
invading pathogens.25,26 There are 13 mammalian TLR family proteins 
were identified so far. TLRs can be activated by variety of pathogen 
associated molecular patterns such as LTA, LPS, flagellin, CpG DNA, 
dsRNA, and ssRNA.27–31 Upon activation with the ligand, TLRs form 
homo or heterodimers and recruits its primary adaptor molecules, 
which will result in a series of cellular and molecular changes inside 
the cell. TLR signaling pathways follow two types of downstream 
activation namely, MyD88 dependent and MyD88 independent 
pathways, which eventually switch on the pro-inflammatory 
cytokine response through the nuclear translocation of NF-κB and 
IFN.25,32 TLRs which are present on the plasma membrane gradually 
endocytosed and it is found as an important negative regulation in 
TLR signaling as observed in EGFR previously.

TLR4 recognizes LPS and induces pro-inflammatory pathway 
via MyD88 mediated activation and nuclear translocation of NF-κB. 
Another way of TLR4 activation through TRIF-TRAM is introduced 
during its endocytosis. Continuous exposure to LPS may lead to 

septic shock and death of host cells, thus the host response should 
control the process of inflammation through ‘tolerance’. Endocytosis 
of the receptor and its degradation through ubiquity pathway is 
one of the negative regulatory mechanisms in LPS induced TLR4 
pathway.33 TRAM is the signaling molecule for TLR4 translocation 
to endosomes with its bipartite signaling sequence. Kagan et al have 
explained the difference in host response of membrane localized 
and endocytosed TLR4 in macrophages.34 Haselby et al have shown 
the internalization of TLR4 within 30 min of LPS treatment and a 
GTPase known as dynamic regulates the process of endocytosis.33 
LPS-CD14-TLR4-MD2 complex is getting internalized to make 
macrophage desensitized.25,33 Lee et al.35 showed the host tolerance 
of LPS on TLR4 signaling by using TLR4-GFP construct.35 Suri and 
colleagues previously reported the presence of TLR4 in the nucleus 
after stimulating with LPS.36 The mechanisms and functional aspects 
of this translocation yet to be explained.

Cellular and functional effects of TLR4 endocytosis

TLR4 is found to activate both MyD88 dependent and independent 
pathways. But no TLR can activate the MyD88 independent TRIF-
TRAM signaling from plasma membrane. This mystery explained after 
the discovery of TLR4 localization into the endosomes. Internalized 
TLR4 activates a different pathway in early endosomes and purpose 
of this internalization is to limit the receptor expression (Figure 2). 
TLR4 signaling from plasma membrane activates the MyD88 adaptor 
molecule and leads to the activation of NF- κB and AP-1. These 
transcription factors are known to produce various pro-inflammatory 
cytokines.37 To avoid septic shock, multiple organ failure and death, 
the host will turn on ‘tolerance’ pathway by internalizing the TLR4 
and limiting the MyD88 dependent pathway.3

Figure 2 Mechanism of TLR4 signaling and endocytosis.

LR4 is found on the cell membrane and reacts to extracellular stimulation 
with lipopolysaccharide (LPS) with the help of LPS binding protein, CD14 
and MD2. TLR4 signalling is terminated by endocytosis, ubiquitylation and 
lysosomal degradation, a mechanism that is likely to be shared by all TLRs.

TRAM mutant macrophages were unable to produce IL-6 and 
RANTES after stimulating with LPS. IRF3 will be induced after the 
activation of TLR4 induced TRIF-TRAM pathway from endosomes. 
The primary response genes for TRIF-TRAM pathway activation are 
IP10, RANTES, IFN-β, ISG15, and IFIT1 [38]. Hiscottl et al have 
reported that the cell is producing antimicrobial compounds such as 
ions and IFN-β upon the activation of TRIF-TRAM pathway.39 Gene 
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expression profiling studies have revealed that the long-term exposure 
to LPS will lead the production of IFN-β.38

The activation of interferon pathway leads to the production of 
IFN- β, IP10, ISG15 etc. and will result in the activation of JAK-STAT 
pathway.40 TLR4 endocytosis also helps in the coordination between 
innate and adaptive immune systems. Degraded antigen bound TLR4 
presented by class II MHC receptor and T helper cells recognize them 
to activate adaptive immune response.37

Summary and future prospects
TLR4 activates two different pathways in which TRIF-TRAM 

mediated signaling refers the negative regulatory. Endocytosis of the 
receptor and ubiquity mediated degradation regulate an important role 
in negative regulation of signaling. Transfer of endocytosed TLR4 to 
the lysosomes and its degradation conflicts with the data showing 
their nuclear translocation and this differential immune response still 
need explanation.
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